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Abstract. In this paper we first derive two normal form construc-
tions for cellular automata to transform any given (one-dimensional)
cellular automaton into one which is one-way and/or totalistic. An
encoding of this restricted type of automaton together with any ini-
tial configuration becomes the input of our small universal cellular
automaton, using only 14 states. This improves well-known results
obtained by simulation of small universal Turing machines and also
some recent results on universal totalistic cellular automata.

1. Introduction

Interest in cellular automata (CA) has been renewed since their application
to the study of complex systems [17,18,19]. In this context the universality
of CA was discussed in [19] and open problems about universal CA with a
small number of states were stated in [20]. We give some results here.

A cellular automaton is said to be universal if it can simulate every
Turing Machine (TM) or, even stronger, if it can simulate every CA of the
same dimension. The first universal cellular automaton was given in the
famous work of J. von Neumann on the simulation of self-reproduction.
He gave a 2-dimensional universal and self-reproducing CA with 29 states.
This was improved to 20 states in [1].

Also well known is the work on small universal Turing Machines (cf.
[9,10,13]). In this case the goal is to minimize simultaneously the number
of states and the number of tape symbols. In [10] it is shown that there is
a universal Turing Machine with either 4 symbols and 7 states or with 6
symbols and 6 states. Smith [14] has shown that any Turing Machine with
m symbols and n states can be simulated by a one-dimensional CA whose
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uniform cells has m + 2n states. Thus either one of the universal TM from
[10] yields CA with 4 +2 x 7 = 6+ 2 x 6 = 18 states. Here we improve this
result and show that there is a universal one-dimensional CA with 14 states.
We believe that some more effort in the detailed ”low-level programming” of
our basic strategy can decrease this by 2 or 3 states. However, the minimal
number of states of a universal one-dimensional CA could still be much
smaller, since CA with 3 or 4 states already show astonishingly complex
behaviour.

The well known “Game of Life” is a “semi-totalistic” CA which means
that the next state of a cell only depends on its own current state and the
sum of the states of its neighbors. S. Wolfram also introduced an even more
restricted type of CA, called totalistic. The next state of a cell of such CA
depends only on the sum of all the states in its neighborhood, including
its own. D. Gordon [7] has shown that totalistic one-dimensional CA can
simulate every Turing Machine and we will strengthen this result and show
that every one-dimensional CA can be simulated by a totalistic one. We
will use this result in the construction of our small universal CA. We will
also use the result that every one-dimensional CA can be simulated by a
one-way (unidirectional) one-dimensional CA [4,5,16] and that one-way CA
are equivalent to trellis automata [2].

We will show our results for CA with the transition function dependent
on the state of each cell and its immediate left and right neighbors (r =1 in
[19]). However, our results can easily be extended to larger neighborhoods.

2. Preliminaries

As we will consider only one-dimensional and homogeneous cellular au-
tomata in this paper we will restrict ourselves to this special case in the
following definitions. For more general terminology see [3] or [15].

Intuitively, a cellular automaton consists of a doubly infinite arrray of
cells. All cells are identical copies of one single finite automaton. The local
transition function of each cell only depends on the actual states of its left
and right neighbor and itself. Thus, a computation of a cellular automaton
can be defined in the straightforward way as the synchronous application of
the local transition function at each level. The set of states always contains
a so-called quiescent state q with the property: if a cell and its left and right
neighbors are quiescent at time t then this cell is quiescent at time t+1. As
we assume finite output for the cellular automaton this implies that there
is a finite number of nonquiescent cells in the initial configuration and in
every subsequent configuration as well.

Definition 1. A (one-dimensional, homogeneous) cellular automaton is a
triple A = (Q,d, q) where @ is a finite set of states, d is the local transition
function, d : @ x @ x Q@ — @Q where the arguments of d are used in the fol-
lowing meaning d(state of left neighbor, own state, state of right neighbor),
and g in Q is the quiescent state, i.e. it holds d(q,q,q) = g.



Universal Cellular Automaton 3

Definition 2. A configuration of A is a mapping C : Z — Q, where Z

denotes the set of integer numbers such that C (i) = q (quiescent state) for

all but finitely many i’s. The set of nonquiescent cells of a configuration C

is called the support of C.

Definition 3. A computation of A is a sequence of configurations
CO:CI=C2:"'7Cn:"'

where Cy is the initial configuration and each configuration C;,, is gener-

ated by simultaneous invocation of the transition function d for all cells of

A in configuration C;.

3. Simulation by one-way automata

For our construction of a universal cellular automaton in subsequent chap-
ters we will need an automaton which is totalistic and one-way.

A cellular automaton A with set of states @ and transition function
d:QxQxQ — Q is called one-way, if d only depends on the state of the own
cell and the state of its right neighbor cell. Thus we can write the transition
function of a one-way cellular automaton in the form e: Q x Q — Q with
the convention that the arguments of e consist of the states of the own cell
and those of its right neighbor.

In this section we will outline a transformation of an arbitrary cellular
automaton to a one-way cellular automaton in order to specify bounds
for the increase in the number of states and in time-steps needed in the
simulation.

In [16] a similar technique was used for the case of real-time cellular
automata, more general cases were considered in [4] and [5].

The construction of the one-way automaton can be described briefly by:

1. merging of each state with the state of its right neighbor

2. shifting to the left during the state transition.

Let s1,82,...,5; be states in a configuration, such that s; # ¢ and let

to,t1,--.,tk41 be the states after one transition as shown below
g 9 g s S2 83 ... S g9 49 ¢
q q to t; tz t3 — tk tk+1 q q

Then it takes two time-steps in our simulating automaton to produce the
transition:

g @ q S S2 83 ... S q q ¢

g lo tg ty t3 ... le1 9 9 g ¢

For the given cellular automaton A let @ be the set of states and d :
Q X Q@ x Q — @ the transition function. As defined above, in the simulating
one-way cellular automaton A’ the transition function d' will consider only
the states of its own cell and its right neighbor cell.
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Let Q' =QUQ x Q and define d' : Q' x Q' — Q' as follows

d'(v,v) = wv for(u,v) # (g,9)
d'(g,9) = ¢
d'(ww,vw) = d(u,v,w)
dr(‘]a qu) = d(‘fa q, u)

d'(wg,q) = d(w,q,q)

for all u,v,w in Q.
Thus, the transition shown above is completed in two time-steps by A’
in the following way

q9 g9 S 52 .er Sk Sk 9 ¢q
g @gsy 8183 8253 ... Sp18: Siq G ¢
to t1 tz t3 ... t lry1 9 ¢

The details of this construction are straightforward, so we can state the
following theorem:

Theorem 1. For every cellular automaton A with k states there exists a
one-way cellular automaton A' which simulates A twice slower and A’ needs
at most k? + k states.

In the above construction of the simulating one-way cellular automa-
ton one can delay the given transitions by “aging” the states in Q (e. g.
a,a',a",a",...) to obtain slower expansion of the nonquiescent cel There-
fore it is clear that the following corollary holds:

Corollary 1. For every cellular automaton A with k states and for every
m > 1 there exists a one-way cellular automaton A' which simulates A
(m + 1)-times slower and A’ needs at most k* + mk states.

Later, we will have to apply this corollary for m = 3 in the construction
of a universal one-way cellular automaton.

4. Simulation by totalistic automata

In this section we will show that each cellular automaton can be simulated
(without loss of time) by a cellular automaton which has a totalistic tran-
sition function and uses up to four times as many states as the original
automaton.

Definition 4. A cellular automaton A with set of states Q@ and transition
function f : Q@ X Q@ X Q — Q is called totalistic, if Q C N (non-negative)
and there exists a function f': N — N such that f(z,y,2) = f'(z+y+2)
for all z,y,z in Q.
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S_2 S So 31 S2 S3

100s_» 1053 S0 1000sy 100s2 10s3

Figure 2: A configuration of the totalistic CA simulating CA A.

The transformation of an arbitrary cellular automaton whose states
are identified with non-negative integers is now accomplished by a cyclic
“coloring” of cells. We use four different powers of a basis such that in the
number representation of the sum of three neighboring states left neighbor,
right neighbor and own cell are still identifiable by the position of a missing
entry.

Consider, for example, a cellular automaton A with set of states Q =
1,2,...,n and transition function d : Q@ X @ X @ — Q and let the Figure 1
depict part of configuration of A.

Let B = n+ 1 be the basis for the coloring factors 10, 100 and 1000 (in
B-ary notation). Then the configuration in Figure 1 changes to the one in
Figure 2.

Thus our new set of states is

Q' ={sm|s€Q,me {1,10,100,1000}}.

So Q' contains 4n states and we can define now the (partial) totalistic
transition function d' : N — Q' as follows

d'(zyz) 10d(z, y, 2)
d'(zy20) = 100d(z,y,z)

d'(yzz) = 1000d(z,y,z2)
d'(z0zy) = d(z,y,z)

for all z,y,z in Q.

Again zyz, zy20, y20z, 20zy, 10,100, 1000 are to be interpreted as num-
bers in the B-ary system.

It is now straightforward, that the cellular automaton A with set of
states Q' and totalistic transition function d' correctly simulates A without
loss of time and it therefore holds

Theorem 2. For every cellular automaton A there exists a totalistic cel-
lular automaton A' which simulates A without loss of time and has at most
four times as many states as A.
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Figure 3: The unrolling (time-space diagram) of a one-way CA.

If only one-way cellular automata are considered, the above construc-
tion can be simplified using only three different powers of B for the coloring
of the cells, whereby the one-way property of the given automaton is pre-
served.

Corollary 2. For every one-way cellular automaton A there exists a one-
way totalistic cellular automaton A' which simulates A without loss of time
and has at most three times as many states as A.

For the more general case of an arbitrary (regular) systolic network
this technique of coloring its underlying graph is used in (6] to show that
actually every systolic network can be transformed into a totalistic one.

5. Informal description of construction

In the previous section we have shown that any CA can be simulated by
one which is one-way and totalistic and such that the expansion of the
nonquiescent part to the left can be delayed by any constant factor m. We
choose m = 3 to achieve expansion to the left at most at half-speed.

Our universal automaton U will simulate any given one-way totalistic
cellular automaton A (which expands at most at half speed to the left)
with any given initial configuration. We will encode this pair as initial con-
figuration of the universal automaton U. A constant number (depending
only on the number of states of A) of steps of U is needed to simulate one
step of A. Four steps of the time-space diagram (unrolling) of an one-way
automaton with a starting configuration of length 9 is shown in Figure 3.
This unrolling is obviously computationally equivalent to the trellis struc-
ture shown in Figure 4. We will use this observation in our construction
of the universal cellular automaton U. Note that the computations which
took place in one cell of the first automaton and therefore being depicted
in vertical lines in the first fizure, are now shifting to the right in each step.

Example: Let A be a totalistic one-way cellular automaton with set of
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Figure 4: A trellis structure isomorphic to the encoding of a one-way
CA.
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states @ = 0,1,2,3,4 and transition function d given by

2 3 5
13 3

O

0
0

4 6
d(?) 2 3
Since A is one-way the nonquiescent states expand to the right only. An
example of a computation of A transformed into the trellis shape is shown
in Figure 5. In the simulation of the automaton A each of the nonquiescent
cells of A will be encoded as a block of constant size of cells in U. This block
contains the given transition-table for the cells of A, and by the marking of
the appropriate table-entry also the encoding of the current state of a cell,
i.e. if a transition d(i+7) = k takes place in a cell of A, in the corresponding
block the (7 + 7)th table-entry — which holds an encoding of the number £
— becomes marked.
So in our automaton U the main actions to simulate one time-step if
the given automaton A will be grouped into three phases:

Phase 1: Send information about current state to left neighbor block.
Phase 2: Send information about current state to right neighbor block.

Phase 3: Process information to look up next state.
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block ¢ block 1 +1 block 1 +2 block 1 +3 block 1 +4

phase 3

phase 2

phase 1

phase 3

phase 2

phase 1

Figure 6: The flow of signals in the adjacent blocks of the universal
CAU.

6. Outline of construction

As shown above the next states are always computed between the two
cells whose states are to be considered for the table-lookup. Therefore it
is convenient to use alternatively “activated” blocks and “empty” blocks
and to change the roles of both in the odd and even steps (beats) of the
computation. This is achieved by sending messenger signals over these
blocks where the signals have to complete various tasks during the three
phases mentioned above.

Phase 1: Start from the right end of an active block and find a table-entry
representing the current state; activate a number of signals according
to the current state which are moving to the empty block to the left;
continue to move to the left end of the block.

Phase 2: Bounce at the left end of the block and find once more the table-
entry representing the current state; accordingly activate signals which
are now moving to the empty block to the right; while clearing all tem-
porary marks continue to move to the right end of the block, leaving
an empty block behind.

Phase 3: Cross over to the block to the right; while moving to the right end
of this block process the signals which have been accumulated here
during the previous phases; bounce at the right end.

The flowing of messenger signals over some adjacent blocks during the
phases of two consecutive beats is illustrated in Figure 6.

Furthermore we have to take care that after each beat a new block at
the righthand end of the nonquiescent part can be activated to simulate a
possible expansion to the right. This is achieved by copying (at least) one
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complete block to the right during each beat and by activating one new
block which starts in the encoding of the quiescent state.

By our construction we can assume that there is no expansion to the
left and so we only need to activate the leftmost block at each second beat.
This is realized by a special block and messenger signals.

Details of these constructions and encodings, the transition-table for U
and examples are found in the appendix.

Theorem 3. There exists a universal automaton U with 14 states which
can simulate any given totalistic one-way cellular automaton A with any
initial configuration.

In [14]:Theorem 4 it is shown that any Turing machine T with m tape
symbols and n states can be simulated by a cellular automaton with m +2n
states. Thus either of the universal Turing machines with 6 symbols and
6 states or with 4 symbols and 7 states ([10]) yields a universal cellular
automaton with 18 states.

We can now apply the normal form construction of our previous sections
to the universal cellular automaton U of Theorem 6.1 to generate universal
cellular automata which are also one-way and/or totalistic.

Corollary 3. For every universal cellular automaton U with n states there
exists a universal one-way cellular automaton U; with n* + n states.

Corollary 4. For every universal cellular automaton U with n states there
exists a universal totalistic cellular automaton U, with 4n states.

Corollary 5. For every universal cellular automaton U with n states there
exists a universal one-way totalistic cellular automaton Us with 3(n® + n)
states.
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Appendix

For the encoding of the given transition-table as a block of cells in U we
can assume without loss of generality that for the given totalistic one-way
cellular automaton A the set of states Q is defined as @ = {3,4,5,...,k},
where 3 is identified with the quiescent state in A.

Each block consists now of a sequence of 2k + 1 sub-blocks of the form

#2000...000111...111

t—times j—times
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and a block-endmarker #, where z is in {0,1},74+ 7 = 2k + 1, and if in the
given transition function d we have d(m) = n then in the mth sub-block of
each block it holds j = n. For all other sub-blocks we have 7 = 3. Thus a
block consists of (2k + 2)? cells.

If a cell of the original one-way totalistic automaton is executing the
transition d(r) = s, then in the corresponding block of U exactly in the
first 7 sub-blocks from the left we have z = 1 and in all other sub-blocks
2=0.

The computation of the next transition in the simulating automaton U
then takes 3(2k + 2)% + 7(2k + 1) times steps which constitute one “beat”
of U.

Example: Let @ = 3,4,5 be the set of states and the transition-
function d be defined as

i 6
d(7) 3

Then a transition by d(9) = 5 corresponds to the following situation in the
block at the beginning of the beat:

9 10
5

7 8
4 4 4,

#100000000111#100000000111#100000000111#100000000111#100000000111
#100000000111#100000001111#100000001111#100000011111#000000001111
#0000000001aat# .

Here aa at the end of the block shows that this block is activated and
that the new state 5 has to be sent to left and right neighbors.
It can also be seen easily that the transition-function has been extended

to
) 12 3 45 6 7 8 9 10 11

di) | 333333445 4 3

An inactive, “empty” block then looks like

#000000000111#000000000111#000000000111#000000000111#000000000111
#000000000111#000000001111#000000001111#000000011111#000000001111
#000000000111#.

If a block is activated at the beginning of the beat, his right neighbor
block will become activated at the next beat. In order to be able to expand,
it is therefore necessary to start a new activation from the left end at each
second beat. This is done simply by sending a synchronizing signal up and
down over a sufficiently long sequence of 1’s. The first block after this syn-
chronizing left part contains only table-entries representing the quiescent
state. So each second beat the “quiescent block” at the left end is activated
and no expansion to the left can occur.

At the right end copying of a block is performed by pushing an encoded
form of a block to the right and simultaneously leaving an empty block
behind, which will be activated later as representing the original quiescent



Universal Cellular Automaton 11
3 4
4 3
3 4 g

Figure 7: A computation of one-way CA B.

999999999999999999999999999999999911111111111111111111111111111111
11111111131311141111111112111111121111111211111111111141111111111111
1111111111111111111111141a1111111211111111111111141414111111111111
111111111113144144111914111111114311111111111111414114111111111111
1111141119199444439919914411199448333919131111191144444441111111111
111144411911144111131141441111111311111111131111114411411111111118
1#00011111111#00000111#0000000111#0000000111#0000000111#0000000111
#00000001 11#0000000111#00000001 11##1000000111#1000000111#100000011
1#1000000111#1000000111#1000000111#00000001 11#0000000111#00000001a
a##0000000111#0000000111#0000000111#00000001 11#0000001111#00000001
11#0000001111#0000001111#0000000111##1000000111#1000000111#1000000
111#1000000111#1000001111#0000000111#0000001111#0000001111#0000000
1aa##1000000111#1000000111#1000000111#1000000111#1000001111#100000
0111#1000001111#1000001111#1000000111##1000000111#1000000£g1g0hOhO
hOgiglhOhhhhhggg1hOhOhOglglgOhhOhOhgggghhhOhOglglgOhOhOhlgglqqqqqqg

Figure 8: The initial configuration of U which encodes the configura-
tion 34 of B.

state. During one beat a little more than a complete block is created at the
right, but since activation of blocks is initiated from the left — synchronized
with beat — this does not affect the simulation of the nonquiescent part of
the original totalistic one-way automaton.

Example: Consider CA B given by the following transition-table

i | 123
dii) | 3 3 3

[F ]

7809
4 4 3

Three consecutive configurations of B are shown in Figure 7. The three
snapshots of U corresponding to these three configurations are shown in
Figures 8, and 9. In this case one beat of U consists of 363 single transition-
steps. Figure 8 shows the initial configuration of U, the configurations
after the first beat (363 steps), and after the second beat (726 steps) are in
Figure 9.
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999999999999999999999999999999999q11111111111111111111111111111111
1111111111111 41111114111141111111111111111111111111111111111111111

1111111311131211111391131432131434343343144339433494313139114311111311111
11111143943119941114319134334334931334314911912131313194919114311111111111
111111111g311111111111131311113114191111311111111311431111111111111111111
1111111111312311111113121131137133393121131331311113313313313113113111111111%
1#00011111111#00000111#0000000111#1000000111#1000000111#1000000111
#1000000111#1000000111#1000000111##0000000111#0000000111#000000011
1#0000000111#0000000111#0000000111#0000000111#0000000111#000000011
1##1000000111#1000000111#1000000111#1000000111#1000001111#10000001
11#1000001111#0000001111#00000001aa##0000000111#0000000111#0000000
111#0000000111#0000001111#0000000111#0000001111#0000001111#0000000
111##1000000111#1000000111#1000000111#1000000111#0000001111#000000
0111#0000001111#0000001111#000000012a##1000000111#1000000111#10000
00111#1000000111#1000001111#1000000111#1000001111#1000001111#10000
00111##1000000111#1000000111#1000000111#bjchOhbgigghhhhhhigigihOh0

hOhigighhhhhhglgigOhOhOhigigihhhhhhhglg1h1h0jqqqaqqqqqqqqqaqqqqaqq

999999999999999999999999999999999911111111111111111111111111111111
111111111131111111111111311311311111111111111111111113111111111111

1111131131212112111131311114a11131211111113211113131331331131411131111111111
111111111111111111111111111411111111111111111111111111111111111111
111111111111111214121441111111111111111114111141111111111111111111
11111111111111111111111111111111111111111111111111111111111111111#
1#00011111111#00000111#0000000111#0000000111#0000000111#0000000111
#0000000111#0000000111#0000000111##1000000111#1000000111#100000011
1#1000000111#1000000111#1000000111#0000000111#0000000111#00000001a
a##0000000111#0000000111#00000001 11#0000000111#0000001111#00000001
11#0000001111#0000001 111#0000000111##1000000111#1000000111#1000000
111#1000000111#1000001111#1000000111#1000001111#0000001111#0000000
11a##0000000111#0000000111#0000000111#0000000111#0000001111#000000
0111#0000001111#0000001111#0000000111##1000000111#1000000111#10000
00111#0000000111#0000001111#0000000111#0000001111#0000001111#00000
001aa##1000000111#1000000111#1000000111#1000000111#1000001111#1000
000111#1000001111#1000001111#1000000111##1000000111#1000000111#100
0000111#1000000111#10000011ggghhhhOhOg1g1hOhOhOggggghhhOhOg1g1gOho

hOhOgggghghhOhOh1g1g0hOhOhOgg1999999999999999999999999999999999999
Figure 9: The configuration of U after the first beat (363 steps) and

after the second beat (726 steps), which encode configurations 43 and
343 of B.
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Table 1: The first half of the transition table of our 14-state universal
CA. The upper row shows the state of the considered cell and the
first two columns display the states of the left and right neighbor
cells. The table-entry “-” means that the combination never occurs
during a simulation, thus any of the states could be entered instead

of the “”.
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Table 2: The second half of the transition table of our 14-state uni-
versal CA. The upper row shows the state of the considered cell and
the first two columns display the states of the left and right neighbor
cells. The table-entry “-” means that the combination never occurs
during a simulation, thus any of the states could be entered instead

of the “.”,

#01labcdefghiijgq #0labcdefghi jgq
1l cle -aa-#--g11H#F- - € J|- hg=-=+=+ g - = = =
1dje -d-----d-11i-1 gaq|l-hg=--+-+-- gh - 1
lelc =8« o coallecaans h #(1 - = - = = = = = - - # - -
1 fle »1=-= = «==g==== ho|lih--0-1i--ghd# - -
lg|l#-1g-1--q1l04#-q h1l|i hglOi---gh# - -
1 h|#01- - -=-qlO0o#ij hel|il-==«wcneaosenan - - .
1 i|#-1g--1-glh+#-- hg|-hggh----gh - - -
1j[#01------10-+-%# hh|i hg-«h««--gha=+ - -
1qflq -1==+«---10 - q hifi-=--=------- - - -
a#l#E-11- - «=-e= = - h j|-hg=-«=«=«- gh - - -
a 0(#0--e#=-==1=2 = = hq|- hg------ gh - 1
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bel-b-=-=- - - g al- -g--=-=-===== = - -
bf|l-0-------c--o-=-- qg|--1---f--4d0 - #4q
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