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Abstract. T his paper describes NETtalk , a class of massively-parallel
network systems that learn to convert English text to speech . The
memory represen tat ions for pronunciations are learned by practice
and are shared among many processin g uni ts . T he performan ce of
NET talk has some similar it ies with observed human performance. (i)
T he learning follows a p ower law . (ii) T he more words the networ k
learns , the be tter it is at generalizing and correctly pronouncing new
words, (iii) The performance of t he network degrades very slowly as
connections in the network are damaged: no single link or processing
unit is essential. (iv) Relearning after damage is much faste r t han
learning during the original training. (v) Distributed or spaced pr ac­
tice is more effecti ve for lon g-term reten tion t han massed pr actice.

Network models can be constructed that have th e same perfor­
mance and learning characteristics on a particular task, bu t di ffer
completely at t he levels of synaptic strengths and single-unit responses.
However . hierarchical clustering techniqu es applied to NETtalk re­
veal that these different networks have similar internal repr esentat ions
of let ter- to-sound correspondences within groups of processing units.
This suggests t hat inva riant internal represent at ions may be found in
assemblies of neurons inte rmed iate in size between high ly localized
and complete ly distributed re presentations.

1. Introd uction

Ex pert pe rformance is character ized by sp eed and effor t lessness, but this
fluency requ ires lon g ho urs of effort fu l practice. We are a ll exp erts a t
reading and communic ating wit h language. We forget how long it to ok to
acqu ire these skills because we are now so goo d a t them and we continue
to pract ice every day. As performance on a difficult task becomes more
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automatic, it also becomes more inaccessible to conscious scrutiny. The
acquis ition of skilled performance by practice is more difficult to study and
is not as well understood as memory for spec ific facts [4,55,78).

The prob lem of pronouncing written English text illust rates many of
the features of skill acquisition and expert performance. In reading aloud,
let ters and words are first recognized by the visual system from images on
the retina. Several words can be processed in one fixat ion suggest ing that a
significant amount of parallel processing is involved. At some point in the
central nervous system the information encoded visually is transformed into
articulatory informat ion about how to produce the correct speech sounds.
Finally, intricate patterns of activity occur in t he motoneurons which inner­
vate muscles in the larynx and mouth, and sounds are produced. The key
step that we are concerned wit h in this paper is the transformat ion from
the highest sensory represent at ions of the letters to t he earliest articulatory
represent at ions of the phonemes.

English pronunciation has been extensively studied by linguists and
much is known about the correspondences between letters and the ele­
mentary speech sounds of English, called phonemes 183). English is a par­
ticularly difficult language to master because of its irregular spelling. For
example, the "a" in almost all words end ing in "ave", such as "brave" and
"gave" , is a long vowel, but not in "have", and there are some word s such
as "read" that can vary in pronunciat ion with their grammatical role. The
prob lem of reconc iling ru les and exceptions in converting text to speech
shares some characteristics with difficult problems in artificial intelligence
that have traditionally been approached with ru le-based knowledge repre­
sentations, such as natural language translation [27J.

Another approach to knowledge representation wh ich has recently he­
come popular uses patterns of activity in a large network of simple pro­
cessing units 122,30,56,42,70,35,36,12,51,19,46,5,82,41,7,85,13,67,50]. This
"connectionist" ap proach emphasizes the imp ortance of the connect ions
between t he processing un its in solving problems rather than the complex­
ity of processing at the nodes.

The network level of analysis is intermediate between the cognitive and
neural levels [11). Network models are constrained by the general style
of processing found in the nervous system [71]. The processing units in
a network model share some of the prop erties of real neurons, but they
need not be identified with process ing at the level of single neurons. For
examp le, a processing unit might be ident ified with a group of neurons,
such as a column of neurons [14,54,37). Also, those aspects of performance
that depend on the details of input and output data representations in the
nervous system may not be captured with the present generation of network
models.

A connectionist network is "programmed" by spec ifying the architec­
tural arrangement of connections between the processing units and the
strength of each connection. Recent advances in learning procedures for
such networks have been applied to small abstract problems [73,66) and
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Figure 1: Schematic drawing ofthe NETtalk network arc hitecture. A
window of let ters in an English text is fed to an array of 203 inpu t
uni ts . Information from these units is transformed by an intermedi ate
layer of 80 "h idden" un its to pro duce pat te rns of activity in 26 output
un it s. The connections in the network are sp ecified by a total of 18629
weight par ameters (includin g a var iable th reshold for each unit) .

more difficul t problems such as forming the past tense of Engli sh verbs
[681·

In this paper we describ e a network that learns to pronounce English
text. The system, which we call NETtalk, demonstrates that even a small
netwo rk can capture a significant fract ion of th e regular ities in English
pronunciat ion as well as absorb many of th e irregularities . In commercial
text-to-speech systems, such as DECtalk [15], a look-up table (of about
a million bits) is used to store th e phonetic t ra nscr iption of common and
irregular words, and ph onological rul es ar e applied to words that ar e not
in this table 13,40] . The resul t is a st r ing of phonemes that can t hen be
conver ted to sounds with digit al speech synt hesis . NETtalk is designed to
perform t he task of converting str ings of letters to strings of phonemes.
Earlie r wor k on NETtalk was described in 174] .

2. N etwork Archit ect ure

Figure 1 shows the schematic arrangement of th e NETtaik syst em. Three
layers of proc essing units are used. Text is fed to units in the input layer .
Each of these input un it s has connect ions with vari ous strengths to uni ts in
an int ermediate "hidden" layer . The uni ts in the hidden layer are in t urn
connected to un its in an output layer , whose valu es dete rm ine the output
phoneme.

The processing units in sucessive layers of the network are conne cted by
weighte d arcs. The output of each pro cessing unit is a nonlinear function
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Figure 2: (a) Schematic form of a processing unit receiving inputs
from other processing uni ts. (b) T he output peE) of a processing
uni t as a function of the sum E of its inp uts .

of the sum of its inpu ts, as shown in Figure 2. The output functi on has
a sigmoid shape : it is zero if t he input is very negat ive, then increases
monot onically, approaching the value one for large positive inputs. This
form roughly approxim ates t he firing rate of a neuron as a function of its
integrated input: if the input is below threshold there is no output; the
firing rate increas es with input, and saturates at a maximum firing rate.
The behavior of the network does not depend cr it ically on the details of
the sigmoid function, but the exp licit one used here is given by

1
s; = P tE,) = 1 + e E ;

where s, is th e output of the ith unit . Ei is the total input

Ei = L wii s;
i

(2.1)

(2.2)

where Wi; is the weight from the jth to th e ith unit . The weights can have
positive or negative real values, representing an excitatory or inhibitory
influence.

In addition to the weights connecting them, each un it also has a thres h­
old which can also vary. To make the notation uniform, the threshold was
implemented as an ordinary weight from a special un it, called the true unit,
that always had an output value of 1. This fixed bias acts like a th resho ld
whose value is th e negative of the weight .

Learn in g algorithm. Learning algorithms are automated procedures
that allow networks to improve their performance through practice 163,87,2,75J.
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Supervised learning algorithms for networks with "hidden units" between
the input and output layers have been introduced for Boltzmann machines
131,1,73,59,76), and for feed-forward networks [66,44,57). These algorithms
require a "local teacher" to provide feedback information about the perfor­
mance of the network. For each input, the teacher must provide the network
with the correct value of each unit on the output layer. Human learning
is often imitative rather than instruct ive, so the teacher can be an internal
model of the desired behavior rather than an external source of correct ion.
Evidence has been found for error-correction in animal learning and human
category learning [60,79,25,80,1). Changes in the strengths of synapses have
been experimentally observed in the mamma lian nervous system that could
support error-correction learning [28,49,61,39j. The network model stud ied
here should be considered only a small part of a larger system that makes
decisions based on the output of the network and compares its performance
with a desired goal.

We have applied both tbe Boltzmann and the back-propagation learn­
ing algorithms to the problem of converting text to speech , but only results
using back-propagation will be presented here. The back-propagation learn­
ing algorithm [66] is an error-correct ing learning procedure that generalizes
the Widrow-Hoff algori thm [871to mul tilayered feedforward networks [231 .
A superscript will be used to denote the layer for each unit, so that s~n} is
the ith unit on the nth layer . The final, output layer is designated the N th
layer.

The first step is to compute the output of the network for a given
input. All the units on successive layers are updated. There may be direct
connections between the input layer and the output layer as well as through
the hidden units. The goal of the learning procedure is to minimize the
average squared error between the values of the output units and the correct
pattern, s;, provided by a teacher:

J

Error = 2:)s; - S~N))2
i=1

(2.3)

where J is the number of units in the output layer. This is accomplished
by first computing the error gradient on the output layer:

(2.4)

and then propagating it backwards through the network, layer by layer:

6(n) =" 6(n+1)w(~) p '(E(n))
I L..J J J' ,

;
(2.5)

where P' (E;) is the first der ivative of th e function P tE; ) in F igure 2(b).
These gradients are the directions that each weights should be altered

to reduce the error for a particular item. To reduce the average error for all
the input patterns, these gradients must be averaged over all the training
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patterns before updat ing the weights. In practice, it is suffic ient to average
over several in put s before updating t he weights. Another metho d is to
compute a running average of the gradient with an exponentially decaying
filte r:

Il.wl;')(u + 1) = all.wljl(u) + (1 - a).inH).}n) (2.6)

where 0: is a smoothing parameter (typically 0.9) and u is the number of
input patterns presented. The smoothed weight gradients .6.wJ;)(u) can
then be used to update the weights:

(2.7)

where the t is the number of weight updates and E is the learning rate (ty~

ically 1.0). The error signal was back-propagated only when the difference
between the actual and desired values of the outputs were greater than a
margin of 0.1. This ensured that the network did not overlearn on inputs
that it was already getting correct. This learning algorithm can be gener­
alized to networks with feedback connections and multiplicative connection
[66}, but these extension were were not used in this study.

The definitions of the learning parameters here are somewhat different
from those in [66]. In the or igina l algorithm e is used rather than (1 - a)
in Eq uat ion 6. Our parameter a: is used to smooth the gradient in a way
that is independent of the lear ning rate, e, which only appears in the weight
update Equation 7. Our averaging procedure also makes it un necessary to
scale the learning rate by the number of presentat ions per weight update.

The back-p ropagat ion learning algor ithm has been applied to severa l
problems, including knowledge represent ation in semant ic networks [29,65],
ban dwidt h compression by dimens ionality reduction [69,89], speech recog­
nit ion [17,86], computing the shape of an object from it s shaded image [45]
an d backgammon [81]. In the next section a detailed descr ipt ion will be
given of how back-propaga tion was applied to the problem of converting
English text to speec h.

R epresent a t ions of le tters and p h on em es. The standard network
had seven groups of un its in th e input layer, and one group of uni ts in each
of t he othe r two layers . Eac h input group enco ded one let ter of th e input
text, so that strings of seven letters are presented to the input uni ts at
anyone time. The desired output of the network is the correct pho neme,
assoc iated with the center, or fourth, let ter of this seven letter "window".
The other six let ters (three on either side of the center letter) provided a
partial context for this decision. The text was stepped through t he window
letter-by- letter. At each step, t he network computed a phoneme, and after
each word the weights were adjusted according to how closely the computed
pronunciation matched the correct one.

We chose a window with seven letters for two reasons. First, [481 have
shown that a significant amount of the information needed to correc tly
prono unce a letter is contributed by the nearby letters (Figure 3) . Secondly,
we were limited by our computational resources to exploring small networks
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F igure 3: Mut ua l inform ation prov ided by neighboring letters and
the correct pronunciation of the center let ter as a function of distance
from the cente r let ter. (Data from (48)).

and it proved possib le to t rain a network with a seven letter win dow in a
few days . The limi ted size of the wind ow also meant that some important
nonlocal information about pronunciation and st ress could not be prop er ly
taken into account by our model [10]. T he main goal of our mod el was to
exp lore t he basic pr inciples of distributed informat ion coding in a real-world
do main rather than achieve pe rfect performance .

T he letters and phonemes were represented in different ways. The let­
ters were represented locally within each group by 29 dedicat ed units, one
for each let ter of the alphabet, plus an ad dit ional 3 uni ts to encode punctu­
at ion an d word boundaries. On ly one unit in each inpu t group was active
for a given input. T he phonemes , in contrast , were represented in te rms of
21 articulatory features, such as point of art iculation, voicing , vowel height ,
and so on, as summarized in the Append ix. Five additional un its encoded
st ress and syllable boundar ies, ma king a total of 26 output uni ts. This
was a distributed represent at ion since each output unit part icipat es in the
enco d ing of several phonemes 1291.

The hidden units neither received direct input nor had d irect output,
but were used by the network to form internal representat ions that were
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appropriate for solving the mapping problem of let t ers to phonemes. T he
goal of the learning algorithm was to search effectively the space of all
possible weights for a network that performed the mapping .

Learning. Two texts were used to train the network : phonetic tran­
scriptions from informal, continuous speech of a child [91and Miriam Web­
ster's Pocket Dictionary. The corresponding letters and phonemes were
aligned and a special symbol for continuation, "-", was inserted whenever
a letter was silent or part of a graphemic letter combination , as in the con­
version from the string of let ters "phone" to the string of phonemes / f-on-/
(see Appendix). Two procedures were used to move the text through the
window of 7 input groups. For the corpus of informal, continuous speech
the text was moved through in order with word boundary symbols between
the words. Several words or word fragments could be within the window at
the same time. For the dictionary, the words were placed in random order
and were moved through the window individually.

The weights were incrementally adjusted during the training acco rding
to the discrepancy between the desired and actual values of the output
units. For each phoneme, this error was "back-propagated" from the output
to the input layer using the lear ning algorithm int roduced by [661 an d
desc ribed above. Each weight in the network was adjusted after every
word to minimize its contribution to the total mean squared error between
the desired and actual outputs. T he weights in the network were always
initialized to small random values uniformly dist ributed between -0.3 and
0.3; t his was necessary to different ia te the hidden units.

A simulator was wr itten in the C programming language for configur ing
a network with arbitrary connect iv ity, t rai ning it on a corpus and collecting
stat istics on its performance. A network of 10,000 weights had a through­
put during learning of abou t 2 let ters/ sec on a VAX 11/780 FPA. After
every presentation of an inp ut , the inner product of t he output vector was
computed with the codes for each of the phonemes. The phoneme that
made the smallest ang le with the ou tput was chosen as the "best guess" .
Slight ly "bet ter performance was achieved by choos ing the phoneme whose
representation had the smallest Euclidean distance from the output vec­
tor, but these results are not reported here. All performance figures in
th is section refer to the percentage of correct phonemes chosen by the net­
work. The performance was also assayed by "playing" the output st ring of
phonemes and stresses t hrough DECtalk, bypassing the part of the mac hine
that converts let ters to phonemes.

3. Performance

Continuous informal speech . 19] provide phonetic t ranscr ipt ions of chil­
dren and adults that were tape recorded during informal sessions. This was
a particularly difficult training corpus because the same word was often pro­
nounced several different ways; phonemes were commonly elided or modi­
fied at word boundaries, and adults were about as inconsistent as children.
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We used the first two pages of transcriptions, wh ich contained 1024 words
from a ch ild in firstgr ade. The st resses were ass igne d t o the transcript ions
so t ha t the training text sounded natural when played through DEC talk.
The learning curve for 1024 words from t he info rmal speech corpus is shown
in F igure 4. The percentage of correct phonemes rose rapidly at first and
cont inued to rise at slower rate throug hout the learn ing, reach ing 95% after
50 passes t hrough the corpus . Primary and secondary stresses and sylla­
ble boundaries were learned very quickly for a ll words and achieved nearly
perfect perfo rmance by 5 passes (Figure 4) . When the learning curves were
plot ted as error rates on double logarit hmic scales t hey were approximately
st raight lines, so t hat the learning follows a power law , which is character­
isti c of human skill learning [641_

The distinction between vowels and consonants was made early; how­
ever , the network predicted the same vowel for a ll vowe ls and the same
consonant for all consonants, which resulted in a babbling sound. A second
stage occurred when word boundar ies are recognized. and the output then
resembled pseudowords. Aft er just a few passes through th e network many
of the words were intelligible, and by 10 passes the text was understandable.

When the network made an error it often subst it uted phonemes tha t
sounded sim ilar to eac h other . For example, a common confusion was
between the "th" sounds in "thesis" an d "these" which differ on ly in voicing.
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Figu re 5: (a) Performance of a network as a funct ion of the amount
of da mage to the weights. (b) Retraining of a damaged network com­
pared with the original learnin g curve st ar t ing from the sa me level of
performan ce. The network was damaged by ad ding a random com­
ponent to all the weigh ts uniformly d ist ributed on th e inte rval [-1.2,
1.21·

Few errors in a well-trained network were confusions between vowels and
consonants . Some errors were actually corrections to incon sistencies in the
origin al t raining corpus . Overa ll, t he intelligibility of the speech was quite
good.

Did the network memorize the training words or did it capt ure the regu­
lar features of pronunciation? As a test of generali zation, a network tra ined
on the 1024 word corpus of inform al speech was tested without training on
a 439 word continuation from the same speaker. The performance was 78%,
which indicates that much of th e learning was transferred to novel words
even after a small sample of Eng lish words .

Is the network resistant to damage? We examined performance of a
highly-trained network aft er making ra ndom changes of varying size to the
weights . As shown in F igure 5(a) , random perturb at ions of the weights
uniformly dist ributed on the interval [-0.5, 0.51 had little effect on the
performance of the network, and degradation was 'gradual with increas­
ing damage. T his damage caused the mag nitude of each weight to change
on average by 0.25; this is the roundoff error that can be tolerated before
the performance of the network begins to deteriorate an d it can be used
to estimate t he accuracy with which each weight must be specified. The
weight s had an average mag nit ude of 0.8 an d almost all had a magnitude of
less than 2. With 4 binary bits it is possible to specify 16 possible va lues,
or -2 to + 2 in st eps of 0.25. Hence, the minimum inform ation needed to
sp ecify each weight in th e network is only about 4 bits .

If the damage is not too severe, relearning was much faste r than th e
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Figure 6: (a) Learning curves for tr aining on a corpus of the 1000 most
common words in En glish using different numbers of hidden un its, as
indicated beside each curve. (b) Performance during learning of two
representative phonological ru les, th e hard and soft pronunciation of
the letter "c" .

original learning starting from the same level of performance, as shown in
F igure 5(b) . Sim ilar fault tolerance and fast recovery from damage has
also been observed in networks constructed using the Boltzmann learning
algorithm [321.

Dictionary. The Midam Webster's Pocket Dictionary that we used
had 20,012 words. A subset of the 1000 most commonly occurring words
was selected from this dict ionary based on frequency counts in the Brown
corpus (43). The most common English words are also am ongst the most
irregular, so this was also a test of the cap acity of t he network to absorb
exceptions. We were particularly int erest ed in exploring how the perfor­
mance of the network and learning rate sca led with the number of hidden
units. With no hidden units, only direct connect ions from the inp ut units
to the out put units, the performance rose quickly and saturated at 82 % as
shown in Figure 6(a) . This represents the part of the mapping that can
be accomplished by linearly separable partitioning of the input space [531 .
Hidden uni ts allow more contextual influence by recogniz ing higher-order
features amongst combinations of input units .

The rate of learn ing and asymptotic performance increased with the
number of hid den un its, as shown in Figure 6 (a). The best performance
ach ieved with 120 hidden units was 98% on the 1000 word corpus, sig­
n ificantly better than the performance achieved with continuous informal
speech, which was more difficult because of the variability in real-world
sp eech . Different let t er-to-sound correspondences were learned at different
ra tes and two exam ples are shown in F igure 6 (b): the soft "c" takes longer
to lear n , but event ually achieves perfect accuracy. T he hard "e" occurs
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about twice as often as the soft "c" in the t raining corpus. Children shown
a similar difficulty with learning to read words with the soft "c" 1841 .

The ab ility of a network to gener alize was tested on a large d ict ionary.
Using weigh ts from a network with 120 hidden uni ts trained on t he 1000
words, the aver age performance of the network on t he d ict ionary of 20,0 12
words was 77%. With continued learning, the performance reached 85%
at the end of the first pass through the dictionary, indicating a significant
improvement in gener aliz ation. Following five training passes throu gh th e
dictionary, the performan ce increased to 90%.

The number of input groups was var ied from three to eleven . Both the
speed of learning and the asymptotic level of performance improved with
the size of the window. The performan ce with 11 input groups and 80
hidden units was about 7% higher than a networ k with 7 input groups and
80 hidden units up to about 25 passes through the corp us, and reached
97.5% afte r 55 passes compared with 95% for t he network with 7 input
groups.

Adding an extra layer of hidden uni ts also improved the performance
somewhat. A network with 7 input groups and two layers of 80 hidden
units each was trained first on the 1000 word dictionary. Its performance
aft er 55 passes was 97% and its generalization was 80% on the 20,012 word
dictionary without add it ional t raining, and 87% afte r th e first pass t hrough
the dictionary with training. The asympto tic performance after 11 passes
through the t he dictionary was 91%. Compare d to the network with 120
hidden units , which had about the same number of weigh ts , the network
with two layers of hidden units was better at generalizatio n but about the
same in absolute performance.

4. Analysis of the Hidden Units

There are not enough hidden units in even the largest network that we
studied to memorize all of the words in the dictionary. The standard net­
work with 80 hidden uni ts had a total of 18,629 weights, including variable
thresholds. ITwe allow 4 bits of accuracy for each weight , as indicated by
the damage experiments, t he total storage needed to define the network
is about 80,000 bits. In comparison, the 20,012 word dictionary, includ­
ing stress information, required nearly 2,000,000 bits of storage. This data
compression is possible bec ause of the redundancy in English pronuncia­
tion. By studying the patterns of act ivation amongst th e hidden units, we
were able to understand some of the coding methods that the network had
discovered.

The standard network used for analysis had 7 input groups and 80
hidden units and had been trained to 95% correct on the 1000 dictionary
words. The levels of activation of the hidden units were examined for each
letter of each word using the graphical representation shown in Figure 7.
On average, about 20% of the hidden uni ts were highly activated for any
given input, and most of th e remaining hidden units had little or no ac-
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Figure 7: Levels of activation in t he layer of hidden un its for a variety
of words, all of which produce the same phoneme, l EI,on the output.
The input string is shown at the left with the center letter emphasized.
The level of activity of each hidden unit is shown to the right, in two
rows of 40 un its each. The area of the white square is proportional to
the activity level.
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t ivation. Thus , the coding scheme could be described neither as a local
representation, which would have act ivated only a few un its [6,20,8], or a
"hologra phic" represent ation [88,?], in wh ich all of the hidden uni ts would
have participat ed to some exte nt . It was apparent, even without using sta­
t istical techniques, that many hidden uni ts were highly act ivat ed only for
cer tain letters, or sounds, or letter-to-soun d correspondences. A few of the
hidden un its could be assigned unequivocal characterizations, such as one
unit that responded only to vowels, but most of the units participated in
more than one regularity.

To test t he hypothesis that letter-to-sound correspondences were the
primary organizing var iable, we computed the average activat ion level of
each hidden unit for each let ter- to-soun d correspondence in the training
corpus. The resul t was 79 vect ors with 80 components each, one vector for
each letter-to-sound correspondence. A hierarchical clustering t echnique
was used to arrange the letter-to-sound vectors in groups based on a Eu­
clidean metric in the SO-dimensional space of hidden units. The overall
pat tern, as shown in Figure S, was strik ing: the most important distinction
was the complete separation of consonants and vowels. However. within
these two groups the clustering had a different pattern. For the vowels,
the next most important variable was the letter. whereas consonants were
clustered according to a mixed st rategy that was based more on the similar­
ity of their sounds. The same clus te ring procedure was repeated for three
networks start ing from different random starting states. T he patterns of
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Figure 8: Hierarchica l clustering of hid den uni ts for letter-to- sound
corresponden ces. The vectors of average hidden unit activity for each
correspondance, shown at t he bottom of t he binary tree (l-i.p for let­
ter (I' and phon eme (PI)' were success ively grouped. accord ing to an
agglomerative method using complete linkage (1181).

weights were completely different but the clustering analys is reveal ed t he
same hierarchies, with some differences in the details, for all th ree networks.

5. Conclusions

NETtalk is an illustration in miniature of many asp ect s of learning. F irs t ,
the network starts out without considerable "innate" knowledge in the form
of inp ut and output representations that were chosen by the expe rimenters ,
but with no knowledge specific for English - the network could have been
t ra ined on any language with the same set of letters and phonemes. Second ,
th e network acquired its comp etence through pr actic e, went through severa l
dist inct stages , and reached a significant level of performance . Finally,
the information was dist r ibuted in the network such that no single unit
or link was essenti al. As a conseq uence, t he network was fault tolerant
and degraded gracefully wit h increasing damage. Moreover I the network
recovered from damage much more quick ly than it took to learn initially.

Despite these similarities with human learning and memory, NETtalk
is too simple to serve as a good mod el for t he acquisition of reading skills
in humans. The network attempts to accomplish in one st age what occurs
in two stages of human development . Childre n learn to talk first , and only



Para llel Networks that Learn to Pron oun ce 159

after representations for words and t heir meanings are well developed do
they learn to read. It is also very likely that we have access to articulatory
rep resentations for whole words , in addition to the our ability to use letter­
to-sound correspondences, but there are no word level representations in the
network. It is perhaps surprising that the network was capable of reaching a
significant level of performance using a window of only seven let ters . T his
approach would have to he generalized to account for prosodic feat ures
in cont inuous text and a human level of performance would requ ire th e
integration of information from several words at once.

NETtalk can be used as a research to ol to explore many aspec ts of
network coding, scalin g, and training in a domain th at is far from triv­
ial. Those asp ect of the network 's performance th at are simil ar to human
performance are good candidates for general proper ties of network models;
more progress may be made by studying t hese aspects in the small test
laborato ry that NETtalk affords . For example, we have shown elsewhere
[62) that the optimal training schedule for teaching NETtaik new words
is to alternate training of the new words with old words, a general phe­
nomenon of human memory that was first demonstrated by Ebbinghaus
[16] and has since been replicated with a wide range of stimulus materi­
als and tasks 133,34,58,38,77,241. Our explanation of this spacing effect in
NETtaik [621 may genera lize to more complex memory systems that use
distributed represent ations to store informat ion.

After training many networks, we conclude d that many different sets of
weights give about equally good performance. Alt hough it was possible to
unders tand the function of some hidden un its, it was not possible to identify
units in different networks th at had the same function . However, th e ac­
t ivity patterns in the hidden un its were interpret able in an interesting way.
Patte rns of act ivity in groups of hidden uni ts could be ident ified in different
networks that served the same funct ion, such as dist inguishing vowels and
consonants. This suggests that the det ailed synapt ic connect ivity between
neurons in cerebral cortex may not be helpful in revealing the functi onal
propert ies of a neural network. It is not at the level of the synapse or the
neuron that one should expect to find invar iant properties of a network, bu t
at the level of funct ional groupings of cells. We are conti nuing to analyze
the hidden units and have found statistical patterns that are even more de­
tailed than those reported here. Techniques t hat are deve loped to uncover
these groupings in model neural networks could be of value in uncovering
similar cell assemblies in real neural networks.
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Appendix A. Representat ion of Phonemes and Punctuations

Phoneme Sound Articulatory Features
l si father Low, Tensed, Central2
Ibl bet Voiced, Labial, Stop
lei bo ugbt Medium, Velar
Idl deb Voiced, Alveolar, Stop
l ei bake Medium, Tensed, Front2
It! fin Unvoiced, Labial, Fricative
Igl gu ess Voiced, Velar, Stop
Ihl head Unvoiced, Glottal, Glide
iii P ete High, Tensed , Front!
Ikl Ken Unvoiced, Velar, Stop
III Jet Voiced, Dental, Liquid
lsi met Voiced , Labial, Nasal
Inl oet Voiced, Alveolar, Nasal
101 boat Medium, Tensed, Back2
Ipl pet Unvoiced, Labial, Stop
Irl red Voiced, Palatal , Liquid
l si sit Unvoiced, Alveolar, Fricative
It I test Unvoiced, Alveolar, Stop
lui lute High, Tensed , Back2
Ivl vest Voiced, Labial, Fricative
1.1 wet Voiced, Labial, Glide
Ixl about Medium, Central2
Iyl yet Voiced, Palatal, Glide
Izl zoo Voiced, Alveolar, Fricative
IAI bite Medium, Tensed , Front2 + Centrall
le i chin Unvoiced, Palatal, Affricative
101 this Voiced, Dental , Fricative
lEI bet Medium, Front! + Front2
IGI sing Voiced, Velar, Nasal
III bit High, Frontl
IJI gin Voiced, Velar, Nasal
IKI sexual Unvoiced, Palatal, Fricative + Velar, Affricative
ILl bottle Voiced, Alveolar, Liquid
IMI absym Voiced, Dental , Nasal
INI button Voiced, Palatal, Nasal
101 boy Medium, Tensed, Centrall + Central2
IQI quest Voiced , Labial + Velar, Affricative, Stop
IRI bird Voiced, Velar, Liquid
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P hone me Sound Articulat ory Features
l SI shin Unvoiced, Palat al, Fricati ve
ITI thin Unvoiced, Dental. Fricative
lUI book High, Back!
IWI bout High + Medium, Tensed , Central2 + Backl
IXI excess Unvoiced , Affricative, Front2 + Cent ral !
IYI cu te High , Tensed , Front ! + Front2 + Central !
IZI leisu re Voiced, Palatal, Fricative
101 bat Low, Front2
I !I Nazi Unvoiced , Labial + Dent al , Affricative
101 examine Voiced, Palatal + Velar , Affricative
I-I one Voiced, Glide, Front! + Low I Centrall
III logic High , Front! + Front2
;-1 but Low, Centrall
I-I Cont inuation Silent, Elide
Ij Word Boundary Pause, Elide
1./ Period Pause, Full Stop
< Syllable Boundary right
> Syllable Boundary left
1 P rimary Stress stro ng I weak
2 Seco ndary St ress st rong
0 Tertiary Stress weak

- Word Boundary right , left , boundary

Output repr esen tat ions for phonemes , punct uat ions, and st resses on t he 26
outpu t units. Th e symbols for ph onemes in the first column are a superset of
ARPAbet and are assoc iated with the sound of t he it al icized part of t he adjacent
word . Compound phonemes were introduced when a sing le let ter was assoc iated
wit h more t han one primary phoneme . Two or more of the following 21 articulatory
feature uni ts were used to represent each phoneme an d punc tuat ion: Position
in mouth: Labial = Front! , Dental = Front 2, Alveolar = Centrall, Palatal =
Central2, Velar = Back l , Glottal =Beckz; Phoneme Type: Stop, Nasal, Fricative,
Affricative, Glide , Liquid , Voiced , Tensed ; Vowel Height: High, Medium, Low ;
P unctuation : Silen t, Elide, Pause, Full Stop. The continuation symbo l was used
when a let ter was silent. Stress and syllable boundaries were repr esented wit h
combinations of 5 additional un its, as shown at the end of the table. Stress was
associated with vowels , and ar rows were assoc iated with the other letters. The
arrows point toward the stress and change direction at syllable boundaries. Thus,
t he st ress ass ignments for' 'atmosphere " are' ' 1<>0» >2« ' ". T he phoneme
and st ress ass ignments were chose n independe ntly
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