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Abstract. The number of stable states of anyone-dimensional k­
state border-decisive cellu lar automaton on a finite lattice with pe­
riodic boundary conditions is proved to be bounded by k R and the
number of cycles of length p is bounded by ~ L q!pJl(P/ q)k4R, where
(R + 1) is the number of neighbors and }J is the Mobius funct ion.

1. Int r oduction

We consider a deterministic cellular automaton (CA) [1] on a one-dimensional
array of N sites . At each site i, t he re is a dynamical va riab le whose value
at t ime t will be denoted by a~t). Here a~t) be longs to a finite set S with
k elements. The state of the CA with N sites can be descr ibed by an N ­
component vector .04(1) (.04(') E SN), whose the ith-eomponent is aill. The
time evolution is given by A(t+l) = 4>(A(t)) where 4> is defined by a local
deterministic ru le 4>: sr+l -- S of the form

(l.1)

wh ere rl an d r2 are the nu mb er of neighbors to the left and to the righ t
respectively, and r l + r 2 +1 (:;:;; R + 1) is the to tal number of neighbors. The
t ime evolution of a CA on a finite lat t ice can be represented by a graph,
called the state transit ion diagram, whose nodes correspond to the states of
the CAj directed arcs connecting the nodes represent transitions between
the states. In general, the complete topology of the state transition diagram
is difficult to determine except for a special class of CA, vls., addit ive CA
[2,3]. In t his note we give upper bou nds for the number of stable states
and of cycles of a more general class of CA, border-decisive CA .
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D efinition 1. A one-dimension al N -site k -state deterministic CA is said
to be border-decisive if its local rule 4> sa tisfies

¢ (ai- rIl ~-rl+ ll ... ,a.;+r2) =I=- .p(Cli-rp a; -rl+h ... , a~+"2 ) if ai+ r2:f= a~+r2
(1.2)

with T2 > a and for any fixed values of (a;- rl' 0..;-"1+1, ... , a; +r2-1), or

4J (ai- rl ' Q;-rl+h "' J Q;+"2) 'I ¢(a~_rl' ai - rl+h ... , lZt+r,) if ai- rt '# a~_"l
(1.3)

with Tl > a and f or any fixed values of (tlt-r l+1J lLs"- rl+%' .. . , lLi+r2)'

Note that we impose per iod ic boundary condit ions and hence, the site in­
d ices are computed modulo N. In words, for a border-decisive CA rule, if
all the ne ighbors of sit e i except the one on th e "border" (leftmost or right­
most) are fixed at time t, then ajt+l ) will be different for different values of
the border site at t . The class of border-decisive CA has been investigated
141 also und er the name of toggled rule 151and left and right permutive rule
161·

2. Results

Theorem 1. The number of stable states of any border-decisive CA has
an upper bound nl = kR •

Proof. Let q, be a CA rule satisfying (1.2). (The same proof goes through for
ru les satisfying (1.3).) For any fixed (a.-rpa.-rl +h ... ,a.+r1-d , 4h: S --+ S
defined by

(2.1)

is a one- to-one function. Since S is finite, 4Jl is also onto and, therefore, 4Jl
is inver t ible. Now suppose A is a stable state, i.e ., ~(A) = A. The values
of a string of R sites (a.-rt' a.- r l+h . .. , aj+r:a-d for arbit rary i determine the
entire set of stable st ates as follows: For arbitrary but fixed value of this
st ring we can compute (l;"+r1 from

_ ..(- 1)( )a.+r1 - If'l Bj . (2.2)

Knowing Bi+r:a, 4; +r1+l can be determined, and so on . Since we have im­
posed periodic boundary conditions we event ually return to the original
st ring of R sites. A st able state ensues if and only if the values thus ob­
tained are identical to those assigned initially to the string. Since there are
k R choices for the va lues of the st ring the number of stable states cannot
exceed k R . •

T heorem 2. The number of cycles of length p of any border-decisive CA
bss an upper bound rip = (kPR - ~qlp,q~pqnq)/p = ~ ~qlp !L (p/q)kqR.



Num ber of Cycles in Border-Decisive Cellular Automata 183

Proof. Consider a state .ii on a cycle of length p, i.e., <I>P(.ii) = .ii. Since 4>,
(which is assumed to satisfy (1.2)) is invertible, the values of a rectangular
R h f h . [ (I) (t) I r -X P patc 0 t e space-time pattern 4 i - r 1 , ... , 4 i +r :l - 1 lor t - 1,2, ... , p and
arbitrary i determine the entire set of states on cycles of lengt h p. First
a!2 r 2 for t = 1, 2, ..., P can be determined uniquely by success ively using

(,) _ .1.(- 1) 1 (1+1)1
a i +r 2 - 'f'l a i . (2.3)

(Not e that a\'+P) = a\') for all j and t due to the periodic ity in time.)
Then th e values of the rest of t he sites can be ascertained by iterat ing
the above procedure. As before, the periodic bound ary conditions lead to
consiste ncy requirement s. Since the initial patch can assume k pR different
configurations, one eas ily obtains the weaker bound kpR / p. (If b is a bo und
for the number of states on cycles of length p, then b/ p is the corresponding
bound for the number of cycles of lengt h p.) However, some of the k pR

configurations for the initial patch have period q « p) where q I P (q is
a divisor of pl . Clearly, for such configurations of the initial patch if the
consistency cond it ions are satisfied one obt ains a cycle of length q because
the periodicity of the initi al patch guaran tees a!2 r 2 = a~~~:) for t = 1.2, ..., q.
If the consistency cond itions are not satisfied one does not obtain a cycle
of lengt h either p or q. So we can , in fact, subtract the number of such
configurat ions (which can be expressed in te rms of nq ) from k pR and thus
obtain the maximum number of states which can be on cycles of lengt h
Pi dividing by p yields the upper bound for the number of cycles . If we
write the bound iterat ively it is easy to see th at the firs t expression for the
upper bound in Claim 2 is obtained . Alternatively, the bound can also be
expressed in te rms of the Mobius function /lo , where /lo (I) = 1; /lo(n) = 0 if
n has a squared fact or ; and "(PI P""P,) = (-1)" if all the primes Ph P" ...,
PI are different [71· •

T his upper bound on the number of cycles of a given leng th depends
only on k and R. It is independent of the size N of the CA as long as N is
finite. For k = 2, R = 2, the bounds on number of cycles of length s up to
ten are 4, 6, 20, 60, 204, 670, 2340, 8160, 29120, and 104754 respect ively. In
addit ion, it is easy to see that the following statements are t rue: Let N be
the smallest size of a given border-decisive CA such that t he upper bound
np for the number of cycles of length P is reached (this is possible only if
pnp ~ k N ) ; then the same CA will reach the same bound for size M > N if
and only if M is a mult iple of N. (Note that there is no rest riction on M
being finite.) On the other hand, if the actua l number of cycles of length
p is m < n p for a CA with N sites, th en t he number of cycles of length p
for the same CA of size M is no less than m when M is a multiple of N .
Thus by calculat ing the number of cycles for a CA for relat ively sma ll sizes
one can get the lower bound for , and somet imes even the exact value of,
th e number of cycles for very large sizes. (This is possib le only for sizes
wh ich have relatively small d ivisors.) For example, for Ru le 90 when N = 3
there are four I-cycles. We can immediately deduce that all sizes N which
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are multiples of 3 have four f -cycles. For N S 30 the maximum number
of cycles of length p for p :0; 8 are: 4, 6, 20, 60, 51, 670, 36, and 8160 [21.
These first occur for N = 3, 6, 15, 12, 17, 30, 9, and 24 respectively and
hence, the upper bound is reached for p = 1, 2, 3, 4, 6, 8. However, for
Rule 30 and N ~ 17 the corresponding maximum number of cycles are: 3,
0, 4, 7, 4, 0, 15, 1 [8].

We will now determine, for a given k and R , how many of the kkll+
1

possible CA rules are border-decisive. Let B 1 be the set of rules satisfying
(1.2), B, that satisfying (1.3), and B be the set of a ll border-decisive rules.
We have B = B1 U B, and IBI, t he cardinality of B, satisfies

IBd :0; IBI= 21Bd - IB, n B,I :0; 21Bd (2.4)

where we have used the symmetry relat ion IBII = IB21. It is easy t o compute
IBd· Notice that for fixed ("<-, ,, "<-,,+1 , ..., ,,<+,, - 1), 1>1: S~ S defined by
(2.1) is actually a permutation of S , i.e. , <PI is an element of the permutation
group of k elements Sk' Since a border-decisive rule is specified by assigning
a 4>1 to each value of (ai- rl , 4i - r l+l , ... , 4i+r2- d E SR , it is a mapping from
SR t o Sk ' On the other hand, it is obvious that each mapping from S R to
51; gives a border-decisive CA rule. From ISkl = kl and ISRI = k R , we have

IB11 = (ki)· · . (2.5)

Compar ing with the tota l number of possible CA rules , R = kk
R
+

1
, we have,

(2.6)

In t he cases one usually cons iders , where both k and R are small, the
fraction of border- decisive rules is not neg ligible. For small k, IB1 n B 2 1 can
be easily calculated. IB, n B,I = 2,R-' for k = 2 and IB, n B,I = 12,R-'
for k = 3. Given IB1 n B,I and IB11, t he number of border-decisive rules
IBI can be computed from (2.4). For k = 2, R = 1, IBI= 6 (JP = 0.375 ),

for k = 2, R = 2, IBI = 28 (JP '" 0.109), for k = 3, R = 1, IBI = 420

(JP '" 0.021) .

3 . Some generalizations

T he res ults of the last section can be extended to the in-degree of any
node [i.e., the number of predecessors) of the state t ransit ion diagram and
to higher-o rder rules . We state the following corollaries without further
explanation since the proofs are similar to the ones given above.

Corollary 1. The in-degree of any node of the state transition diagram of
a border-decisive CA with k states and R + 1 neighbors is bounded above
by k R •
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Definition 2. A deterministic CA rule ~ of order s is given by

where <l! is defined by the local rule 4>: S A+! ~ S of the form

185

(3 .1)

Here R + 1 = L:~I (TI: + T,: + 1). A deterministic CA rule of ord er s on
a finite lat tice is border-decisive if the function <p in (3.2) is a one-to-one
function of the argument a~~~~: l) , where T2 j ( > 0» T 2; for all i :f: i , for each,
set of fixed values of the other R arguments, or if <P is a one-to-one function
of the argument a~:~:: l) I where T l j (> 0» Tl; for all i :f: i , for each set of,
fixed values of the other R arguments.

Let R = r r, + T2 ,t where r r, = maxi(Tl;) and T2,t = maxi(T2;} ' We have.
then:

Corollary 2. Th enumber ofstable states of a finite k -state s-ord er border­
decisive CA is bounded above by nl = k R and the number ofcy cles of leng th
p is bounded above by np = (k pR - L , !p,, #p qn , )/ p = ~ L,lpJ1.(p/q)k,R.
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