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Abstract. The number of stable states of any one-dimensional k-
state border-decisive cellular automaton on a finite lattice with pe-
riodic boundary conditions is proved to be bounded by k% and the
number f)f cycles of length P is bounded by -:;qup u(p/q)k?®, where
(R +1) is the number of neighbors and p is the Mébius function.

1. Imntroduction

We consider a deterministic cellular automaton (CA) [1] on a one-dimensional
array of N sites. At each site 7, there is a dynamical variable whose value
at time ¢ will be denoted by a.,m. Here a?} belongs to a finite set S with
k elements. The state of the CA with N sites can be described by an N-
component vector A®) (A®) € SV), whose the ith-component is a\”. The
time evolution is given by A1) = Q(Z(’)) where @ is defined by a local
deterministic rule ¢: S™! — S of the form

oV = ¢lafd, .0, 1y -nafl ), (11)
where r; and r, are the number of neighbors to the left and to the right
respectively, and r; +r;+1 (= R+1) is the total number of neighbors. The
time evolution of a CA on a finite lattice can be represented by a graph,
called the state transition diagram, whose nodes correspond to the states of
the CA; directed arcs connecting the nodes represent transitions between
the states. In general, the complete topology of the state transition diagram
is difficult to determine except for a special class of CA, viz., additive CA
[2,3]. In this note we give upper bounds for the number of stable states
and of cycles of a more general class of CA, border-decisive CA.
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Definition 1. A one-dimensional N-site k-state deterministic CA is said
to be border-decisive if its local rule ¢ satisfies

¢(a|'—ru a!'—-r;-i-h a2y a\'-l-rg) 7& ¢(a|'—r1a ai—r1+1$ sasy a£+,-2) lf a't'+r-z ?"_ a':'-{-rg
(1.2)

with ro > 0 and for any fixed values of (a;_,,,@i_r,+15 - @itry—1), OT

¢(an'—rp a't'—n+l: weuy as'+r3) # ¢(a:—r1) al'—r1+1, muey ai-i-rz) ]-f t:"I'~—r| "/: a’i’—r; }
(1.3
with r1 > 0 and for any fixed values of (@i, 1, Gier 42y s Gitry)-

Note that we impose periodic boundary conditions and hence, the site in-
dices are computed modulo N. In words, for a border-decisive CA rule, if
all the neighbors of site 7 except the one on the “border” (leftmost or right-
most) are fixed at time ¢, then a,{H'I) will be different for different values of
the border site at ¢t. The class of border-decisive CA has been investigated
[4] also under the name of toggled rule [5] and left and right permutive rule

[6].

2. Results

Theorem 1. The number of stable states of any border-decisive CA has
an upper bound n; = k%,

Proof. Let ¢ be a CA rule satisfying (1.2). (The same proof goes through for
rules satisfying (1.3).) For any fixed (@;—;,, @i—ryt1s-er Gitra—1), ¢18 S = S
defined by

¢1(a) == ¢(a€—r1sa€—r1+h"'a al'+r2—h G) (2'1)

is a one-to-one function. Since S is finite, ¢; is also onto and, therefore, ¢;
is invertible. Now suppose A is a stable state, i.e., ®(A) = A. The values
of a string of R sites (@i—,,, @iy, +1, - @itr,—1) for arbitrary ¢ determine the
entire set of stable states as follows: For arbitrary but fixed value of this
string we can compute a;4,, from

igry = B4 (a:). (2:2)

Knowing @;4r,, @itrp+1 can be determined, and so on. Since we have im-
posed periodic boundary conditions we eventually return to the original
string of R sites. A stable state ensues if and only if the values thus ob-
tained are identical to those assigned initially to the string. Since there are
k® choices for the values of the string the number of stable states cannot
exceed k®. H

Theorem 2. The number of cycles of length p of any border-decisive CA
has an upper bound n, = (kPE — ) Jrm— qn,)/p= ::Eﬂp w(p/q) k%,



Number of Cycles in Border-Decisive Cellular Automata 183

Proof. Consider a state A on a cycle of length p, i.e., @"(.Z) = A. Since &1
(which is assumed to satisfy (1.2)) is invertible, the values of a rectangular
R x p patch of the space-time pattern [a}?,x - a,(,'z,z_l] fort =1,2,...,pand
arbitrary ¢ determine the entire set of states on cycles of length p. First
asﬂr: for t =1,2,...,p can be determined uniquely by successively using

aitr, = 41 lal™). (2.3
(Note that aS-H" ) = ag-‘) for all j and ¢ due to the periodicity in time.)
Then the values of the rest of the sites can be ascertained by iterating
the above procedure. As before, the periodic boundary conditions lead to
consistency requirements. Since the initial patch can assume k*F different
configurations, one easily obtains the weaker bound k?%/p. (If b is a bound
for the number of states on cycles of length p, then b/p is the corresponding
bound for the number of cycles of length p.) However, some of the k**
configurations for the initial patch have period ¢ (< p) where ¢ | p (g is
a divisor of p). Clearly, for such configurations of the initial patch if the
consistency conditions are satisfied one obtains a cycle of length g because
the periodicity of the initial patch guarantees “.('Qr, = a'(-::? fort=1,2,...,q.
If the consistency conditions are not satisfied one does not obtain a cycle
of length either p or ¢g. So we can, in fact, subtract the number of such
configurations (which can be expressed in terms of n,) from k"% and thus
obtain the maximum number of states which can be on cycles of length
p; dividing by p yields the upper bound for the number of cycles. If we
write the bound iteratively it is easy to see that the first expression for the
upper bound in Claim 2 is obtained. Alternatively, the bound can also be
expressed in terms of the M6bius function p, where p(1) = 1; p(n) = 0 if
n has a squared factor; and u(pips...;;) = (—1)' if all the primes py, ps, ...,
p are different [7]. B

This upper bound on the number of cycles of a given length depends
only on k and R. It is independent of the size N of the CA as long as N is
finite. For k£ = 2, R = 2, the bounds on number of cycles of lengths up to
ten are 4, 6, 20, 60, 204, 670, 2340, 8160, 29120, and 104754 respectively. In
addition, it is easy to see that the following statements are true: Let N be
the smallest size of a given border-decisive CA such that the upper bound
n, for the number of cycles of length p is reached (this is possible only if
pn, < kN); then the same CA will reach the same bound for size M > N if
and only if M is a multiple of N. (Note that there is no restriction on M
being finite.) On the other hand, if the actual number of cycles of length
pis m < n, for a CA with N sites, then the number of cycles of length p
for the same CA of size M is no less than m when M is a multiple of N.
Thus by calculating the number of cycles for a CA for relatively small sizes
one can get the lower bound for, and sometimes even the exact value of,
the number of cycles for very large sizes. (This is possible only for sizes
which have relatively small divisors.) For example, for Rule 90 when N = 3
there are four 1-cycles. We can immediately deduce that all sizes N which
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are multiples of 3 have four 1-cycles. For N < 30 the maximum number
of cycles of length p for p < 8 are: 4, 6, 20, 60, 51, 670, 36, and 8160 [2].
These first occur for N = 3, 6, 15, 12, 17, 30, 9, and 24 respectively and
hence, the upper bound is reached for p = 1, 2, 3, 4, 6, 8. However, for
Rule 30 and IV < 17 the corresponding maximum number of cycles are: 3,
0,4,7,4,0,15,1 [8].

We will now determine, for a given k£ and R, how many of the
possible CA rules are border-decisive. Let B; be the set of rules satisfying
(1.2), B, that satisfying (1.3), and B be the set of all border-decisive rules.
We have B = B, U By and | B, the cardinality of B, satisfies

kkR+1

|Bi| < |B| =2|Bi| — | By N By| < 2|B| (2.4)

where we have used the symmetry relation |By| = |B;|. It is easy to compute
| B1|. Notice that for fixed (@i—r s Giri 415 s Gitra—1)s @13 S — 5 defined by
(2.1) is actually a permutation of S, i.e., ¢ is an element of the permutation
group of k elements S). Since a border-decisive rule is specified by assigning
a ¢; to each value of (@i—;,,@i—r, 415 Gitrp—1) € ST, it is a mapping from
S® to Si. On the other hand, it is obvious that each mapping from SF to
Sy gives a border-decisive CA rule. From |Si| = k! and |S®| = k®, we have

|By| = (k)" (2.5)
Comparing with the total number of possible CA rules, R = k"R+1, we have,
K. |B] kt **
— < —— < 2(— . 2
(@ <Z<2Am) (26)

In the cases one usually considers, where both k& and R are small, the
fraction of border-decisive rules is not negligible. For small k, | By N By| can
be easily calculated. |By N By| = 22" for k = 2 and |By N By| = 128"
for k = 3. Given |B; N B;| and |B,|, the number of border-decisive rules
|B| can be computed from (2.4). For k=2, R=1, |B| =6 (L‘El = 0.375),
for k =2, R = 2, |B| = 28 (&l ~ 0.109), for k = 3, R = 1, |B| = 420
(Bl ~ 0.021).

3. Some generalizations

The results of the last section can be extended to the in-degree of any
node (i.e., the number of predecessors) of the state transition diagram and
to higher-order rules. We state the following corollaries without further
explanation since the proofs are similar to the ones given above.

Corollary 1. The in-degree of any node of the state transition diagram of
a border-decisive CA with k states and R + 1 neighbors is bounded above
by kE.
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Definition 2. A deterministic CA rule @ of order s is given by
y CONE Ty Ol CONNY CRb)| (3.1)

where ® is defined by the local rule ¢: S®*! — S of the form

o+ — glal) o0 g S (3.2)

t—=ry, 1200 S v ey Bpy ] I-H’g

Here R+ 1 = ¥!_,(r1, + 2, + 1). A deterministic CA rule of order s on
a finite lattice is border-decisive if the function ¢ in (3.2) is a one-to-one

function of the argument a(:_,‘;"'l), where r; (> 0)> ry, for all i # j, for each

set of fixed values of the other R arguments, or if ¢ is a one-to-one function

of the argument aff_,i“l where ry (> 0)> ry, for all ¢ # j, for each set of

fixed values of the other R arguments.
Let R = ry, +r;, where r;. = max;(r;,) and r,, = max;(r;,). We have,
then:

Corollary 2. The number of stable states of a finite k-state s-order border-
decisive CA is bounded above by ny; = k¥ and the number of cycles of length
p is bounded above by n, = (k% — ¥, 0sp qng) [p = Zq]p (p/q)k%.
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