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Abstract. A model is proposed that is based on certain aspects
of senso ry cortex. The basic model is a cellular automaton, where
the cells represent small groups of neurons in th e cor tex. All cells
ar e locally interconnected with their three nearest neighbours in each
direction, a variable set of weights determines the st rength of the
connections . The output of the cell is a fun ction of the weighted sum
of the inputs. Other variable parameters are the threshold and th e
number of states. The model is shown to be able to exhibit a wide
range of behaviours analogous to the types of behaviour seen in other
more general cellular automata. A subset of these behaviour types
may be applicable to modelling the funct ions of sensory cortex.

1. Introduction

Most modelling of the visual system has been done using a hierarchical
linear filter approach (e.g. [1]), where each level filters the output from the
previous level and thus projects to the next higher level. For the low levels
of the visual system this method accurately models many aspects of the
processing of v isu al images. Even at the level of the primary visual cortex
this approach has given valuable insight into the pr ocessing that occurs.
However only about half of all the cells in the primary visual cortex show
linear or almost linear responses , the rest have varying degrees of non­
linearity.

Primary sensory cortical areas are organ ized into a regular array of "hy­
percoIumns" [2,3]. Within the hypercolumn there is further subdivis ion into
columnar st ructure: For instance in the primary visual cor tex, each hyp er­
column cont ain s orientation and ocular dominanc e columns. T he cellular
str uct ure within all columns is basically the same. There are two major
features of note in the connections within the cortex (see figure 1). First,
most connect ions, except input and output , are local in nature, extending
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Fig ure 1: Simplified circuit diagram of the visual cortex showing
some of the types of connections that are found there. T he pyrami­
dal cells are considered to be principal neurons and the smaller cells
are local int erneurons . The shaded cells represent inhibitory neurons.
(Adapted from Szentagothai [41 and Shepherd [51.)

no further than t he size of a hypercolumn. Second, many of these connec­
t ions can be seen as part of feedback loops. The approximate homogeneity
of a cortical ar ea. and local connections leads naturally to the idea of mod ­
ellin g us ing cellular au tomata. Models of this sort have been proposed for
the cerebellar cortex 161 and the visual cortex [71. Cellular automata mod ­
els assume homogeneity over the ent ire system and the results show bu lk
properties of the syst em be ing modelled. In contrast to this are various
models of parallel processing and learning (some examples may be foun d in
Rumelha rt and McLelland 18]) wh ich depend on non-homogeneity "fd are
more concerned with det ailed propert ies of t he system. These models may
be more applicable to higher corti cal regions that do not show the same
regularity of structure as the sensory an d cerebellar cortices.

Recent advances in the theory of cellular automata [9,10,11], provide
the background for the present mode l. The model is a cellular automaton
based on some of the known propert ies of cort ical neurons. A relatively
small number of parameters determine the ru le governing th e behaviour of
the model. Using t his mod el I shall examine the various types of behaviour
that the system can exhibit and how the various parameters of the model
affect that behaviour. Secondly I shall extend the model to include input
from outside and an asynchronous mode of calculation , which int roduces a
more realistic and stochastic element into the system.

2. Mod el d escrip t ion

A cellular automaton is basically an n-d imens iona l array, s with eleme nts
8 j . Each element or "cell" may take on a range of values 0 , 1... , k - 1, the
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(3.1)

value of the cell being termed its state. T he states of cells are changed in
discrete t ime steps, the array of states at some time t is called a generation.
T he next stat e of a ce ll dep ends on the state of a cell and its neighbours.
The rule which determines the next state is the same for a ll cells. The range
determines the number of neighbours in some direction that can contribute
to the next state. The present model a lways uses a ran ge r = 3.

3. B asic model

The basic model is a cellular automaton where each successive generation is
calculated using a two-st ep procedure. The first st ep is to take a weighted
sum of of a cell and its neighb ours. A function is then applied to thi s va lue
and the result is the value of the cell at the next generation. This procedure
in one dimension is given by the formula:

3

s:+1 = fp( L Wi S:+i )
i=- 3

where w is the weights vecto r (W- 31... ,W3).
Similar ly in two dimensions:

3 3

s:11
= f p( L L WJ;lS:+.l:i+ l)

J;=-3l= - 3

(3.2)

where w is the weights matrix [Wi;] . i, j = {3, ...•3}.
The weights used may be positive or negative.
The functions fp are bas ed on a difference of logistic functions (see figure

2).
I.(x) = L1(x) - "'(L,( x)

where L, is the logist ic function

(3.3)

1
L · - (3.4)

, - 1 + exp(-(:~:;» )'

The parameters Xi an d p are calculated as a function of k, 0 J w . The
function fp is normalized and integerized so that the output is in the cor­
rect range (0, .., k - 1). Two condit ions are necessary in this scheme to
res t rict the possible rules to "legal" rul es 110]. First, the weights must be
symmetrical , i.e. in one dimension

W-i = Wi

or in 2 dimens ions
W-i-i = wi-i = w - ii = wii·

Second , the functions fp must sat isfy:

1.(0) = o.
These conditions are satisfied in all cases .

(3.5)

(3.6)

(3.7)
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Figure 2: Th e basic stimulus-response (SR) functions showing t he
effect of var ying j . The value of '1 is shown to the right of each curve.

4 . Forcing input

One extension t o the basic model described above to apply a constant (time
invariant) forcing input. This means tha t a given cell will rece ive inpu t not
only from its elf and its neighbours but some external source as well. T he
following formula exp resses this :

,
.;+1 = /P( L w;':+,+ t ao)

;=-3
(4.1)

where f is th e forcing weight, ~ is th e value of the Ji h cell of the forcing
input.

5. Asynchronous calculation

The bas ic model uses synchronous calculation to determine the next gener­
ation, where th e value of all cells are calculated before changing any va lues .
It is also possibl e to calculate th e next generat ion asynchronously [12]. One
way to do this is to choose a number of cells at ran dom and change only
their values before continuing. The second extension to the bas ic model
does this , t he number of cells to be changed is inp ut as a variable parame­
ter , A. With this method of calculation th e notion of generat ion is no longer
well-defined. For purposes of display the next generation was arbitraril y
defined as occurring after the total number of chan ges mad e equalled or
exceeded the number of cells .
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6. Behaviour of the model

191

The types of behaviour of the model and the effects of t he various param ­
eters on this behaviour are shown in figur es 3 through 5. The number of
sta tes and the absolute values of the weights have little qualitative effect on
the behaviour of the systems. T he sh ape parameter "t has its major influ­
ence on the temporal behaviour of the system . When "1 = 0 (with a positive
center weight) the system tends towards stable states, with the majority of
cells taking a va lue of either 0 or the maximum. As "1 increases the system
goes to oscillatory ~r chaotic types of behaviour , dep ending on the weights
and the thresho ld. Systems that conver ge to stab le states generally do so
very rapidly (about 5 generat ions for Den-dimensional systems and 10 - 20
for two-dimensional systems).

The weighting function and the threshold have their major influence
on the spat ia l structure of t he system. The distribution of excitatory and
inhibitory weights affects the spatial structure of the states, e.g. a lte rnat ­
ing excitatory and inhibitory weights produce a system with alt ernating
zero and non-zero states in each generation. The rate of lateral growth
of patterns is determined by both the weights an d the threshold. A high
threshold or to o much side inhibition inhibits lateral spread of patterns .
The rate of growth is an important factor in det ermining whether a pat­
tern will exh ibi t oscillatory or chaotic behaviour. Class IV like beh aviour
occurs in the transition region as threshold of a chaotic system is increased
(figure 5) . In this model Class IV like behaviour appears to occur when the
tendency of a pat tern to spread laterally is inh ibited by a high threshold.

7. Extensions

The major effect of us ing an asynchronous mode of calculation ( figure 6)
is on systems that show oscillatory behaviour under synchronous calcula­
tion. Strict oscillatory behaviour is dependent on synchronous calculation.
Other types of behaviour are affected to a much smaller degree although
the rate of convergence is somewhat slower . The effect of applying a forcing
input (figure 7) is to entrain the system to the forcing inp ut, although the
behaviour is not significantly affected otherwise. The behaviour of one­
dimensional systems (figure 8) is not qualit atively different , except that
oscillatory behaviour appears to be less common, given the general form of
the weighting functions I have been using.

8. Discussion

T he relation of the model to cortical physiology occurs at two basic levels .
First, the model was constructed based on certain aspects of the nervous
system. Second, t he behaviour of the model should correspond to the
behaviour of the nervous system for appropriate values of .the param et ers.
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Figure 3: The effects of var ying "1 an d t he thr eshold, 9, are shown for
a sam ple of different weighting functions. For a given set of weights
increasing "'I leads to either oscillatory or chaotic behav iour. Increas­
ing thresh old (from top to bottom in the figures) generally reduces
the number of active sites. All syste ms started from a random initial
configuration and had t he numb er of possib le states, k = 8.



A Cellular Automaton Model Based on Cortical Physio logy 193

• I I I I I
• I I I 0 0
a a8 3 3a

(4.1) w ={ -I -3 2 4 2 -3 -I }
o :::: 0, '1 :::: 0, 0.5, 1 initial
condit ions; isolated po ints

'If"1I'''!''' 'X 10ft
.~~ ft' l . a

', 1 i I
~ B~a

~ d si .~ :
(4.3) w~{-I -3 24 2 -3 - I }
8 :::: 0, "f :::: 1; init ial conditions:
periodic, without and with added
noise

1111111111111111111111111'

11111111111[1111111111111'
rrrrrrrrrrrrr
rrrrrrmrnr
TTTTTTl
TI rr'TI'TITiTiT

(4.2) w ={-I -3 2 4 2 -3 - I }
() :::: 0, '1 :::: 0; initial conditions:
periodic , without and with added
noise

(4.4) w ={o -122 2 -I O}
(J :::: 0, "7 :::: 1; initial conditio ns:
periodic, withou t and with added
noise

F igure 4: The behaviour of some systems starting from non-random
initial conditions. Parts 4.2 - 4.4 also show the effect of adding noise
to the initial config uration. The noise level in parts 4.2 and 4.3 is
a change of ±1 state value in about half of the sites. In part 4.4 a
single site near the center was changed and the disturbance can be
seen propagating out from this region.
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Figure 5: The effect of increasing threshold on a chaotic system. The
system passes through a region where Class IV-like behaviour is ob­
served.



A Cellular A utomaton Model Based on Cortic al Phys iology 195

rnmrmrnnflrn
nrnmmrrrn
mmnmrm,

rrrnrr rrn­
rr'Tr'T"1"1'-'~'T
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() = 0, 5, 10, 15, 20, I = 0 ,
asynchronous calculation: A = 10
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(} = 0, "1 = 1, asynchronous
calculation: A = 10
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(6.2) w ={-I -3 2 4 2 -3 -I }
o= 0, "I = 1, asynchronous
ca lculation: A = 10

(6.4) w~{o -1 2 2 2 -1 o}
6 = 4, ..., = 1, asynchronous
calculation: A = 10

Figure 6: The effect of asynchronous calcula.t ion on the behaviour
of the syst ems . Th e systems shown correspond to stable, osc illatory,
chaot ic and Class IV-like respectively. Comp are these with figures
3.1, 3.3, 5.1 and 5.2.
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o= 10, I = 1, forcing funct ion
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periodic
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(f = 2): isolated points and
peri odi c

(7.4) w = {O-1 2 2 2 -1 O}
8 = 10, "f = 1, forcin g function
(J = 2): isolated po ints and
period ic; asynchronous
calcu lat ion: A = 10

Figure 7: The addition of a forcing input to th e model The forcing
input is shown as a single line line below each system. All initial
configurations were random.
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(8.1b) evolution in time
of the center row of cells

0 0 - 1 - 1 - 1 0 0
0 - 1 -2 -2 - 2 - 1 0

- 1 - 2 4 4 4 - 2 - 1
A ; - 1 - 2 4 8 4 - 2 - 1

- 1 - 2 4 4 4 - 2 - 1
0 -1 - 2 -2 - 2 - 1 0
0 0 - 1 -1 -1 0 0

Figure 8: Som e examples of two-dimensional systems. The configu­
rations shown are either the final (stable) state or the one-hundredth
generation. A cross -section through the centre of the system is also
shown beside the final configuration. The weights mat rix A used are
shown here.
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8.1 Physiological basis of the model

The basic elements of the model are the cells of the array which constitute
the cellular automaton. The correspondence of these cells is not necessarily
one-t o-one with neurons in the nervous sys tem. The cellular automaton
cells may be considered rather to correspond with a small group of neurons
(module) within a hyp ercolumn of t he cortex. For example, the module
may correspond to a group of cells such as those shown in the basic circuit
diagram in figure 1.

Most neurons require a minimum level of input before they fire; this is
called the threshold . A seco nd effect of threshold is to shift t he stimulus­
resp onse curve to higher values, this effect was incorpor ated into the present
model. T he weights represent the st rength of the connect ions between
neighb ouring modules. T hese weights are assumed to be the same for all
modules and to be relatively cons tant on a short time scale. Changes in t he
weights over long time scales may be, at least in part, a basis for learn ing.

The stimulus-response function represents the input-output relations of
this module. In t he case where the SR function is based on the logistic
curve ('"1 = 0) , t he module may represent a single neuron or a group of
simi lar ne urons . This type of curve is seen at different levels of the nervous
system , from t he level of the synapse [13J, to the level of psychophysics
which represents the functioning of many parts of the brain [141. However,
the peaked SR functions (1 > 0) are unlikely to imp lemented in a single
ty pe of neuron and may correspond to the interactions of both excitatory
and inhibi tory neurons. For example the sum of an excitat ory neuron
and a higher threshold inh ibi tory neuron cou ld produce these typ es of SR
functions .

The exte nsions to the basic model were des igned to produce a more
realistic model of the cortex. The basic model in 2-dimensions corresponds
to a sheet of cortical tissue, however, the cortex does no t exist as an iso­
lated sheet. The input to a region of the cortex may come from a distant
region , e.g. input to the visual cortex comes from t he lateral geniculate
nucleus . T he addit ion of a forcing function to the model is intended to
simula te this input, a lthough the restrict ion to t ime invar iant input is itself
a simplification. The extension to asy nchronous mode of calculation was
introduced because the cortex, unlike a computer , does not have a single
clock controlling all cells. T he method of asynchronous calculation used
here also introduces a stoc hast ic element into the model.

8 .2 R ela tion of t h e m o del with p hysio logy

I have tried to to show that this model has a reasonable basis in known
physiology, but the ac id test of any model is whether or not it can predict
the behaviour of the system being modelled . Unfortunately, at the present
state of technology the measurement of the individual states of a large
group of neurons is imposs ib le. Nevert heless , some general observations
can be made .
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Systems that have a high threshold or weights wit h outside inhi bit ion
tend to produce localized structures. The excitation of a reg ion of space
does not propagate to distant regions , this is also true of cortical regions un­
der normal condi t ions. Under cer tain pathological conditions (e.g. epilepsy,
hallucinations) this is no longer true and un controlled spread of excitat ion is
observed. Reduction or elimination of the inhibitory porti ons of the weights
appears to produce just this kind of behaviour. Ermentrout an d Cowan 1151
have proposed a model of visual ha llucinations where the triggering insta­
bility is decreased inhibition and increased excitation. Babloyantz, Salazar
and Nicolis [16) have shown that EEG measurements of the brain under
various condit ions give different values for the dimension of the underlying
dynamics. In particular t he arousal state of the organ ism affects the di­
mensiona lity. Increasi ng threshold reduces the excitability of the cells and
reduces the entropy or dimensionality.

The contro l of threshold an d the ratio of excitat ion to inhibition could
occur in at least two different manners in the nervous system. F irs t, there
are a number of non-spec ific fibres originating in the brain stem and te r­
minating in a re latively large region of cortex. These fibres may be used to
change the parameters of cells in a given region of cortex or the ent ire cor­
tex. Second, there are various chemical factors called neuromod ulat ors that
can react with receptors on the cells' surface and change their behaviour.

Systems that use a simple logist ic based SR funct ion tend to stabilize
very quickly. The final stable states can be compared to po int attractors
in some phase space. The basin of attraction consists of those initial con­
figurations that closely resemble one ano ther . These types of systems seem
to provide a better model of the normal functions of the br ain in that th e
systems are resistant t o noise and will produce an out put t ha t is relat ed to
the inp ut. Chaotic and Class IV systems are, by defini tion, sensit ive to the
initial conditions (input).

9. Conclusions

Cortical physiology provides the basic parameters used to const ruct the
model presented here. The model is not intended to accura tely model
any real nervous system, but rat her to examine overa ll properties of a
connected group of discrete neuron-like elements; A relat ively small number
of parameters, similar to th ose that might be foun d in a nervous system,
is used to determine the ru le used by the model. Despite the fact that t his
model is more rest ricted in its rules than many cellular automata, where
an output state can be assigne d to each individual input configurat ion, it
can nevertheless exhibit a wide range of behaviour as the parameters are
varied. Some types of behaviour may be applicab le to cort ical funct ion, for
example the localization of excitation an d the comp ression of informat ion
that occur in the systems showing stablizing behav iour .
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