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Abstract. For any undirected graph with arbitrary integer values
attached to the vertices, simultaneous updates are performed on these
values, in which the value of a vertex is moved by one in the direction
of the average of the values of the neighboring vertices. (A special
rule applies when the value of a vertex equals this average.) It is
shown that these transformations always reach a cycle of length one
or two. This proves a generalization of a conjecture made by Ghiglia
and Mastin in connection with their work on a “phase-unwrapping”
algorithm.

1. Introduction

Let G be an undirected graph with vertices labelled 1,...,n, and suppose
that for each 7, an integer z;(0) is initially assigned to vertex :. We perform
a sequence of synchronous updates on these values. If z;(2) is the value of
vertex ¢ at time ¢, then

I,‘(t) -1 if E:iEJg I,(t) < d"Ii(t),
=1 z(t) if z;(t) = z(t) for all j € J;,
z;(t) + 1 otherwise,
where

J; ={j: vertex j is connected to vertex ¢},
d; = |J;] = degree of vertex 1. (1.1)

Less formally, the value z;(t) assigned to vertex 7 moves by one in the di-
rection of the average of the values assigned to the neighbors of vertex 7, but
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a special rule applies when z;(t) equals this average; if the values of all the
neighbors of vertex 1 equal z;(¢), then the value of vertex 1 stays the same,
whereas if the neighbors’ values are not all equal, then the value of vertex
% increases by 1. Since max; z;(¢) does not increase and min; z;(t) does not
decrease as t varies, the iteration described above eventually reaches a cy-
cle, so that for some minimal p > 1, z;(t + p) = =:(t) for all ¢ and all ¢ > £,.
For example, when G is a simple path of length 5 (i.e., there are 5 vertices
numbered 1 through 5, and vertex 1 is connected to vertex j if and only if
|i = j| = 1), and the initial assignment is (z;(0), ..., z5(0)) = (0,2,1,10,4),
then the iteration is given by the array below, in which the i-th row presents
the values of z; (¢ — 1), ..., z5(¢ — 1):

01123 45¢67
2123 456T1T7F€6
123 45617¢67
10 9 8 7 6 7 6 7 6
4 5677617867

The last two states above form a cycle which repeats from then on. Our

main result is that this case is not unusual, and the length of the cycle is 1
or 2 in all cases of the iteration.

Theorem 1. For any undirected graph G and any initial assignment of
integers z,(0),...,2.(0) to the vertices of G, there is a t, such that the
above iteration satisfies z;(t + 2) = z;(t) for all i and all t > t,.

The problem of determining the cycle length of the above iteration arose
in the work of D. Ghiglia and G. Mastin [1]. They considered such iterations
for the cases of G being (a) a simple path and (b) a k£ x m rectangular
grid of lattice points, with edges between points that are horizontal or
vertical neighbors. The rules described above were constructed as part
of an algorithm for “phase unwrapping”; i.e., determining the argument
of a complex function given the principal value of the argument, so as to
eliminate the jump discontinuities by integer multiples of 27. The Ghiglia
and Mastin paper [1] contains several pictures presenting their algorithm
in operation.

The “phase unwrapping” origin of the transformation accounts for the
lack of symmetry in the rules which prescribe that if the average of the
values of a site’s neighbors equals the value at that site, but not all the
neighbors have values equal to that of the given site, then the value of the
site should be incremented by 1. As it turns out, even if this condition is
changed so that the value of a site stays constant when that value equals
the average of the values of the neighbors, the length of the cycle is still at
most 2. The proof of this is similar to that of our main theorem, and will
be sketched at the end of Section 2.

Ghiglia and Mastin found by extensive simulations that iterations of the
transformation always led to cycles of length 1 or 2. They conjectured that
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this is always the case, and their “phase unwrapping” algorithm is based
on the assumption that this conjecture is true. Our theorem, which proves
this conjecture, guarantees that the Ghiglia-Mastin algorithm will always
terminate.

E. Brickell and M. Purtill were the first to consider the general transfor-
mation as we defined it above. When all the z;(0) are 0 or 1, they showed
by the following very elegant combinatorial argument that the cycle length
is at most two. At any time t, divide the vertices of G into four classes as
follows:

Cy ={i: z(t) = Oandz;(t) = 0foralljeJ},

Cy ={i: z(t) = 1andz(t) = 1forall jeJ},

Cs ={i: z(t) = 0 and there exists a j € J; with z;(t) = 1},

Cy ={i: z(t) = 1 and there exists a j € J; with z;(t) = 0}(1.2)

Any site in Cy at time ¢ will be in C; or Cs at time £ + 1 since the value
will remain 0, but we cannot predict what will happen to its neighbors.
Similarly, any site which falls in C; at time ¢ will be in C; or Cy at time
t -+ 1. Anything in C; will move to C; at time ¢ + 1, and all members of
Cy will move to C3. Therefore, eventually all elements will either stay in
Cy or in Cy or will continue switching between C3 and Cj4, and so the cycle
length will be 1 or 2.

When the z;(0) are not all 0 or 1 (or » and u + 1, more generally), the
iteration is much more complicated and no simple combinatorial argument
has been found to prove the theorem. For example, even when G is a simple
path, differences between values of adjacent vertices can be arbitrarily large
on a cycle (as large as a constant times n for a path of length n). This can
be seen by generalizing the construction of a simple path of length 11 with
initial assignments (z;(0),...,z11(0)) = (0,1,1,4,6,11, 15,22, 25, 28, 27).

The proof we will give for the theorem is based on a modification of the
proof used by Goles-Chacc, Fogelman-Soulie, and Pellegrin [2] to prove that
cycle lengths are at most two in certain threshold networks. Their theorems
imply the Brickell-Purtill result, but do not seem to directly cover the
general case of our iteration. However, their concept of decreasing energy
is a key ingredient in our proof. Furthermore, after reading an early version
of this paper, E. Goles found a way to encode the iteration studied here
into an iteration similar to those of [2]. This not only gives another proof
of our theorem, but also leads to an explicit bound for the length of the
non-periodic part of the iteration.

Other cases where iterations on graphs produce cycles of length at most
2 occurs in the work of Poljak and Sura [3] and Poljak and Turzik [4-6].
The paper [5] proves that cycle lengths are at most 2 for some very general
classes of discrete iterations, and provides another possible approach to our
problem.
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2. Proof of theorem

It clearly suffices to prove the theorem when G is connected, and so we will
assume this from now on.

Lemma 1. If the period of the cycle is not 1, then for all large t and for
all ¢,

zi(t) # it + 1). (2.1)

Proof of lemma. Suppose there exist ', such that zu(t) = za(t + 1) and
that the {-th iteration is in the cycle. We know there exists 7' such that
z;:(t) # z;+(t + 1) since the period of the cycle is not 1. Hence we can find
vertices 1 and j that are connected such that

zi(t) = z(t),
zi(t) = =z(t+1),
z;(t) # z;(t+1), (2.2)
and so
zi(t+1) = =;(t) £ 1. (2.3)
Hence
zi(t) — z;(t) = 0 (mod 2) (2.4)
and
zi(t+1) — z;(t+1) = 1 (mod 2). (2.5)

But if z;(t + k) — z;(t + k) = 1(mod 2), then z;(t + k) # z;(t + k), hence
it +k+1) ==zi(t-+k)+1and z;(t+k+1) =z;(t + k) £ 1,50 zi(t + k+
1) — z;(t + k + 1) = 1(mod 2). Since this is true for all k, there does not
exist any k' > 0 such that z;(t + k') = z;(t + k')(mod 2), which means that
z;(t) cannot be in the cycle and we have reached a contradiction, which
proves the lemma. B

Proof of theorem. Using the idea of a decreasing “energy” function utilized
by Goles-Chacc et al. [2], we define:

B =5 agzlllt—1, (26)

ij=1
where
—d; ifi =j;
0 ifi #jandje ;.
Note that E is bounded below since the maximal element at any stage
never increases with time.

We now consider the change in energy during iterations of the transfor-
mation:

1 ifi # 7 but j € J;
ai; =
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AE(t) =E(t+1)—E(t) =— Z ai;zi(t + 1) z;(t) — Z ai;zi(t)z; (t — 1)
= —g(z.-(w 1) -t - 1))§a.-,-z,-(t), (2.7)

since a;; = ay; for all ¢, . For each 4, if 7, a;z;(t) <0, then

dizi(t) > Z z;(t), (2.8)
JEJ:
(t + 1) < I!( )! (2.9)
m(t+1) —z(t—1) <0, (2.10)
and
~ (@{t+1) ~ (s 1)) 3 ez (2) < 0. (2.11)

If 327 1ai;z;(t) > 0, then

dizi(t) < ) z;(t)

JEJ;
:B.'(t + 1) > .’J:,'(t),
z(t+1) —zi(t —1) >0, (2.12)
and .
— (=it +1) — z(t — 1)) Za.—,-z,-(t) <o. (2.13)

Finally, if 327, a;;z;(t) = 0, then

= (2t + 1)~ 2t — 1)) 3 ayz;(t) =0 (2.14)
i=1
Thus in all cases AF(t) < 0 and each term in the sum on 7 on the right

side of (1) is < 0. Since FE is bounded below, we must have AE(t) = 0 for
all large t > #; and, moreover, for all £ > ¢y and all i,

n
(zi(t + 1) —zi(t — 1)) D aijz;(t) = 0. (2.15)
=1
We can take £ so large that {; — 1 is already in the cycle. Now suppose
there exists an ¢ such that z;(¢ -+ 1) # =;(t — 1) for some ¢ > ¢;. Then there
must exist a t > to with z;(t — 1) > z;(¢ + 1). We must then have
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2 zi(t) = dizi(t), (2.16)
JES;
and so
.‘L’,‘(t o 1) 2 I,'(t], (217)

and hence by the Lemma, z;(¢ + 1) > z;(t), which implies that z;(t + 1) >
z;(t — 1), which is a contradiction.

Therefore, z;(¢ + 1) = z;(t — 1) whenever z;(¢ — 1) is in the cycle, so the
length of the cycle is, at most, 2. B

It is not always true that AE(t) < 0 for £ not in the cycle. For example,
when G consists of a simple path of length 5, with (z;(0),...,z5(0)) =
(0,2,2,3,5), then E(1) = E(2) = —1, but the cycle starts only at ¢ = 2.

When the definition of the iteration is changed so that z;(t) does not
change when it equals the average of the z;(¢) for j € J;, the proof of
the Theorem becomes somewhat easier. In this case, the Lemma is false.
However, the expansion of Eq. (1) still holds, and we again find that Eq.
(2) holds for all £ > #; and all 7. But that means that for any ¢ > t; and any
i, either z;(t +1) = z;(t — 1) or else z;(t +1) = z;(t). If it ever happens that
z;(u + 1) = z;(u) any ¢ and some u > t;, then by the above observations
we must have z;(v) = z;(u) for all v > u. This proves that the cycle length
is1or2.
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