
Complex Systems 1 (1987) 211-216

Fast Computa t ion of A d ditive C ellu lar A u t omat a

Arch D . R ohison
Dep artmen t of Comp uter Science, University of Illinois,

1304 West Springfield A venue ,
Urbana, IL 61801, USA

Abstract . Direct simulation of an additive cellular automaton takes
a time O(t2) to compute an arbit rary site value t time steps into the
future . For the case of a single initial nonzero site, the prob lem is
equivalent to computing a coefficient res idue of a polynomial power.
An algorithm is derived which computes an arbitrary site's value in
time O(log!) "

1. Introdu ction

A cellu lar automaton consists of a row of cells which change state over tim e
11]. T he va lue of a site at posit ion i an d t ime t is de noted a!t) . An addit ive
cellu lar automato n [2J has a rule of the form :

al') = "s(J")a(·-l) mod m
I ~i I -I

(1.1)

where s specifies the r ule. If t he automaton's sites are viewed as coefficients
of a polyno mial, then each row is obtained by mult iply ing the p revious row
by a r ule polynomia l. Since po lynomial mult iplication is associative, the
problem reduces to computing powers of the ru le po lynomial. Let A(I)(X)
and S(x) be the automaton state and rule polynomials respectively.

S(x) = L,S'X'
Then the state of the automaton after t t ime steps is given by

(1.2)

(1.3)

(1.4)

Via the Chinese Remainder T heore m, our problem reduces to computing
solut ions for moduli which are powers of p rimes, i.e. m = p'l . The rest
of this paper develops an a lgori thm for quickly comp ut ing any all) for the
case m = p' and A(O) (x) = 1.

(C) 1987 Comp lex Sveeeme Publications. Inc.

212 Arch Robison

2. Notation

All polynomials in this paper are formal power series ; the powers of z are
placeholders only. A polynomial Q(x) is written

I;'o .Q(x) = . q;x'
. =rq

(2.1)

where TQ and lq are the minimum and maximum degrees of the terms. The
terms may have negative degree. We define the width wQ of polynomial Q
as wQ = lq - TQ . Subscripts are om itted where only a single polynomial is
under cons ideration. The notat ion

Q(x) == Q'(x) mod m

means that the coeffic ients of Q(x) and Q'(x) are congruent, i.e.

for all integers i .

(2.2)

(2.3)

3. Self-Similar Poly nomials

We call a polynomial Q with integer coefficients se lf-similar mod m if there
exis ts a scaling exponent f3 such that :

(3.1)

This section will show that self-similar polynomials may be generat ed for
moduli of the form p'" I where p is prime and "1 is a positive integer. Self­
similar polynomials are the key to the algorithm, since exponent iating such
polynomials is much easier than expon entiati ng arbitrary polynomials.

Lemma 1 . The sum of seli-similer po lynomials mod p is seli-similer for
scaling exponent p. Thus, given a prime p and self-similar polynom ials
Q(x) and R(x):

IQ(x) + R(x))' == Q(x") + R(x") modp.

Proof.

(3.2)

The terms of the summation vanish because [31

(~) ==omodp 1 :O;i :O;p -1

which leaves us with

(3.4)

[Q(x) + P(x)]P== QP(x) + RP(x) == Q(x") + R(x") modp. (3.5)

Fast Comp utation of Additive Cellular Automata 213

Lemma 2. Monomials are self-similar mod p with a scaling exponent of p,
so that given a prime p and monomial Q(x) = ax",

QP(x) '" Q(xP) modp.

Pro of. This follows immediately from Fermat 's littl e theorem:

QP(x) = aPx"P '" ax"P = Q(xP) modp •

(3.6)

(3.7)

Theorem 1. All polynomials are self-similar modp for scaling exponent
p, so that given prime p and polynomial Q(x),

QP(x) = Q(xP) mod p. (3.8)

Proof. Since monomials are self-similar, their sum Q(x) is also self-similar.

•
Theorem 2. All polynomials of the form QP,.-l(X) are self-similar mod
p'" for scaling exponent p, so that given prime p, polynomial Q(x) , and
non-negative integer "1 ,

(3.9)

Proof. (Induction on "Y.) We have already shown that the theorem is true
for '1 = 1. Assuming that the theorem is true for '1' = 'Y - 1:

(3.10)

Then th ere must exist a polynomial R(x) such that:

(3.11)

[QP'- '(xlj' _ QP'-' (xP) + 2:;:: (~) (p'-lf Q.-i(x)R;(x)

+ (p'-'y RP(x) mod p" (3.12)

For 1 :'0 j :'0 p - 1,

(3.13)

which causes all terms in the sum to vanish . Finally, since "I > 1 and p > 1
the last term must also vanishes . •

214 Arch Robison

4. Computation of P owers of Self-Similar Polynomials

In this sec tion, Q(x) is a self-similar polynomial modm with scaling expo­
nent 13. Let q(b,i) be the i th coefficient of the expansion of Q'(x) mod m,
i.e.

Q' (x) '" L .q(b,i)x; modm. (4.1),
We show how to compute the i th coefficient of Q' (x) in O(logb) t ime.

Lemma 3. Given a table of Qt(x) for 0 $ k < 13, we can comp ute Q' (x)
with log bflog 13 polyn omial multiplications (convolutions of coefficient s).

Proof. Define k MOD m for integers k, m as the least non-negative residue
of k mod ulo m . We can rewrite b as

b =bMODf3 + f3lb/ f3J

Q'(x) '" Q'MOD P(x)Ql' /PJ(:d') mod m

(4.2)

(4.3)

Since b is divided by fJ on each application of the recurrence, we need apply
the recurrence at most 10gb/log f3 t imes.•

Theorem 3. If we comp ute q(b, i) (or r, ~ i ::; Ii by the convolutions in
the lemma, and Ii - ri ::; w , where w is the width of Q(x) , then each
convolut ion ta kes time

Proof.

o (f3w log w) (4.4)

q(b, i) "' L
j
q(bM OD f3 ,i- f3j) q (l b/ f3 J, j) modm (4.5)

By considering the width of successive powers of Q(x), we can see that
q(b,k) is zero for k < lqb or k > rqb. Therefore i - jf3 must be constrained
as follows:

rq(f3 - 1) ? i - f3j ? Iq(f3 - 1)

rq(f3 -1) +r; . I Iq(I1 -1) +I;
11 rj $ J $ i = 11 .

From this we can show:

(4.6)

(4.7)

4 -~ $ w. ~~

By induction we see that this bound holds for the recursive evaluat ions of
q(b,j) . By Fourier methods, we can convolve two sequences of width w
in time 0 (w log w). The convolution as written is not an ordinary convo­
lution in that the "traveling" subscripts change at different rates, so that
the changing subscripts are i - jP and j. We actually need to do P or­
dinary convo lutions, i.e. a convolution for each i in {O,.. . ,P - I}. Each
convolution computes all q(b, i + 11k) for all k:

q(b,i +l1k) = L
jq(bMODI1,i

+l1(k -j))q(lb/I1J ,j) (4.9)

Thus we compute Pconvolut ions of width w.•

Fast Computation of Additive Cellular Automata 215

Lemma 4. Given a polynomial P(x) of width w , we can compute the first
n powers of P in time o (nwnlogw).

Proof. We compute P' (x) = P(x)p·-l(x). The width of P'(x) is w· + 1.
By use of the Fourier transform, the time to compute P'(x) from p '-I(X)
is

o ((w' + 1) log(w' + 1)) = 0 (kw' log w) .

The time to compute the first n - 1 powers of P(x) is

o (L::::kw'logw) C O ((n- 1)w").

(4.10)

(4.11)

The t ime to compute the n th power of P(x) is

o (nw" log w) , (4.12)

which dominates the compu tation time for the first n - 1 powers of P (x).

•
(4.13)o ((W log w)l~~ log b+ ~wP-llogw)

T heorem 4 . We can comp ute q(b, i) for r, ~ i ~ Ii where l, - ri ::; ,w Q in
tim e

Proof. The first term is the product of the number of convolutions and
operations per convolution. The second term is the table construction time .
The table cont ains the first ~ -1 powers of Q(x), which are computed by
the previous lemma. •

Theorem 5. Given a polynomial S(x) such that sa(x) is self similiar
mod m with scaling exponent (3, i.e.

(4.14)

we can compute coefficient k of st(x) mod m in time

o (aw log(aw) l~~ log t + ~(aw)p-l log(aw) + awa-1log w) (4.15)

Proof. We can rewrite st(x) as

S'(x) = s' MOD a(x) [sa(x)]l'/aJ (4.16)

(4.17)S'(x) = S' MODa(x)Ql'/aJ(x)

Define s(t, k) as th e k th coefficient of S' (x):

Let Q(x) = s a(x). Note th at the extreme degrees of Q(x) are IQ = als
and rq = a rs.

S'(x) = L:.s(t, i)x·
•

(4.18)

216

s(t,k) = L ;'(tMOD a)q (lt jaJ , i) .

Since t MOD a < a, we have the constraint

Arch Robison

(4.19)

(a - 1)ls ::; k - i ::; (" - I)Ts (4.20)

(" - 1)ls + k 2: i 2: (a - I)Ts + k (4.21)

Ii - Ti ::; (Is - TsHa - 1) ::; (Is - TS)" = IQ - TQ. (4.22)

Therefore we can compute the necessary coefficients of QttjQ'J(x) within the
prev iously proven time bound. •

The latter two terms in the theorem are tab le construction times. The
table q conta ins the first (3 - 1 powers of sa(x); the table s contains the
first" - 1 powers of S (x).

5. Evolution from a single site seed

Given rule S(x) and a single-site seed A(x) '" 1, a~) = s(t ,k). By set t ing
a = p'1- 1 and /3 = p, we can use the previously derived algorithm to
compute s(t ,k) .

Acknowledgements

The au thor thanks Stephen Wolfram for suggest ing this problem. The
author is supported by a Shell Fellowship in Computer Science.

References

11] Stephen Wolfram, Theory and Applications of Cellular Automata, (World
Scientific Publishing Co., 1986).

[2] Olivier Martin, Andrew M. Odlyzko, and Step hen Wolfram, "Alge­
braic Properties of Cellular Automata", Communications in Mathem atical
Physics, 93 (1984) 219-258; reprinted in [lJ.

[3] Donald E. Knuth . The Art Of Comp uter Programming, voL 1, (Addison­
Wesley, 1973) p. 68.

