Complex Systems 1 (1987) 211-216

Fast Computation of Additive Cellular Automata

Arch D. Robison
Department of Computer Science, University of Illinois,
1304 West Springfield Avenue,
Urbana, IL 61801, USA

Abstract. Direct simulation of an additive cellular automaton takes
a time O(#?) to compute an arbitrary site value ¢ time steps into the
future. For the case of a single initial nonzero site, the problem is
equivalent to computing a coefficient residue of a polynomial power.
An algorithm is derived which computes an arbitrary site’s value in
time O(logt) .

1. Introduction

A cellular automaton consists of a row of cells which change state over time
[1]. The value of a site at position i and time ¢ is denoted a{” . An additive
cellular automaton (2] has a rule of the form:
t o (-1

o) = st(;]a,(-_j) modm (1.1)
where s specifies the rule. If the automaton’s sites are viewed as coefficients
of a polynomial, then each row is obtained by multiplying the previous row
by a rule polynomial. Since polynomial multiplication is associative, the

problem reduces to computing powers of the rule polynomial. Let A()(z)
and S(z) be the automaton state and rule polynomials respectively.

AO(z) =Y afz (1.2)
S(z) = z‘,s.—z‘ (1.3)

Then the state of the automaton after ¢ time steps is given by
AW(z) = A9 (z)5*(z) modm (1.4)

Via the Chinese Remainder Theorem, our problem reduces to computing
solutions for moduli which are powers of primes, i.e. m = p? . The rest
of this paper develops an algorithm for quickly computing any a,(’) for the
case m = p” and A®)(z) = 1.

(© 1987 Complex Systems Publications. Inc.

212 Arch Robison

2. Notation

All polynomials in this paper are formal power series; the powers of = are
placeholders only. A polynomial Q(z) is written

QD) =7 g (2.1)

i=rq

where rg and lg are the minimum and maximum degrees of the terms. The
terms may have negative degree. We define the width wg of polynomial @
as wg = lg —rg . Subscripts are omitted where only a single polynomial is
under consideration. The notation

Q(z) = Q'(z) modm (2.2)
means that the coefficients of Q(z) and Q'(z) are congruent, i.e.
¢ =g modm (2.3)

for all integers 1.

3. Self-Similar Polynomials

We call a polynomial @ with integer coefficients self-similar mod m if there
exists a scaling exponent 3 such that:

Q%(z) = Q(z°) modm. (3.1)

This section will show that self-similar polynomials may be generated for
moduli of the form p”, where p is prime and « is a positive integer. Self-
similar polynomials are the key to the algorithm, since exponentiating such
polynomials is much easier than exponentiating arbitrary polynomials.

Lemma 1. The sum of self-similar polynomials mod p is self-similar for
scaling exponent p. Thus, given a prime p and self-similar polynomials
Q(z) and R(z):

[Q(z) + R(z)]” = Q(z°) + R(z") modp. (3-2)
Proof.
Q@) +R@P = @@ + 30, (1) @R @+ F@) (33)
The terms of the summation vanish because [3]
(‘?)Eo modp 1<i<p-—1 (3.4)

which leaves us with

Q(z) + P(2)]’ = Q%(z) + F*(z) = Q(«) + R(z?) modp B (3.5)

Fast Computation of Additive Cellular Automata 213

Lemma 2. Monomials are self-similar mod p with a scaling exponent of p,
so that given a prime p and monomial Q(z) = az”,

QF(z) = Q(zF) modp. (3.6)
Proof. This follows immediately from Fermat’s little theorem:

Q¥ (z) = a®z™ = az™ = Q(z°) modp H (3.7)

Theorem 1. All polynomials are self-similar mod p for scaling exponent
p, so that given prime p and polynomial Q(z),

Q*(z) = Q(z") modp. (3.8)

Proof. Since monomials are self-similar, their sum Q(z) is also self-similar.

Theorem 2. All polynomials of the form Q”"—l(z) are self-similar mod
p7 for scaling exponent p, so that given prime p, polynomial Q(z), and
non-negative integer -,

[(2)]" =@ (") modp. (3.9)

Proof. (Induction on .) We have already shown that the theorem is true
for v = 1. Assuming that the theorem is true for 4/ =~ — 1:

Q" ' (z) = Q" (z*) modp™? (3.10)
Then there must exist a polynomial R(z) such that:

Q" ' (z) = Q" (2?) +p" *R(z) modp” (3.11)

@] = @@+ (7)) e R

+(p")" B*(z) modp” (3.12)
For1<j<p—1,
) () =0 modp (3.13)
j

which causes all terms in the sum to vanish. Finally, sincey>1andp > 1
the last term must also vanishes. B

214 Arch Robison

4. Computation of Powers of Self-Similar Polynomials

In this section, Q(z) is a self-similar polynomial mod m with scaling expo-
nent 8. Let g(b,1) be the 1 th coefficient of the expansion of Q*(z) mod m,

i.e.
Qz) = E'_q(b, i)' modm. (4.1)
We show how to compute the ¢ th coefficient of Q*(z) in O(logb) time.

Lemma 3. Given a table of Q*(z) for 0 < k < 3, we can compute Q°(z)
with log b/ log # polynomial multiplications (convolutions of coefficients).

Proof. Define k MO D m for integers k, m as the least non-negative residue
of k modulo m. We can rewrite b as

b=bMODS + f|b/B] (4.2)
Q'(z) = @"MP#()QM*!(2°) modm (4-3)

Since b is divided by f on each application of the recurrence, we need apply
the recurrence at most log b/ log # times. B

Theorem 3. If we compute g(b,7) for r; < 1 < I; by the convolutions in
the lemma, and I; — r; < w , where w is the width of Q(z), then each
convolution takes time

O (Bw log w) (4.4)

Proof.
q(b,7) = qu (6MODB,i— B5)q(|b/B),7) modm (4.5)

By considering the width of successive powers of Q(z), we can see that
q(b, k) is zero for k < lgb or k > rgb. Therefore 7 — 8 must be constrained
as follows:

re(B—1) 21— 65 > 1g(f —1) (4.6)
rq(B—1)+m _lg(B-1)+k
B - B)

From this we can show:

=r<Jj< (4.7)

lj — T S w. (48)

By induction we see that this bound holds for the recursive evaluations of
g(b,7). By Fourier methods, we can convolve two sequences of width w
in time O(wlogw). The convolution as written is not an ordinary convo-
lution in that the “traveling” subscripts change at different rates, so that
the changing subscripts are 1 — 78 and j. We actually need to do g or-
dinary convolutions, i.e. a convolution for each 7 in {0,...,4 —1}. Each
convolution computes all g(b,? + Sk) for all k:

q(b,i+pk) =3 q(bMODB,i+ Bk —7))q(15/B],5) (49)

Thus we compute 3 convolutions of width w. H

Fast Computation of Additive Cellular Automata 215

Lemma 4. Given a polynomial P(z) of width w, we can compute the first
n powers of P in time O (nw" logw).

Proof. We compute P*(z) = P(z)P*!(z). The width of P¥(z) is w* + 1.
By use of the Fourier transform, the time to compute P*(z) from P*~'(z)

N @ ((w" + 1) log(w® + 1)) =0 (kw" log w) . (4.10)

The time to compute the first n — 1 powers of P(z) is
n—1 s
o (zhlkw"log w) C O((n—1)w"). (4.11)
The time to compute the n th power of P(z) is
O (nw” logw), (4.12)

which dominates the computation time for the first n — 1 powers of P(z).

Theorem 4. We can compute q(b,7) for r; < ¢ < I; where l; —r; < wg in
time
0] ((wlog w)%logb+ﬁwﬂ_1}ogw) (4.13)

Proof. The first term is the product of the number of convolutions and
operations per convolution. The second term is the table construction time.
The table contains the first § — 1 powers of Q(z), which are computed by
the previous lemma. B

Theorem 5. Given a polynomial S(z) such that S%(z) is self similiar
mod m with scaling exponent 3, i.e.

5%f(z) = §*(2") modm (4.14)

we can compute coeflicient k of 5*(z) modm in time

logﬁ logt + B(aw)? ! log(cw) + cw™ 'log w) (4.15)

Proof. We can rewrite S*(z) as

o (aw log(aw)

5t(z) = 5*MOD2(z) [5%(z)) /) (4.16)

Let Q(z) = S%(z). Note that the extreme degrees of Q(z) are lg = als
and rg = ars.
§'(z) = 5MOP=(5)Q1¢e) (z) (417

Define s(t, k) as the k th coefficient of 5*(z):
S(z) =)_ s(t, i)’ (4.18)

216 Arch Robison

s(t, k) = Z.,s (tMODa)q(|t/a],i), (4.19)
Since t MOD o < «, we have the constraint
(a i 1)15 < k—1 < (C! o 1)1’5 (4.20)
(a-)ls+k>i> (a—1)rs+k (4.21)
l.' —T§ S (ls o= Ts)(ﬂ: == 1) S (ls - rs)a = iQ —TQ- (4.22)

Therefore we can compute the necessary coefficients of Q1/2)(z) within the
previously proven time bound. B

The latter two terms in the theorem are table construction times. The
table ¢ contains the first # — 1 powers of S%(z); the table s contains the
first « — 1 powers of 9(z).

5. Evolution from a single site seed

Given rule S(z) and a single-site seed A(z) = 1, a{’) = s(t, k). By setting
a = p™ ! and § = p, we can use the previously derived algorithm to
compute s(t, k).

Acknowledgements

The author thanks Stephen Wolfram for suggesting this problem. The
author is supported by a Shell Fellowship in Computer Science.

References

[1] Stephen Wolfram, Theory and Applications of Cellular Automata, (World
Scientific Publishing Co., 1986),

[2] Olivier Martin, Andrew M. Odlyzko, and Stephen Wolfram, “Alge-
braic Properties of Cellular Automata”, Communications in Mathematical
Physics, 93 (1984) 219-258; reprinted in [1].

[3] Donald E. Knuth, The Art Of Computer Programming, vol. 1, (Addison-
Wesley, 1973) p. 68.

