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Abstract. Direct simulation of an additive cellular automaton takes
a time O(#?) to compute an arbitrary site value ¢ time steps into the
future. For the case of a single initial nonzero site, the problem is
equivalent to computing a coefficient residue of a polynomial power.
An algorithm is derived which computes an arbitrary site’s value in
time O(logt) .

1. Introduction

A cellular automaton consists of a row of cells which change state over time
[1]. The value of a site at position i and time ¢ is denoted a{” . An additive
cellular automaton (2] has a rule of the form:
t o (-1

o) = st(;]a,(-_j ) modm (1.1)
where s specifies the rule. If the automaton’s sites are viewed as coefficients
of a polynomial, then each row is obtained by multiplying the previous row
by a rule polynomial. Since polynomial multiplication is associative, the

problem reduces to computing powers of the rule polynomial. Let A()(z)
and S(z) be the automaton state and rule polynomials respectively.

AO(z) =Y afz (1.2)
S(z) = z‘,s.—z‘ (1.3)

Then the state of the automaton after ¢ time steps is given by
AW(z) = A9 (z)5*(z) modm (1.4)

Via the Chinese Remainder Theorem, our problem reduces to computing
solutions for moduli which are powers of primes, i.e. m = p? . The rest
of this paper develops an algorithm for quickly computing any a,(’) for the
case m = p” and A®)(z) = 1.
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2. Notation

All polynomials in this paper are formal power series; the powers of = are
placeholders only. A polynomial Q(z) is written

QD) =7 g (2.1)

i=rq

where rg and lg are the minimum and maximum degrees of the terms. The
terms may have negative degree. We define the width wg of polynomial @
as wg = lg —rg . Subscripts are omitted where only a single polynomial is
under consideration. The notation

Q(z) = Q'(z) modm (2.2)
means that the coefficients of Q(z) and Q'(z) are congruent, i.e.
¢ =g modm (2.3)

for all integers 1.

3. Self-Similar Polynomials

We call a polynomial @ with integer coefficients self-similar mod m if there
exists a scaling exponent 3 such that:

Q%(z) = Q(z°) modm. (3.1)

This section will show that self-similar polynomials may be generated for
moduli of the form p”, where p is prime and « is a positive integer. Self-
similar polynomials are the key to the algorithm, since exponentiating such
polynomials is much easier than exponentiating arbitrary polynomials.

Lemma 1. The sum of self-similar polynomials mod p is self-similar for
scaling exponent p. Thus, given a prime p and self-similar polynomials
Q(z) and R(z):

[Q(z) + R(z)]” = Q(z°) + R(z") modp. (3-2)
Proof.
Q@) +R@P = @@ + 30, (1) @R @+ F@)  (33)
The terms of the summation vanish because [3]
(‘?)Eo modp 1<i<p-—1 (3.4)

which leaves us with

Q(z) + P(2)]’ = Q%(z) + F*(z) = Q(«) + R(z?) modp B  (3.5)
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Lemma 2. Monomials are self-similar mod p with a scaling exponent of p,
so that given a prime p and monomial Q(z) = az”,

QF(z) = Q(zF) modp. (3.6)
Proof. This follows immediately from Fermat’s little theorem:

Q¥ (z) = a®z™ = az™ = Q(z°) modp H (3.7)

Theorem 1. All polynomials are self-similar mod p for scaling exponent
p, so that given prime p and polynomial Q(z),

Q*(z) = Q(z") modp. (3.8)

Proof. Since monomials are self-similar, their sum Q(z) is also self-similar.

Theorem 2. All polynomials of the form Q”"—l(z) are self-similar mod
p7 for scaling exponent p, so that given prime p, polynomial Q(z), and
non-negative integer -,

[ (2)]" =@ (") modp. (3.9)

Proof. (Induction on .) We have already shown that the theorem is true
for v = 1. Assuming that the theorem is true for 4/ =~ — 1:

Q" ' (z) = Q" (z*) modp™? (3.10)
Then there must exist a polynomial R(z) such that:

Q" ' (z) = Q" (2?) +p" *R(z) modp” (3.11)

@] = @@+ (7)) e R

+(p")" B*(z) modp” (3.12)
For1<j<p—1,
) () =0 modp (3.13)
j

which causes all terms in the sum to vanish. Finally, sincey>1andp > 1
the last term must also vanishes. B
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4. Computation of Powers of Self-Similar Polynomials

In this section, Q(z) is a self-similar polynomial mod m with scaling expo-
nent 8. Let g(b,1) be the 1 th coefficient of the expansion of Q*(z) mod m,

i.e.
Qz) = E'_q(b, i)' modm. (4.1)
We show how to compute the ¢ th coefficient of Q*(z) in O(logb) time.

Lemma 3. Given a table of Q*(z) for 0 < k < 3, we can compute Q°(z)
with log b/ log # polynomial multiplications (convolutions of coefficients).

Proof. Define k MO D m for integers k, m as the least non-negative residue
of k modulo m. We can rewrite b as

b=bMODS + f|b/B] (4.2)
Q'(z) = @"MP#()QM*!(2°) modm (4-3)

Since b is divided by f on each application of the recurrence, we need apply
the recurrence at most log b/ log # times. B

Theorem 3. If we compute g(b,7) for r; < 1 < I; by the convolutions in
the lemma, and I; — r; < w , where w is the width of Q(z), then each
convolution takes time

O (Bw log w) (4.4)

Proof.
q(b,7) = qu (6MODB,i— B5)q(|b/B),7) modm (4.5)

By considering the width of successive powers of Q(z), we can see that
q(b, k) is zero for k < lgb or k > rgb. Therefore 7 — 8 must be constrained
as follows:

re(B—1) 21— 65 > 1g(f —1) (4.6)
rq(B—1)+m _lg(B-1)+k
B - B )

From this we can show:

=r<Jj< (4.7)

lj — T S w. (48)

By induction we see that this bound holds for the recursive evaluations of
g(b,7). By Fourier methods, we can convolve two sequences of width w
in time O(wlogw). The convolution as written is not an ordinary convo-
lution in that the “traveling” subscripts change at different rates, so that
the changing subscripts are 1 — 78 and j. We actually need to do g or-
dinary convolutions, i.e. a convolution for each 7 in {0,...,4 —1}. Each
convolution computes all g(b,? + Sk) for all k:

q(b,i+pk) =3 q(bMODB,i+ Bk —7))q(15/B],5)  (49)

Thus we compute 3 convolutions of width w. H



Fast Computation of Additive Cellular Automata 215

Lemma 4. Given a polynomial P(z) of width w, we can compute the first
n powers of P in time O (nw" logw).

Proof. We compute P*(z) = P(z)P*!(z). The width of P¥(z) is w* + 1.
By use of the Fourier transform, the time to compute P*(z) from P*~'(z)

N @ ((w" + 1) log(w® + 1)) =0 (kw" log w) . (4.10)

The time to compute the first n — 1 powers of P(z) is
n—1 s
o (zhlkw"log w) C O((n—1)w"). (4.11)
The time to compute the n th power of P(z) is
O (nw” logw), (4.12)

which dominates the computation time for the first n — 1 powers of P(z).

Theorem 4. We can compute q(b,7) for r; < ¢ < I; where l; —r; < wg in
time
0] ((wlog w)%logb+ﬁwﬂ_1}ogw) (4.13)

Proof. The first term is the product of the number of convolutions and
operations per convolution. The second term is the table construction time.
The table contains the first § — 1 powers of Q(z), which are computed by
the previous lemma. B

Theorem 5. Given a polynomial S(z) such that S%(z) is self similiar
mod m with scaling exponent 3, i.e.

5%f(z) = §*(2") modm (4.14)

we can compute coeflicient k of 5*(z) modm in time

logﬁ logt + B(aw)? ! log(cw) + cw™ 'log w) (4.15)

Proof. We can rewrite S*(z) as

o (aw log(aw)

5t(z) = 5*MOD2(z) [5%(z)) /) (4.16)

Let Q(z) = S%(z). Note that the extreme degrees of Q(z) are lg = als
and rg = ars.
§'(z) = 5MOP=(5)Q1¢e) (z) (417

Define s(t, k) as the k th coefficient of 5*(z):
S(z) = )_ s(t, i)’ (4.18)
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s(t, k) = Z.,s (tMODa)q(|t/a],i), (4.19)
Since t MOD o < «, we have the constraint
(a i 1)15 < k—1 < (C! o 1)1’5 (4.20)
(a-)ls+k>i> (a—1)rs+k (4.21)
l.' —T§ S (ls o= Ts)(ﬂ: == 1) S (ls - rs)a = iQ —TQ- (4.22)

Therefore we can compute the necessary coefficients of Q1/2)(z) within the
previously proven time bound. B

The latter two terms in the theorem are table construction times. The
table ¢ contains the first # — 1 powers of S%(z); the table s contains the
first « — 1 powers of 9(z).

5. Evolution from a single site seed

Given rule S(z) and a single-site seed A(z) = 1, a{’) = s(t, k). By setting
a = p™ ! and § = p, we can use the previously derived algorithm to
compute s(t, k).
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