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Abstract. We study the approximation of solut ions to the Burgers'
equation ,
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by spatially averaging a prob abil istic cellular automaton motivated by
random walks on a line. The automaton consists of moving "particles"
on Q. one-dimensional periodic lattice with speed one and in a random
direction subject to the exclusion principle that at most one particle
may move in a given direction from a given lattice site, at a given t ime.
The exclusion principle gives rise to the nonlinearity in Eq. (1) and
int roduces correlations between the particles which must be est imated
to obtain statistical bounds on the error. These bounds are obtained
in two steps. The first is showing th at th e ensemble average of the
automaton is a stable explicit finite differencing scheme of Eq. (1) over
th e lattice with a second order convergence in the lat tice spaci ng. The
numerical diffusion of this scheme plays an important role in relating
the automaton rules to Eq. (1). The next step is showing t hat the
spatial averaging of a single evolution of the automaton converges to
the spatial averag ing of the ensemble as I/VMwhere M is the number
of lat t ice sit es averaged. Simulations are presented and discussed.

1. Int roduction

Recently it has been proposed to use ce llu la r au tomata on large lat ti ces
for obtaining sol ut ions to partial differential equations, in particula r the
incompress ib le Navier-S tokes equat ions [11 . Suc h a utomat a h ave rules with
locally conserved (or nearly conserved) quanti ti es whi ch, when averaged
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over m icroscopic configurations, give m acroscop ic behavior which is hope­
fully described by the PDE's. T he analyses justifying such hopes have been
largely form a l.

In this paper we study as a model an automaton for so lving t he Burg­
ers' equation which is simple enough to analyze. We are not propos ing
this automaton as an effect ive method for computing solutions to Burg­
ers' equation , but it does allow us to study in a relatively simple context
some of the same issues that arise in the applicat ion of cellu la r automaton
techniques to solv ing the incompressible Navier-Stokes equat ions [1].

OUf probabilistic ce llular automaton is motivated by consider ing ran­
dom walks on a one dimensional la t t ice (in t his presen t at ion , we shall re­
strict the discussion to one spatial dimension, a lt hough all that we do h as
obvious higher d imensional analogs). All "particles" on the lat t ice move
exactly one lattice s ite to either the right or the left in one time step. Be­
tween two neighboring latt ice sites we associate a physical distance ~x, an d
between two successive steps of the random wa lk we associate a physical
time ~t. It is well-known [2] t h at the density of such a system of parti­
cles executing an uncorrelated, unbiased random wa lk obeys the diffus ion
equation,

an a2n

at = vax' (1.1)

where v = (L'.x )' /2L'.t is the diffusion coefficient.
Next consider an uncorrelated random wa lk that is bi ased so that the

probab ility of a step to t he right is (1 +7i)/2, and t he pro babil ity of a step
to the left is (1 - 7i)/2. 1t is also well-known [21 that such biasing leads to
linear advection in t he direction of the b ias. That is , t he densi ty of t he
system obeys

an an a'nat + C ax = vax' (1.2)

where c = 7i~x/~t is the linear a dvect ion coeffic ient, and v = ( ~xF/2~t

is t he di ffus ion coefficient .

2. The Cellular Automaton

To model systems of the sort described in the Introduction by a ce llular
automaton, it is most convenient to im pose t he Ferm i exclusion r ule that
no two particles occ upying t he same si te may be mov ing in the same di­
rec t ion. That way, the state of each site is uni quely speci fied by two bi ts
of infor m at ion : the r ight bit, which is one if there is a rightward mov ing
part icle present and zero otherwise, and the left bit, which is one if there
is a leftwar d moving particle present and zero ot herwise. Thus each site
has four possible states labelled by the four binary numbers from 00 to 11.
Each step of the automaton has two substeps: in t he first, the collisi on
substep, the particles change their di rection randomly at t he present lat ti ce
s ite (either with or without bias) subject to the exclusion pr inc iple; in t he
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seco nd, the advect ion subs tep , the particl es move to the neighb oring lattice
site in their new direction.

This exclusion rule induces a correlat ion between particles that are two
latt ice sites apart . To see this, suppose that three successi ve lat t ice s ites
have states 01, 00, and 10, respecti vely, after the collis ion substep of a t ime
step. Then, after the colli sion subst ep of the next t ime st ep, it follows
that the middle lat tice site must have state 11. Thus the evolution of one
particle is affected by that of another particle two si tes away, so they are
correlated. We shall now show that this correl ation nat urally g ives rise to
the nonlinear term in Eq. (1) .

Following the nom enclat ure developed in the introduction, we denote
th e right bit at lat ti ce site k and t ime step I by bo(k,l), and the left bit
at lattice s ite k and t ime step l by b1 (k,l). After the colli sion substep of a
t ime step, we denote the new st ates by b~(k,l) and b',(k,I). These are given
by the truth t able,

b'(kl)b' (k I), , 1 , a ,
0 0 0 0
0 1 (1 a(k, I ))/2 (1+ ark ,1)) / 2
1 0 (1 a(k,I)) / 2 (1 + a(k, I)) /2
1 1 1 1

wh ere a (k,l) is eithe r 1 or - 1 with mean a. Th e rule in the above table
may be writt en in the form

b~(k , l) = 1 + ~(k , l ) ba(k ,l) V b,(k,l) + 1 - ~(k, l ) ba(k, l) 1\ b,(k,l) (2.1)

b;(k ,I) = 1 - ~(k , I)ba(k, I) Vb, (k ,I) + 1+ ~(k, I)bark, I) 1\ b,(k, I). (2.2)

Here, V denotes the inclusive or ope rat ion, and A denotes the and operation
on a pair of bits .

In the advection substep, the particl es move to the neighbo ring lattice
site in their new direct ion. The rule for this is eas ily seen to be

bark + 1,1 + 1) = b~(k, l )

b,(k - 1, 1 + 1) = b;(k,I).

(2.3)

(2.4)

By composing the rules for the above two s ubsteps , we arrive at the rule
for one full time step of the cellul ar automaton

1 + a(k, l ) 1 - a(k, l )
bark + 1,1 + 1) = 2 ba(k,1) V b,(k , l) + 2 ba(k,l) 1\ b,(k,l)

(2.5)
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1 - ark, I) 1 + ark, I)
b1(k - 1,1 + 1) = 2 bo(k , l) V bl (k ,l) + 2 bo(k, l) /I b,(k,I) .

(2.6)
Now if b and h' are bits, there is a well-known algebraic representation for
the V and A ope rat ions : b V h' = b+ h' - bb' and b 1\ hi = bb'. Using this, the
cellular automaton rule can be written in the algebraic form

l +a(k ,l)
bo(k+l,I+l) = 2 (bo(k ,l) + b1 (k,I)) - a(k,l)bo(k, l)bdk,l) (2.7)

1 - a rk , I)
bl(k - l ,I +l) = 2 (bo(k, l) + bl (k,I)) + a (k ,l)bo(k, l )b, (k , I ). (2.8)

Note that t he non linear terms in Eqs. (7) and (8) owe their origin to the
exclusion principle.

3. The E n semble Average

We now turn our attention to ensemble averages of the automaton described
in the last sect ion; that is, we env ision applying the above-described cellular
auto maton rule to a large set of systems, wit h possibly different initial
conditions. For example, we might perform a large number of simulations
of the automaton on a computer, using a grid of fixed size, with the initial
cond itions bi(k , 0) chosen randomly from some known distr ibution. Then,
bi(k,l) denot es the value of the it h bit at position k and time step I averaged
over all the simulations. Henceforth, we shall consistently use overbars to
denote ensemble averages .

A word should be said abo ut the ran dom nu mb ers, ark, I) . Throughout
this work, we shall assume that they are generated by a "perfect" random
number generator. That is, we assume that

(3.1)

and

a(k , l)a(k', I' ) - 6...6", + (1 - 6...6",)Ci'. (3.2)

Then, since bi(k,l) depends on past random numbers, a(k', l') with t' < I,
we can do th ings like

a(k, l )b,(k, l) - Ci· b;(k, I ), (3.3)

etc . A study of exac tly how "perfect" a random number generator has to
be in order to validate our results would be interesting, but is beyond the
scope of the present paper. Note that one can regard the cellular automaton
defined by Eqs. (7) and (8) as a stochastic cellula r automoton th anks to the
inclusion of the random a(k, I)'sj or, if one prefers, one can regard the
random number generator as part of the rule, in which case it is a perfectly
determinist ic cellular automaton.
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In our simulat ions, we produced the random bits using a simple cellular
automat on du e to Wolfram [31 that generates bit s with a high degree of
randomness. To get random bits from Wolfram's automato n, one applies it
to a finite string of bits (we used 59 bits) wit h periodic boundary condit ions,
and samples the values at one site as a function of time. To bias the mean
of the random bits one can generate more than one unbiased random bit
per site and then apply logical operations to them; for example, when two
st rings of unbiased random bits are combine d using the "and" operation
the result is a string of random bits with mean 0.25, and when they are
combined using the "inclusive or" operation the result is a string of random
bits with mean 0.75.
We now take th e ensemble average of Eqs . (7) and (8) to get

balk + 1, 1+ 1) = 1 : a (ba(k ,I) + b,(k ,I)) - a' balk , I)b.(k ,I) (3.4)

b.(k - 1,1+ 1) = 1 ; a (bo (k, l) + b,(k,l) ) + a ' ba(k ,l)b.( k,I ). (3.5)

This may be written

balk+ 1,1 + 1)

b.(k - 1,1+ 1)

1 :a (ba(k, l) + b, (k,I))

- a· (ba(k, I)b. (k, I) + COl (k ,I; k, I)) (3.6)

1; a (ba(k ,l) + b,(k,I))

+a · (ba (k,l )b,(k, l) +Ca,(k,l ;k, l)) , (3.7)

where we have defined the covariance

C;;(k,l; k' ,l') =' (bi(k,l) - b;(k,I))(b;(k',I') - b;(k',I ')) . (3.8)

We now begin to establish the relationship between ensemble- averaged
quantities and solutions of the Burgers' equat ion, Eq. (1), by introducing
new quantit ies which are more directly related to those so lut ions. Define

where ~x is the lattice spacing. Thus

- 1 (- )ba = 2 b + liD-x

- 1 (- )b. = 2 b -liD-x .

(3.9)

(3.10)

(3.11)

(3.12)
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Substituting , we can find the update rules for b and V,

b(k, 1+ 1) =
1 +a- I - a-
-2-b(k - 1,1)+ - 2- b(k + 1,1)

Q -2 -2
+ '4 lb (k + 1, I) - b (k - 1, I)

- (,;x)' (v'(k + 1, I) - v'(k - 1,1))1

+ a[Co1(k + I ,I;k + 1,1) - Co1(k - I ,I ; k - 1,1)(3.13)

v(k,I +I)
b(k + 1,1) - b(k -1, 1) a b(k -1,1) + b(k + 1,1)
--'----'-2=-,;.,..x---'----'-'- + ,;X 2

a -2 -2
+ 4,; x [- b (k + 1,1) - b (k - 1,1)

+ (,; x )' (v'(k + 1,1) +v'(k - 1,1))1
a+ - [C01 (k + 1,1; k + 1,1) + Co1 (k - I,I ;k -1, 1)(3.14),; X

Now sup pose that n(x, t) is the exact solut ion of Eq . (1), and define

w(x,t) "' ..:.. (n(x ,t ) - .!:n' (x ,t )) - aa n(x,t) . (3.15)
2v 2 z

Discretize these by defining

n(k, I) '" n(k,;x, l,;t)

w(k ,l ) '" w(k';x, I';t ).

(3.16)

(3.17)

T hen by Taylor expanding and using th e fact that n(x, t) solves Eq. (1),
we find

n(k ,I + I ) = I : an(k _I ,I) +I ~ an(k +I ,I)

+ ~[n'(k + 1, 1) - n'(k - 1,1)

- (,;x) ' (w'(k + 1,1) - w'(k - 1, 1)) 1

+ 0 (,;x)') (3.18)

w(k,1 + 1)
n(l< + 1,1) - n(k - 1, 1) a ii (k - 1,1) + n(k + 1,1)

2,;x + ,;x 2

+ 4~X [-ii'(k + 1, 1) - n'(k - 1,1)

+ (,; x)' (w'( k + 1,1) + w'(k - 1,1)) 1

+ 0 ( ';x)') . (3.19)
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Note that these are very similar in form to the update equations for b
and v, Eqs. (13) and (14) . T he covariances, COl, that appeared in the
former equations have been replaced by truncation errors from the Taylor
expansion in the latter equations.

Thus we can define the errors,

e(k ,l) == b(k,l) - n(k, l)

l (k ,l) == v(k , I) - w(k ,I) .

The update rule for the errors is then

(3.20)

(3.21)

e(k, 1+ 1) =

l (k ,1+ 1) =

l + a I - a
-2-e(k -1, 1) + - 2-e(k + 1,1)

+ ~[(b(k + 1,1) + n(k + 1,1)) e(k + 1,1)

- (b(k - 1,1) +?irk - I , /)) e(k - 1,1)1

+a [CoI (k + 1,1;k + 1,1) - CoI(k - I , I;k - 1,1)]

+ 0 ((~x)') (3.22)

:.;e (,-,k--,+--,I:c,-;I);-;-:-e~(--,k_-...::l:.c, I.!.) + a e(k - 1,1) + e(k + 1,1)
2~x ~x 2

+ a [_ (b(k + 1,1) + n(k + 1,1)) e(k + 1,1)
4~x

- (b(k - 1,1) + n(k - 1,1)) e(k - 1,1)]
a

+ - [CoI(k + 1,I;k + 1,1) + Co1 (k - 1, I;k - 1,1)1
~x

+ 0 (("'x)' ) . (3.23)

Note that the evolut ion equation for e(k,l) has decoupled from that of
l(k ,I) , so that it suffices to consider Eq. (22) alone. If we ignore the corre­
lation (but not the truncation) terms, then we have the matrix equat ion

eU,1 + 1) = LLU,k;l) e(k,l ) + 0 ( (~X)4 ) (3.24),
where LU,kj1) has positive elements, and columns that sum to unity. If
we use the £1norm,

then we may write

lIe(l + 1)11

~x

lIeUlil == L L leU,I)I,,

~x L leU,I + III,

(3.25)
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::; !:>.x L IL L(j ,k ;l)e(k , I)1 + 0 ((!:>.x)')
L ; k

::; !:>.x LL(j,k;I)le(k,l )I+ K(!:>. x)'
L j t

= !:>.x L le(k, I)1 + K(!:>.x)'
L k

lIe(l) II + K( !:>. x )' (3.26)

where K is some constant . Here we have used the triangle inequali ty, the
positivity of th e L(j, k; I), and the fact that th e columns of L(j, k;I) sum
to unity. T hen, supposing e(O) = 0, we see that iteration for 0 ((!:>.xt' )
generations (times of order unity) wi ll st ill yie ld Il e (i)II = 0 ((!:>. x)').

Now fix a subinterval (Xl , X2) of the spat ial domain of n(x, t), and fix a
t ime to. Let !:>.x --> 0 such that Xl = k!:>. x, X, = (k + M)!:>. x , and to = I!:>.t.
Th en by basic quadratu re est imates

1 M- l 1 /'"
M ~ n(k + i , l) = X, _ X, " n(x, to)dx + 0 ((!:>.x)'),

wh ile by our basic £1 error estimate we have

1 M - I _ 1 M -l

M L b(H i , l) = - L n(H i, l) + 0 ((!:>.x)').
1= 0 M i=O

(3.27)

(3.28)

Here we have used the fact that M !:>.x/ L = (x, - xd / L is fixed. Combining
th ese resu lts giv es

IM-l_ 1 t" 2

M ~b(k +i,I) = x'_XIJer n( x ,to)dx+O((!:>.X)), (3.29)

which is our final conve rgence result for th e ensemble average.
Thus, we have shown that the ensemble average of the cellular automa­

ton simulates a stab le, second-order accurate, fully-explicit differencing
scheme for the Burgers' equat ion. Note that the proof of th is is very simi­
lar in form to demonstrations of stab ility and accuracy for finite difference
approximations. The neglect of the correlations is the weakest link in the
chain of reasoning, and it will be discussed further in future work.

4 . Bounding the Covaria nce for the Diffusion Equat ion

For the diffusion equat ion (a = 0), we can obta in an upper bound on the
covariance, Ci j . To get dynamical equat ions for the covariance, we write

C,;(k, I+ 1; k', I + 1) '" (bi(k ,l + 1) - b,(k,1 + 1))(b;(k' ,1+ 1) - bilk', 1+ 1))
(4.1)
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and use Eqs . (7) and (8) to express the right- hand side in te rms of
quan tities at t ime step 1. For k :j:. k' or i = i, we ge t

Coo(k +1 ,1 +1;k' +1 ,1+1) =

Cal (k + 1,1 + 1; k' - 1,1+ 1)

ClO (k - 1,1 + 1; k' + 1,1 + 1)

Cn (k - 1,1 + 1; k' - 1,1+ 1)

~(Coo (k, I;e,I) + Cal (k, I;e,I)

+ ClO (k ,I; k', I) + Cll (k , I; k' , I))

~(Coo (k, I; k', I) + Cal (k ,I; k', I)

+ ClO (k, I; k', I) + Cll (k ,I; k', I))

~(Coo (k, I; k', I) + Cal (k ,I; k', I)

+ ClO (k,I; k', I) + Cll (k, I; k', I))
14" (Coo (k, I; k', I) + Cal (k ,I;v,I)

+ ClO (k,I; k', I) + Cll (k, I; k', 1)X4.2)

When k = k' and i :j:. i, however , we get

Cal (k + 1,1 + l ;k - 1,1+ 1)

ClO (k - 1, 1+ 1; k + 1, I + 1)

1 (- - )'Co1(k,l;k,l) - 4" bdk,l) - bo(k,l)

1 (- _ )'ClO (k ,l;k,l) - 4" bo (k,l ) - bl(k ,l) .

(4.3)

Note that Eqs. (2) are homogeneous in the covariances, whi le Eqs . (3)
contain forcing terms on the right hand side. Because these forcing terms
are negative definite , we can use induct ion on 1 to con clude that

C;j(k ,l;k',l ) :S 0 (4.4)

if k f- k' or i f-j .
Suppose that we use spatial averag ing to est imate the density n at a

given gridpoint k . For example, we could average over M gridpoints to get
the densi ty

1 M -I

n, == - L: [bo(k + i, l) + bl(k + i,I )].
M i =O

(4.5)

We would like to com pare this wi th the ensemble-ave raged vers ion of the
same thi ng ,

1 M - l_ _
n, == - L:[bo(k +i,l) + b1(k+ i , I)],

M i=O

at the same gridpoint, k . We find

(n, - n, )' = ~,11(Coo (k+i, l;k +j,l) + Co I(k + i ,l;k+ j ,l)
',J=O

+ ClO(k + i, I; k + i, I) + Cll(k + i, I; k + i ,I))

(4.6)
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1 M - l

::; M' L (Coo(k +i,l;k + i,I) + CIl(k +i,l;k +i,l))
i =O

1 M -l

M' L [bo(k+i,l) - (bo(k+i,l»)'
i=O

+ b,(k + i,l) - (b,(k + i, I») '1
1 ( n.)::; M n• 1 - 2
1 !>.x

::; ~.~2M 2(x, - x ,)

where we have used the Schwarz inequ ality in the final step . Th us, the
spati al averaging of a single evolut ion of the automaton converges to the
spat ial averaging of the ensemble as 1/.../M. The simulations presented in
the next section were carried out in precisely this fashion; the displ ayed
results are spat ial averages for a single evolution of the automaton.

5. Simulations

The equat ion simulated by the above-described auto maton is

a n +c~ (n -n2

) = v
8 2n

,
at ax 2 ax'

(5 .1)

wh ere a < n < 2. To maximize the signal-to-noise rat io , it is best to operate
with n "'"' 1. The n, the transformat ion

u =c(n - 1) (5.2)

may be applied to the result , so that u obeys the Burgers' equat ion in
standard form,

au au a'u
at - u ax = v ax" (5 .3)

Note that - c < u < c, so the parameter c should be chosen greater than
sup]«] to insure tha t a < n < 2.

We have used the automaton on a Connection Machine 14] computer to
simulate the solution to Burgers' equation with periodic boundary condi­
tions on a spatial domain of unit length, and wit h initial condition

n(x,O) = n. + n. cos(21rx) . (5.4)

The exact solut ion to this problem may be found by applicat ion of the
Cole-Hopf transformation. It is

2v a",
n = no + ctf; ax' (5.5)
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2
1 2 0.125 , M: 128

, I

0.5

F igure 1: Simulations of th e cellula r automaton model as a functi on of
time t. Th e solid cur ve gives th e exact solution to Bu rgers' equat ion .
The dev elopment of a shoc k is eviden t . Averages were made over M
lat t ice site s.
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cc

t/J '" l o(z ) + 22"]- 1)I'j'J/,(z)f,(21rlx + v,l) exp( - /",t). (5.6)
<=1

where in t urn en,
z = - ­

4"v
/", '" v(2"l)'

v, '" e(n. - 1)( 2" £),

(5.7)

(5.8 )

(5.9)

th e I t 's are m odifi ed Bessel fun ctions, and It denotes the sine (cos ine )
fu nction wh en l is odd (even):

sin
cos

if £ is odd
if eis even .

(5.1O)

(5.11)

(5.12)

In the results presented below, we took initi al cond it ions with no = 1.0
and nb :;:: 0.4. We too k the diffusion coefficient to be v = 2- 15 , and the
advect ion velo city to be c :;:: 1. We used 216 :;:: 65536 spatia l gri dpoints, so
6.x = 2-16• Then the bias was given by

ellx
Q= -- = 0.25,

2v

and the t im e step was given by

II I = (Il x)' = Z- IS.

2v

Not e that t he character ist ic t ime for shock formation is t , :;:: (21l'C nbtl ~

0.398, and that 218 :;:: 262144 au to maton time steps correspond to t = 1.
Below we plot th e resu lts for severa l different values of t ; with M = 29 = 512
so th at t he re are 655 36/512 = 128 poi nts p lotted on each of t hese graphs.
The last two plots, however, were made with M = 128; note that the
ampli tude of the noise in these plots is roughly twice that in the ot her
plots, as exp ected from Eq. (7). The smooth curves are the exact answer,
as given by Eq. (5).

6 . Conclu sion

We have moti vated, developed, and analy zed a cellular automaton for the
simulat ion of Burgers ' equation. As stated at the outset of th is paper, we
are not propos ing tha t t his technique be used as an effective method for
comput ing solut ions to Burgers' equation, but ra ther that it be used to
st udy in a relatively simple context impor tan t issues about stability and
accuracy that arise in the application of cellular automaton t echniques to
solving th e incompressible Navier-Stokes equat ions [1]. Th e argument used
to show that the cellular automaton does indeed yield an approximation to



A Cellular Automaton for Burgers ' Equation 29

t he solut ion of the partial different ial equat ion is the same for both cases;
incl uding the neglect of the correlatio ns. T he general procedure used to
get the solut ion from the cellular automaton is the same in both cases: the
spat ial average of the cellular automaton is used t o app roximate the spatia l
aver age of the ensemble average of the auto maton.
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