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Abstract. We study the approximation of solutions to the Burgers’

equation,
on, 0 (st _ o 0
at oz 2 ) "ozt

by spatially averaging a probabilistic cellular automaton motivated by
random walks on a line. The automaton consists of moving “particles”
on 3 one-dimensional periodic lattice with speed one and in a random
direction subject to the exclusion principle that at most one particle
may move in a given direction from a given lattice site, at a given time.
The exclusion principle gives rise to the nonlinearity in Eq. (1) and
introduces correlations between the particles which must be estimated
to obtain statistical bounds on the error. These bounds are obtained
in two steps. The first is showing that the ensemble average of the
automaton is a stable explicit finite differencing scheme of Eq. (1) over
the lattice with a second order convergence in the lattice spacing. The
numerical diffusion of this scheme plays an important role in relating
the automaton rules to Eq. (1). The next step is showing that the
spatial averaging of a single evolution of the automaton converges to
the spatial averaging of the ensemble as 1/ VM where M is the number
of lattice sites averaged. Simulations are presented and discussed.

1. Introduction

Recently it has been proposed to use cellular automata on large lattices
for obtaining solutions to partial differential equations, in particular the
incompressible Navier-Stokes equations [1]. Such automata have rules with
locally conserved (or nearly conserved) quantities which, when averaged
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over microscopic configurations, give macroscopic behavior which is hope-
fully described by the PDE’s. The analyses justifying such hopes have been
largely formal.

In this paper we study as a model an automaton for solving the Burg-
ers’ equation which is simple enough to analyze. We are not proposing
this automaton as an effective method for computing solutions to Burg-
ers’ equation, but it does allow us to study in a relatively simple context
some of the same issues that arise in the application of cellular automaton
techniques to solving the incompressible Navier-Stokes equations [1].

Our probabilistic cellular automaton is motivated by considering ran-
dom walks on a one dimensional lattice (in this presentation, we shall re-
strict the discussion to one spatial dimension, although all that we do has
obvious higher dimensional analogs). All “particles” on the lattice move
exactly one lattice site to either the right or the left in one time step. Be-
tween two neighboring lattice sites we associate a physical distance Az, and
between two successive steps of the random walk we associate a physical
time At. It is well-known [2] that the density of such a system of parti-
cles executing an uncorrelated, unbiased random walk obeys the diffusion
equation,

2
i O (11)
at az?
where v = (Az)*/2At is the diffusion coefficient.

Next consider an uncorrelated random walk that is biased so that the
probability of a step to the right is (1 +@)/2, and the probability of a step
to the left is (1 — @) /2. It is also well-known [2] that such biasing leads to
linear advection in the direction of the bias. That is, the density of the
system obeys

dn  On n

-"a—t C% = U"é};z* {1.2)
where ¢ = @Az/At is the linear advection coefficient, and v = (Az)?/2At
is the diffusion coefficient.

2. The Cellular Automaton

To model systems of the sort described in the Introduction by a cellular
automaton, it is most convenient to impose the Fermi exclusion rule that
no two particles occupying the same site may be moving in the same di-
rection. That way, the state of each site is uniquely specified by two bits
of information: the right bit, which is one if there is a rightward moving
particle present and zero otherwise, and the left bit, which is one if there
is a leftward moving particle present and zero otherwise. Thus each site
has four possible states labelled by the four binary numbers from 00 to 11.
Each step of the automaton has two substeps: in the first, the collision
substep, the particles change their direction randomly at the present lattice
site (either with or without bias) subject to the exclusion principle; in the
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second, the advection substep, the particles move to the neighboring lattice
site in their new direction.

This exclusion rule induces a correlation between particles that are two
lattice sites apart. To see this, suppose that three successive lattice sites
have states 01, 00, and 10, respectively, after the collision substep of a time
step. Then, after the collision substep of the next time step, it follows
that the middle lattice site must have state 11. Thus the evolution of one
particle is affected by that of another particle two sites away, so they are
correlated. We shall now show that this correlation naturally gives rise to
the nonlinear term in Eq. (1).

Following the nomenclature developed in the introduction, we denote
the right bit at lattice site £ and time step [ by by(k,!), and the left bit
at lattice site k and time step ! by b;(k,!). After the collision substep of a
time step, we denote the new states by &)(k,!{) and b (k,!). These are given
by the truth table,

e [ GED ] GED 1 BED ]
0 0 0 0
0 1 | (I—al&0)/2 | 0+ akD)/2
T 1 0 [(-akD)/2][(talkl)?
1 1 1 1

where a(k,!l) is either 1 or —1 with mean @. The rule in the above table
may be written in the form

14 a(k,i)
2

o (k1) = bo(ky 1) V by (k, 1) + I;O;(k—’[)bo(k,l} Abi(k, D) (2.1)

B (k1) = bo(k, 1) v by(k, 1)

1“‘;& bo(k, 1) Aby(k,1). (2.2)

1+ afk,l)
i 2

Here, V denotes the inclusive or operation, and A denotes the and operation
on a pair of bits.

In the advection substep, the particles move to the neighboring lattice
site in their new direction. The rule for this is easily seen to be

bo(k + 1,1+ 1) = by(k,1) (2.3)
bi(k — 1,0+ 1) = b (k,1). (2.4)

By composing the rules for the above two substeps, we arrive at the rule
for one full time step of the cellular automaton

L-t_c.;(k—’”bg(kat) Vb (k,1) + PQTMbD(k’l) Aba (k)

(2.5)

bo(k +1,1+1) =
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1—a(k,l)
2

bl(k = 1,! = 1) = bo(k,l) Vv b](k,t) + Ha—(k’l)bo(k,l) A bl(k,I).

(2.6)
Now if b and b’ are bits, there is a well-known algebraic representation for
the V and A operations: bV b = b+ b —bb' and bA Y = bb'. Using this, the

cellular automaton rule can be written in the algebraic form

1+ efk,!)
2

bo(k+1,14+1) = (bo (I, 1) + by (k, 1)) — (e, D) bo (K, 1) by (K, 1) (2.7)

by(k—1,1+1) = I_QT(“) (bo (K, 1) + by (k, 1)) +a(k, )bo(k, )by (k,1). (2.8)

Note that the nonlinear terms in Egs. (7) and (8) owe their origin to the
exclusion principle.

3. The Ensemble Average

We now turn our attention to ensemble averages of the automaton described
in the last section; that is, we envision applying the above-described cellular
automaton rule to a large set of systems, with possibly different initial
conditions. For example, we might perform a large number of simulations
of the automaton on a computer, using a grid of fixed size, with the initial
conditions b;(k,0) chosen randomly from some known distribution. Then,
b;(k,I) denotes the value of the ith bit at position k and time step [ averaged
over all the simulations. Henceforth, we shall consistently use overbars to
denote ensemble averages.

A word should be said about the random numbers, «(k,I). Throughout
this work, we shall assume that they are generated by a “perfect” random
number generator. That is, we assume that

alk,l) =& (3.1)
and

alk,a(k', ') = Spbp + (1 — Suwbp)a. (3.2)

Then, since b;(k,l) depends on past random numbers, a(k',!') with I' <,
we can do things like

ok, Dbi(k, 1) = @ - bk, 1), (3.3)

ete. A study of exactly how “perfect” a random number generator has to
be in order to validate our results would be interesting, but is beyond the
scope of the present paper. Note that one can regard the cellular automaton
defined by Egs. (7) and (8) as a stochastic cellular automaton thanks to the
inclusion of the random «(k,l)’s; or, if one prefers, one can regard the
random number generator as part of the rule, in which case it is a perfectly
deterministic cellular automaton.
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In our simulations, we produced the random bits using a simple cellular
automaton due to Wolfram [3] that generates bits with a high degree of
randomness. To get random bits from Wolfram’s automaton, one applies it
to a finite string of bits (we used 59 bits) with periodic boundary conditions,
and samples the values at one site as a function of time. To bias the mean
of the random bits one can generate more than one unbiased random bit
per site and then apply logical operations to them; for example, when two
strings of unbiased random bits are combined using the “and” operation
the result is a string of random bits with mean 0.25, and when they are
combined using the “inclusive or” operation the result is a string of random
bits with mean 0.75.

We now take the ensemble average of Egs. (7) and (8) to get

Bo(k+1,041) =2 ’; S (bo (k1) + 51 (k1) — & Bo(E D0 (6D (34)
B(k—1,041) = 1—;‘- (Bo (k1) + By (k1)) + & - Bo(E, DB (K, ). (3.5)
This may be written
Bo(k+1,0+1) = I;E (B0 (k, 1) + B (K, 1)
~ @+ (Bo (ks 1) by (k,1) + Con (K, 3 K,0))  (3.6)
hk—1,0+1) = . ; 2 (Bo (k,2) + By (k, 1))

+a- (50 (ky 1) by (k,1) + Coy (k15 k',l)) » (37)

where we have defined the covariance

Cii(k,4; k', 1") = (bi(k, 1) — bi(k, 1)) (b5 (K, 1") = b;(K',1')). (3.8)
We now begin to establish the relationship between ensemble-averaged

quantities and solutions of the Burgers’ equation, Eq. (1), by introducing
new quantities which are more directly related to those solutions. Define

=by+ b (3.9)

b
7= (bo—b) /Az, (3.10)

where Az is the lattice spacing. Thus

bo = % (6+7A2) (3.11)

b = % (6-vaz). (3.12)
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Substituting, we can find the update rules for § and 7,

Bkd+1) =TIk 1,0) + 5Bk + 1)

+ g[ﬁ’(k +1,0) - Fk—1,))

— (Az)? (F*(k + 1,0) = 7*(k — 1,1))]

bk +1,1) — b(k —1:)+ bk — 1,1) + b(k + 1,1)
2Azx Az 2

2] -2 -2
+ m[—b (k+1,1)—b"(k—1,1)
+(Az)? (2 (k +1,0) + 7 (k — 1,1))]
# ZQE [Cou(k + 1,5k + 1,1) + Cor(k — 1,1k — 1,1)]3.14)

vk, +1) =

Now suppose that n(z,t) is the ezact solution of Eq. (1), and define

c 1 a
w(z,t) = (n(s:,t) » En*=(x,t)) — S-n(z,1). (3.15)
Discretize these by defining
i(k,l) = n(kAz,AL) (3.16)

w(k,1) = w(kAz,lAt). (3.17)

Then by Taylor expanding and using the fact that n(z,t) solves Eq. (1),
we find

aki+1) = 2%k -1+ 1%k 41,0

% %[ﬁ”(k +1,0) = #3k ~1,)
— (Az)? (@*(k + 1,1) — @*(k — 1,1))]

+0 ((Am)‘) (3.18)
. Ak +1,1) —a(k— 1,1 @ filk—1,0) +a(k+ 1,1
Wk, +1) — ( )ZAE( )+A_.?: ( 2 )
+ —— Ak + 1,1) — A% (k — 1,1)

4A
+(az)? (92 (k+ 1,1) + @*(k — 1,1)))]

+0 ((az)?). (3.19)
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Note that these are very similar in form to the update equations for b
and 7, Egs. (13) and (14). The covariances, Cp;, that appeared in the
former equations have been replaced by truncation errors from the Taylor
expansion in the latter equations.

Thus we can define the errors,

e(k, ) = b(k,1) — #i(k,1) (3.20)
(k1) =v(k, 1) — @(k,1). (3.21)
The update rule for the errors is then

e(k,l+1) = l-lz_ae(kﬁl,l) + 1;
+ S1(B0+ 1,0 + Ak + 1,D) el +1,0)
— (B(k = 1,0) + a(k — 1,0)) e(k — 1,1)]
+@[Cor(k+ 1,5k +1,1) — Coy(k — 1,15k — 1,1)]

Lok +1,1)

+0 ((a2)*) (3.22)
flrsn = 2EE 1")2;:(" -L0) . _;I_e(k - 1,1) ;e(k +1,0)
+ % — (B(k +1,0) + Ak +1,0)) e(k +1,1)

— (B(k — 1,1) + 2k — 1,1)) e(k — 1,1)]
e ZE; [Cm(k + l,l;k"f’ 1,1) + Cm(k % I,I,k = 1,1)}
+0 ((az)?). (3.23)

Note that the evolution equation for e(k,!) has decoupled from that of
f(k,1), so that it suffices to consider Eq. (22) alone. If we ignore the corre-
lation (but not the truncation) terms, then we have the matrix equation

e(5,1 +1) = 3 L(j, k;e(k,1) + 0 ((Az)*) (3.24)

where L(j,k;!) has positive elements, and columns that sum to unity. If
we use the £, norm,

el = 55 leG D), (3.25)

then we may write

e+ 1] = SZSJelit+1)
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IA

% . X;L(J'; k;l)e(k,l)‘ +0 ((az)")

IA

25 LG, kD, )] + K (A2’
jk

= ZZ5Je(k, )] + K ()’
k
= |le(t)]| + K(Az)* (3.26)

where K is some constant. Here we have used the triangle inequality, the
positivity of the L(j,k;!), and the fact that the columns of L(7,k;!) sum
to unity. Then, supposing e(0) = 0, we see that iteration for O ((Az)~?%)
generations (times of order unity) will still yield |le({)] = O ((Az)?).

Now fix a subinterval (z;, ;) of the spatial domain of n(z,t), and fix a
time #,. Let Az — 0 such that z; = kAz, =, = (k + M)Az, and ty = [At.
Then by basic quadrature estimates

1
Iz —I1

1 M1 ‘ e )
3 2 ki) = f n(z,to)ds + 0 ((Az)),  (3:27)

while by our basic L, error estimate we have

IM_IEk i1 IM_I":: L,1) + 0 ((Az)? 3.28
H?;‘; ( +z,]—xf—§n( +1,0) + (( :r:)) (3.28)

Here we have used the fact that MAz/L = (zp —z,)/L is fixed. Combining
these results gives

ﬁgﬁ(kw,fh ! [ nleto)dz+ 0 ((a)7),  (3.:29)

Iy — Tz

which is our final convergence result for the ensemble average.

Thus, we have shown that the ensemble average of the cellular automa-
ton simulates a stable, second-order accurate, fully-explicit differencing
scheme for the Burgers’ equation. Note that the proof of this is very simi-
lar in form to demonstrations of stability and accuracy for finite difference
approximations. The neglect of the correlations is the weakest link in the
chain of reasoning, and it will be discussed further in future work.

4. Bounding the Covariance for the Diffusion Equation

For the diffusion equation (@ = 0), we can obtain an upper bound on the
covariance, Cj;. To get dynamical equations for the covariance, we write

Cij(k, I+ 15k, 1+1) = (bi(k,l + 1) — by(k, L + 1)) (by(K', L+ 1) — by(k', 1 + 1))
(4.1)
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and use Egs. (7) and (8) to express the right- hand side in terms of
quantities at time step . For k # k' or i = j, we get

Coo{k+ 1,0+ 1;k + 1,1+ 1)

%(ou0 (ky &, 1) + Con (15 ',1)
+ Chg (k,l; k',l) + Cyy (k,l; k‘,l))
E(Coo (k5L k',l) + Coy (k,1; k',l)
+ Cio (k, l;k’,[) + Cyy (k,l; k’,l))
( 00 (e, 13 K, 1) + Coy (k, 13 K, 1)
+ Cm(k LKD) + Cyy (K, 1 K1)
Coo (k1 K, 1) + Coy (K, 15 &4, 1)

+ Cm (k, 1 K',0) + Cuy (b, 13 K, 1))4.2)

Cor(k+1,0+ 13K —1,1+1)

Crolk—1,04+1;k + 1,1+ 1)

Il

Cll(k—l,l+1;k'— 1,[+1)

When k = k' and 1 # j, however, we get

Cor(k+ LI+ Lk —1,0+1) = Colklik,l) =7 (Bu(k.0) — (kD))"

(Bolk,1) = Ba(k,) .
(4.3)

G TSR N

Cro(k—1,1+1;k+1,0+1)

Cm(k,l; k,l) =

Note that Eqgs. (2) are homogeneous in the covariances, while Eqgs. (3)
contain forcing terms on the right hand side. Because these forcing terms
are negative definite, we can use induction on [/ to conclude that

Cij(k,1K',1) <0 (4.4)
ifk#k oris#7.

Suppose that we use spatial averaging to estimate the density n at a
given gridpoint k. For example, we could average over M gridpoints to get
the density

y
My = o > [bolk +1,1) + by (k +2,0)). (4.5)
i=0
We would like to compare this with the ensemble-averaged version of the

same thing,
M-

L= Z[bo(k+z 1) + By(k +4,0)], (4.6)

at the same gridpoint, k. We find

T . ; ; ;
i (Coolk + 2,0k + 7,0) + Cor(k + 2,5k + 7,1)
i,=0

+ Crolk + 1,55k + 3,0) + Cu(k + 1,5k + 7,1))

(ns —ne)? =
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) M-1 . .
== 3" (Coolk + 1,03k +3,0) + Cra(k + 14,0k +4,1))
=0

IA

= % Z_: [Bo(k +1,1) — (50(k+ i,z))’

=0

+Bi(k +3,) — (Bulk+i,0)) ]

& 2 (1_2)
= Mne 2
1 Az

& e
- 2M 2(I2‘I1)

(4.7)
where we have used the Schwarz inequality in the final step. Thus, the
spatial averaging of a single evolution of the automaton converges to the
spatial averaging of the ensemble as 1/v/M. The simulations presented in

the next section were carried out in precisely this fashion; the displayed
results are spatial averages for a single evolution of the automaton.

5. Simulations

The equation simulated by the above-described automaton is

an a3 n? *n
a + CE (n = ?) = Uﬁ, (51)

where 0 < n < 2. To maximize the signal-to-noise ratio, it is best to operate
with n ~ 1. Then, the transformation

u=c(n—1) (5-2)

may be applied to the result, so that u obeys the Burgers’ equation in
standard form,
du du *u
ot "oz oz
Note that —¢ < u < ¢, so the parameter ¢ should be chosen greater than
sup|u| to insure that 0 < n < 2.
We have used the automaton on a Connection Machine (4] computer to
simulate the solution to Burgers’ equation with periodic boundary condi-
tions on a spatial domain of unit length, and with initial condition

(5.)

n(z,0) = n, + nycos(2rz). (5.4)

The exact solution to this problem may be found by application of the
Cole-Hopf transformation. It is

2v aY

n=ng;+ EE, (5.5)
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t=1.0 ,M =512

120, M=512
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Figure 1: Simulations of the cellular automaton model as a function of
time t. The solid curve gives the exact solution to Burgers’ equation.
The development of a shock is evident. Averages were made over M

lattice sites.
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where
v =Ip(z) + 2 i(*l)[tlzlfg(z)fg(%rfx + yt) exp(—pet), (5.6)
=1

where in turn

2= % (5.7)
ue = v(27e)? (5.8)
ve = e(n, — 1)(278), (5.9)

the I’s are modified Bessel functions, and f; denotes the sine (cosine)
function when £ is odd (even):

R { sin if £ is odd (5.10)

cos if £ is even.

In the results presented below, we took initial conditions with n, = 1.0
and ny; = 0.4. We took the diffusion coefficient to be v = 2%, and the
advection velocity to be ¢ = 1. We used 2'® = 65536 spatial gridpoints, so
Az =27 Then the bias was given by

cAzx

a=——=0.25, 5.11
a=— (5.11)
and the time step was given by
(Az)? -18
At = -——=27"° 5.12
= (5.12)

Note that the characteristic time for shock formation is t, = (2mweny) ™" ~
0.398, and that 2'® = 262144 automaton time steps correspond to t = 1.
Below we plot the results for several different values of ¢, with M = 2% = 512
so that there are 65536/512 = 128 points plotted on each of these graphs.
The last two plots, however, were made with M = 128; note that the
amplitude of the noise in these plots is roughly twice that in the other
plots, as expected from Eq. (7). The smooth curves are the exact answer,
as given by Eq. (5).

6. Conclusion

We have motivated, developed, and analyzed a cellular automaton for the
simulation of Burgers’ equation. As stated at the outset of this paper, we
are not proposing that this technique be used as an effective method for
computing solutions to Burgers’ equation, but rather that it be used to
study in a relatively simple context important issues about stability and
accuracy that arise in the application of cellular automaton techniques to
solving the incompressible Navier-Stokes equations [1]. The argument used
to show that the cellular automaton does indeed yield an approximation to
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the solution of the partial differential equation is the same for both cases;
including the neglect of the correlations. The general procedure used to
get the solution from the cellular automaton is the same in both cases: the
spatial average of the cellular automaton is used to approximate the spatial
average of the ensemble average of the automaton.
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