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Abstract. The use of lattice gas (cellular automaton) models has re
cently been advocated as an interesting method for the simulat ion of
fluid flow . Th ese automata are an idealizat ion of the real microscopic
molecula r dynamics. We present a model derived from the hexago
nal lat t ice gas ru les of Frisch Hasslacher and Pomea u (FHP) that
incorporates buoyant forces and d iscusses its prope rt ies. We der ive
the hydr odyn amical equations in the low de nsity limit and find the
buoyant force and seepage effects characte ristic of gravit at ing mix
tu res, as well as deviations from the Navier Stokes equations in the
compressible case. An equivalent of the qu asi-incompr essible limit of
Boussinesq exists , where th e Boussinesq equa tions are recovered bu t
only for steady flow. The unsteady flow equ ation s suffer from the lack
of Galilean invari ance of FHP type models. We discuss ot her tentative
models that would overcome this difficu lty. T he self-d iffusion coeffi
cient is also comp uted from the theory, as well as t he mean free path .
T his allows one to check some of t he pred ictions of the Chapman
Enskog expansion for t hese gases . We also perfor m nume rical simula
tions at a Rayleigh number of 6000, show ing natura l convection nea r a
heat ed wall and t he Ray leigh-Benard instability in a time ind ependent
regime.

1. Introduction

Lattice gas models involve an idealiza t ion of th e phy sical reali ty where
the molecules are assumed to have discrete positions in space, generally
on some regular la t t ice, and the velocities are also discrete !ll. The pur
pose of this cont ribu tion is to investigate how deterministic latt ice gases,
or cellu lar automata, can be used to simulate mixtures of fluids wit h exter
nal, for instance gravitati onal, forces . Frisch , Hasslacher and Pomeau have
introduced models where the veloci ties of the particles are t ra nsformed in
collision s in a deterministic way !2j and ad vocated the use of the au tomaton
for fluid simulat ions. This makes the lat t ice gas a cellular automaton [3J . It
is in a way a very simplified model of molecular dynamics, and it allows one
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to bri dge the gap between microscopic an d macroscopic phys ics [41 . This
is of course what the kinetic theory of gases purports to do, and the first
investigations of the lat tice gas were made in th at contex t [61. The recent
interest in la t t ice gases was st imulated by the discovery that the hexagonal
lattice gas or FHP gas obe ys the Nav ier Stokes equations in the large sca le
limit . This gas is thus of great interest for fundamen tal investiga t ions of
large physical systems, in par ticular when the physics at t he sma ll sca les of
th e motions a re complicated and t he lar ge scale behavior is not very well
understoo d". Besides this fun damental inte res t , the lat t ice gas m ight be
abl e to compete with finite di fference an d spectral methods for the simula
t ion of some flows. It s advantages are its programming simp licity , its easy
ad ap ta tion on parallel processors , and its stabi lity properties.

As an example of th e simplicity of the cellular automaton, cons ider t he
pr oblem of simulating fluid flow in cav it ies with very convol uted shapes : the
boundari es of those cavit ies are no more difficult to treat with a cellular
automaton t ha n st raight walls. The cellular automaton is well adapted to
parallel machines with only local commun ications . This is true of others
schemes as well, bu t in the case of th e cellula r automaton, it is also likely
th at one local error would not affect t he accuracy of t he solution, which
is ob tained by averaging over many cells. F inally, th e cellular au tomaton
is always stable: its state is always close to an eq uilibr ium analogous to
the equili brium state of gases. This state has maximum ent ropy or H
function (see [11 for an introduction to the kinet ic theory of lat t ice gases).
The necessity of averaging the motion of the particles, th e fault tolerance
and the stabili ty all stem from t he fact that in the cellular automaton the
microscopic disorder of nature is simulated. This latter fact also makes the
cellu lar automaton less efficient than the resolut ion of Partial Differential
Equat ions (P.D.E.'s ) (assuming they exist for the problem of interest) if
what is desired is an arbitrary accuracy. However, the situat ion is different
if one wishes to reach larger an d larger scales, or Reynolds numbers . The
efficiency of the cellular automaton is thus much harder to det ermine than
its programming simplicity" .

In th is paper we do not try to prove that there are problems for which
t he CA ca n be more efficient, a lthough we bri efly return to th is quest ion in
the conclusion. We rath er would like to explore th e ability of the automa
ton to describe a lar ge variety of physical situations. Can th e lat tice gas be
modifi ed to model buoy ancy driven flows, also of great theoret ical and prac 
tical importan ce? This cont ribut ion is devoted to a preliminary at tempt to
answer this question . We first define the rules of our automat on, which is
best understood as a mix ture of two almost ident ical fluids. Work ing with

1 Ex am ples among many are prov ided by rapid flow in po rous med ia or by multiphase
Bow

2 Arguments have been given 18J to t he effect that for a given precisio n, increasing t he
R eynolds number requires more work as do existing methods of solution of t he Navier
Stokes equations. However , as also explained by Orszag and Yakhot 181, if t he boundary
condi t ions are of a complicated form the cellular automaton could be more efficient.
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, 1/ 2 I
P; + Pi+S t---+ PHI + P;+4

, 1/ 2 I
P; + P;+3 +--+ Pi- l + P;+2

Pi + P~+2 + P~tH +--+ Pi + P'-i -2 + P~i-'
IP.'j

Pi -----f' P;

Table 1: The first three rules are the rules of the hexa gonal FHP gas.
The symbols p,p', etc ... denote blue or red particles (r or b). The
last line describes the effect of gravity on the particles.
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mixtures has many advantages. At this stage the main one is sim plicity: as
in the FHP model the temperature is not a thermodynamic variable. For
our mo del we show how kinetic theory can be used to predict the large scale
behavior of the automaton. We find a set of compressible hyd rodynamical
equations. In the incompressible, or Boussinesq, limit , these equat ions are
ident ical to t he generally accepted equ at ions whe n the flow is steady.

T he di ffusion coefficient has been numerica lly computed through sim
ulat ions in the absence of grav ity or buoyancy effects. When grav ity is
added , typical flow structures are seen. For unsteady flow, a modification
of the rul es is proposed tha t yields the correct equations in the low densi ty
limit . T hese rules include irreversible collisions , which allows one to explore
an int erest ing new class of models.

2. T h e latt ice gas mixtu r e w it h ext ernal force fields: defin ing
r u les

We consider partic les that live on the links of a triangular lat t ice. The
particles can be "blue" or "red" and have any ofthe six un it velocit ies on the
lat t ice, but there cannot be more than one particl e with the same velocity
at th e sa me po int . The six di rect ions on the lattice, corresponding to unit
vectors CO, .. . , Cs are labelled counterclockwi se with Co = cx . T he par ticles
simpl y cross each other on nodes, unless one of the collisions described in
Table 1 and F igure 1 occ urs.

T he r ules (1) ,(2),(3) in Table 1 are just the rules of the FHP mo del,
but in addit ion we specify how particles of different colors are scattered in
a collision . Rule (4) intr oduces bu oyant forces by deviating red and blue
particles at some sparse locations in space and time. The probability t hat
a partic le of color P be deviated from direction i to d irect ion j is denoted
gp,i; (F igure 2) . Bou ndary conditions can be free slip , no slip or period ic as
in standard la t t ice gas models . For instance, no slip cond itions are obtained
by modelling th e boundary as a barrier on which particles may only bounce
back to the site t hey come from. One can impose the color of t he particles
coming away from a collision with the boundary, or impose a rate of change
of color at the boundary, simulat ing fixed concentration or fixed flux con-
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Figure 1: Collision rules for the two color reversible model. The
particles colliding head on are deviated to the right or the left every
odd or even time step.
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Fig ure 2; The grav ity effect for the reversible mo del. This effect
occurs at preassigned sites .

dit ions . Our au tomaton can thus be most closely compared to a mi xture
of flu ids with ident ical physical properties but for their susceptibil ity to
external forces . This lat ter property suggests the analogy with charged
particles. However, the "charge" in our model is a lways so small that the
inter act ion between the particles is vanishing . This is similar to an imagi
nary worl d where the inert ial mass would no t be equal to the gravitational
mass . Because in many fluid configurations the on ly density changes that
are re levant are those produ cing buoyant forces (in the so-called Bousslnesq
approximation) this change of gravitat ional mass is the on ly one re leva nt a t
the lar ge scale. We will get to this point after der iving the hyd rodynamica l
equat ions (hydrodynamical is here synonymous to large scale) from kinetic
theory. We first derive approximate equations for the compressible subsonic
flow in the CA .

3 . The hydrodynamical equations

As in [6] we assume that the gas is ergodic an d that ensemble averages
correspond to space and time averages at thermodynamic equilib rium. Let
R;(x, t) (B; (x, tll be the number of red (b lue) particles headed in direction
i at posi tion x and t ime t and let N, = ~ + Bj • Let Cl be the un it vector
in the i direct ion. The index i will a lways be understood to be modulo 6.
T here are three independent quantit ies conserved in the collisions in our
model (om it ting the effect s of gravity) :

p =I:jNi

P = Ei Njcj
R = Z;R;

(3.1)

The local velocity u is defined by p = pu . The conservat ion of mass
can be immediately written as

ap diat + IVp U = 0 (3.2)

We assume that the state of the automaton is obtained by patching loca l
eq uili brium states. This means that to derive the mo mentum and co lor
equations we make a Chapman-Enskog expansion of the solutions of the
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Boltzmann equation. Alt hough it is not clear whether t h is procedure is well
j ustified for t he ce llula r automaton, we expect it will h ave an asymptotic
meaning in the low density limit and not too far from equ ilibrium. The
numerical resu lts we give below a lso partially vindicate th is approach for
quite high densit ies.

In our derivation, we assume molecular chaos, wh ich implies that the
n-particle distribution functions (DF) that describe t he state of the system
can be written as products of one-pa rticle DF. It will be convenient to
note X t he 12-vect or (Rl,Bll ...,~,B6)' With this assumption, the time
evolut ion of X can be writte n as a discrete Bolt zmann-like equa t ion"

R,(x + c. t + 1) - R;(x , t )i

- :Lgk,'jRj + fl(X)"_I' B,(x + c, t + 1) - B,(x ,t)
j

where

- :L g~ ,'jBj + fl(X)",
j

(3.3)

(3.4)g~.ij = -gp,ii +E gP,j/c6i i·
•

Thus, a collision like the one of Figu re 2 gene rates two contributions to the
Boltzmann equation. T he collision operator n is defined by :

O(X ),' _1 ~A(R, i + 1; N , i - 2) + ~ A(R, i- I; N, i + 2)

A(R , i; N , i + 3) + A(R, i + 3; N, i -I; N, i + 1)

A(R , i ;N , i + 2; N, i + 4) (3.5)

wit h
p( l) p (. ) ;=6

A(P ( I) ' . . p(.) .) - ---!l.- -'-' - II(1 - N·) (36)
, I ll" " ,1/c- l-N

i
\ " · 1 - N i

lt. i = 1 I •

and where a ll the DF are est imated at x , t. Identica l relation s hold for
O(Xhi provided Band R are exchanged. To so lve the Boltzm an n equation,
we make a Chapman Enskog expansion, that is, we assume that the system
is close to statistical eq uilibrium an d that all conserved quantit ies va ry
slowly in space and t ime. T he intensity of the external force effects is also
small in the following sense: in the actual computer im plement at ion of the
CA, de flect ions that model the act ion of external forces occ ur at sparse
loca t ions at the microscopic sca le. On the la rge scale, however, the CA
fluid is homogen eous, so that the distribution function behaves as if the
deflectio ns occ urre d everywhere a t a very small rate max(gp,ii ) ' We t ake

3Some of th e discussion below parallels t he one in [51 , but for t he fact t ha t we start
from th e truly discret e Boltzma n equation. This has some importance for some subt le
effects that we d iscuss below when we comp ut e the viscosity.
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the "distinguished limit" where the two small parameters are related by:
max(g~.,; ) = 0 (17). The Chapman Enskog expansion of th e distr ibut ion
functi on is then

x = XeD) + XlI) + ... + x (n) + ... (3.7)

The lowest order has already been given in many references. One only
needs to solve:

n(xIOl) = 0 (3.8)

which can be done quite easily using Fermi Dirac distributions [IJ. The
result is:

pi O) = f (1+ 2(u.c,) + 4a(p)(u: - 1/2u' )) + ... (3.9)

whe re a(p) = (p - 3)/(p - 6) and P is R or B . Highe r order ap proxima
tions (in gradient) are obtained by linearization of the operator n around
R (O) . This expansion allows one to find explicitly that the automaton obeys
equations similar to the Navier Stokes equations. Looking for higher order
approximatio ns generates a hierarchy of equations of the form:

where at the first order

y(l) = a,x(O) + DX(O) + e x »

and where D X is the propagat ion term of the Boltzmann equat ion:

D X = (c,.I7 R ,c,. I7B ).

(3.10)

(3.11)

(3.12)

Gravity is represented by GX = (E g'n ,ijRj ,E gB,ijBj). At this point it
is convenient to define the scalar product of two 12-vectors A' = (aD and
B' = (b:):

"(A'IB') = La;b:.
i = 1

(3.13)

Equat ion (11) can be solved only if certain solvability conditions are met ,
of the form:

(3.14)

where Z is a null eigenvector of on/ox. The solut ion of th e first order equa
tion is discussed in the appendix. The so lvability condit ion or Fredholm
alterna tive (14) yields at second order:

apu~

at +

au
at (3.15)
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(3.18)

where fZI = p(1- a(p)u') /2 is the pressure and 0 = R/ p is the color fracti on.
The ind ices a J) span the two space directi ons x , y. The intensi ty of th e
buoya nt for ces is represented by the vectors gl ,P . They depend on ly on the
interaction coefficients gp,i; and the velocity u . External forces also create
a see page flow Jg(O ). We computed the gravitational force gl.P and the
seepage flow in the low density limit and to first order in the velocity u . It
is conve nient to express the result in complex form :

= -~ L [g~,;;€; (l + ew + f w + O(w'llJ3.16)
6 ..

','
- 2(g" R - g"B )O(l - 0) + O(w) (3.17)

wh ere W = U ::e + iU Ii and e= exp 2i1r/ 6. In equat ion (15) , TJ is t he shear
viscosi ty , a lready derived by this method and measured from simu lat ions
[7]. T he derivation can be foun d in [5] (see also [9]):

1 1
~(p) /p = 12J{1 - f) ' 8

whe re f = p/ 64 • Although the above equations were der ived in the low
density limit. we in dependently computed the diffus ion coefficient D for
arbitrary densi t ies using the Chapman En skog expansion :

1 1
D( p) = f (l _ f) '(3f + 1) 4 (3.19)

T his compares well with t he simulat ions that we rep ort below. A diffusion
coefficien t is also given in [5]. T he rul es used in this latter reference are
slightly different but t he coefficient obtained is cons istent with ou r compu
tat ions, but for the propagation diffusivity te rm discussed previously. At
this stage, we obtain equat ions that are similar to the usu al fluid equat ions
for a mixture of two non-reacti ng fluids, but with some additio nal terms.
T he fact that the CA is not Ga lilean invariant is reflected in three d ifferent
discrepancies with the compressible Nav ier-Stokes equa t ions: (i) in the ad
vective te rm a(p); (i i) in the dependence of the pressure and the external
force intensity on t he local velocity; (ii i ) in the te rm ap [ (~ /p)ap(puQ)I. This
te rm produ ces addit ional contributions to the momentum flux of the form
~ (u./p)app. This la t ter symptom of the "Galilean d isease" of the CA [l J
seems to have been overlooked by prev ious workers 19j.17j.

Other terms correspond to genu ine effects in a real gas mixture . The
add it ional flux te rm J , (0) in the color conse rvatio n equation tends to bring

4T he - 1/ 8 te rm does not app ear in 151 directly in t he form ula given for 1I but. can
be deduced from what is cal led in sect ion 2 of t his re ference "higher order lat t ice size
corrections" . It s or igin lies in t he discret e character of the latt ice and it is also called a
propagat ion viscosity. If one think s of the flux of colored particles accro ss a link (it can
be wri tten 1l{J - R3 ) t he right going particles come from a site at say x but the left going
come from a site at x + co. T hus t he pop ulat ions ~ and R3 are not est imated at t he
same points, and an addit ional te rm proportiona l to "V6 appears in t he flux.
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the lighter particles above the heavier . This is a relevant effect at at
mospheric or ast rophysical sca les. For convec t ion in a lab oratory setting,
however, these effects are small. In what follows, we show t hat there is a
corresponding limit for the CA fluid that yields a classical idealization for
buoyant fluids .

4. The Boussinesq a p p r oxim a tion

An approximation wid ely used in buoyant flow is to consider the density
of the fluid and its mat erial propert ies as cons tant except in t he gravity
force term. This approximation can be shown to resu lt from an asymptot ic
expans ion in some small parameters [10]. The approximation is here made
eas ier because the density p does not depend on the color ratio O. Here
we only have to prove th at th e density is approximately constant. The
th ermodynamic cons iderat ions that aris e in the therma l convection problem
ar e a lso avoided in the CA.

In t he buoyant fluid layer , two cau ses can yield strong var iat ions of
the density : (i ) st rong hydrostat ic pressur e gradient ; (ii)transonic flow
velocities. The hydrostat ic gradient is given by :

(4.1)

This suggests introducing a small parameter E:

(4.2)

where the rat io of th e depth h of the fluid layer to the gravitat ional 'scale
he ight' 1/g where 9 = Ig,R - giBI. Case (i ) is avoided if, « 1. To avoid
case ii) , the velocity caused by buoyant forces must be boun ded. A very
likely bound is th e velocity of free fa ll of a cold fluid lump with maximum
buoyancy:

v = (2gh!:l.O)1 {2 (4.3)

whe re flO is the sca le of color ratio variat ions. Thus the Mach number will
remain small if 2E « 1. To summarize, the density of the fluid will be
approximately constant if f « 1/ 2. This suggests taking the veloc ity scale
V and the space sca le h, and rewrit ing equations (15) . The full procedure,
as carried out by 1101 in the thermal convection case, involves keeping all
the small te rms in the equations an d expanding the solutions in powers of E.

In t his sho rt presentati on, we simply give the rescaled equations at lowest
order in E:

"'V' .v' = 0(,)

iJu' '( ( ) ')iiii +u.V apou = - V'a,' +eyO

+ g l/:dJ / 2 fj, u' + O(EU)

~~ + u'."'V'O = , .If. ",tl'O + 0(,0))

(4.4)

(4.5)

(4.6)
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where v = ~ /p , u' = u/V, x' = x[d. t' = tV/d. Dropp ing all the terms of
order, yields the classi cal Ob erb eck Boussinesq (OB) equat ions [111. It is
remarkable that all non Boussinesq terms disappear at small € simultane
ously. In addition, taking the small f. limit also ensures that the exp ansion
of the one particle distribution function in powers of the Mach number
remains valid.

The usual cho ice in convect ion th eory 112] is to take the Ray leigh num
ber Ra and the Schmidt number a as the two independent dimensionless
numbers. For our model those numbers would be:

Ra = gtlOh'
Dv '

u = v /D (4.7)

However, before the CA can model convect ion at such values of the param
eters , several problems must be solved:

[a] Ti me dependent motion and stability of stationary motion could be
adequately comp uted only if t he advective term a(po) is set back to 1. A
tentative solution to this problem is presented in sect ion 7 of this paper.

(b) The Schmidt number we obtain is ra ther low, of the orde r of 1/ 12
in the low density limit. It can, however, be easily increased by introducing
collisions that exchange the color but not momentum, like

(4.8)

Assuming these problems are solved , what would be the maximal Rayleigh
number in a simulation? For a 2d CA computation with e = 0.1, and (J ~ I,
the answer is:

h'
Ra m a z ex --,

101.'

where h is the number of sites in the vertical direction.

(4.9)

5. N umerical investigation of some kin et ic properties

We have numerically investigated the diffusion properties of the CA mix
ture. In all these computations the gravity was set to zero, and there was
no large sca le momentum. From the assumption of molecular chaos the
mean free path can be easily estimated:

(5.1)

where

(5.2)

These expressions are in good agreement with the measurements. We
also measured the diffusion coefficient, using a cavity of size 64 x 256 with
periodic lateral boundaries and rigid upper and lower boundaries. The color
was fixed on the upper and lower bound aries. The color fraction profile was
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Figure 3: T his plot shows measurements of the flux of colored particles
in a nonequilibr ium situation . The coefficient {3 is proportional to t he
nu mbe r of par t icles crossi ng a given pla ne. The full line shows t he
pr ediction of th e small grad ient expansion, and the meas ured po ints
were obtained as exp lained in the text.
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Figu re 4: Contour lines for the color ratio and t he velocity field in a
closed gap with heating from the side. (al t= 2046; (b) t= 4000.

found to be linear except for the lowest density measurements, where the
mean free path was a larg e fraction of the total size. The color flux was
measured at several heights. This yie lds an estimate of the dependency of
the flux on the color gradient : xD~, = 13/2VSe + c.c. in the absence of
density or momentum gradient. We plo t the numerical result for P along
with the t heoretical prediction (consistent with (19)) on figure 3.

6. Flow simulatio ns

We used the model described above to simulate fluid flow. The gravity
kicks occurred every time step at prese lected sites of the automaton. These
sites were regularly spaced, and we took care to maintain the "scale height"
parameter f small enough. We used a Sun-3 which gave a speed of about
50 000 site updates per second. The dens ity was always set to 1 and the
scale height parameter f was set to 0.2. This resu lts in a Schmidt number
about 0.13. In "the first simulation, a square box 1024 x 1024 was used with
four r igid walls. T he left wall was blue or "cold" while the right one was
red or "hot" . The conditions on the bottom and top walls amo unted to fix
the color ratio to 0 = 1/2. The evolution of the flow is shown on figure 4.
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Figure 5: Benard instability. The instability was initiated by a small
perturbation near the cell center. The circulation is rapidly created

The characteristic circulation is a well known phenomenom that occurs at
any Rayleigh number. In this case the Rayleigh number based on the box
size was about 6000.

In the second simulation the box was periodic in the horizontal dimen
sion while the upper, rigid, plate was cold and the lower was hot. The
box was of size 512 X 1024 and the Ray leigh number was also about 6000.
We have seen the Ray leigh-Benard instability develop as shown on figure
5. Its amplitude grows rapidly as expected in a low P ra ndt l number fluid
and the Mach number reaches 0.3 in 4000 time steps. These simulations
show that convective fluid flow is indeed realizable with cellu lar automaton
fluids . Further simulations are in progress on faster machines and should
allow one to treat more difficult situations such as complicated boundary
conditions.

7. Pseudo Galilean invariance in irreversible models

The model with have worked with so far has the serious flaw that the ve
locity advection term a(p)". '\7" is different from the true term in the Euler
equations. A method that allows one to restore the correct value of that
term is presented below. It has the interesting property of involving rules
which are not reversible, i.e., for each collision configuration the configura
tion obtained by changing the arrow of time does not necessarily produce a
collision . In this new model we int ro duce center part icles, which are part i
cles resting motionless on a latt ice site . These particles may be red or blue
but only one is allowed at each site. They normally collide wit h the other
part icles in the same way as in the models wit h centers introduced by FHP
[2]. However the collisions that create those particles are not symmetrica l
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Figure 6: Collision rules for the irreversible model. The two first
diagrams show the irreversible collisions on centers . The last diagram
indicates how gravity is implemented in this model.
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with those which destroy them: see figure 6. Also, the gravity kicks can
now be imposed on ly on centers, making the effect more symmetrical. The
probability of creating a center is always one, while the probability of de
stroying it is a'. As a result a ste ady state is obtained where there are more
centers than in the reversible mo de ls.

An interest ing situat ion occurs in the low density lim it when one sets
a' = 1/ 6. To explain the derivation of the new hydrodynamlcal equations,
we first rede fine the fundament al quant it ies: we let Rt , B, be as before the
distribution of moving particles for i = 0,5 and R1 , B 1 be the distribution
of centers. We define P and u as above, and Pc be the densi ty of center
par ticles . R and B are as above the density of red and b lue particles,
including the centers. T hen for vanishing p we find that the lowest order
in the Chapman- Enskog expansion is, at third order in u:

R; = R (1 + 4u.c; + Bu.c, - 2u')R;, = ~(1 - 2u') (7.1)
12 2

with analogous expressions for the blue particles. It is seen that half of the
particles are centers in the zero velocity state. Proceeding as in the previous
case, we obtain the hydrodynamical equations . Computations are similar
to those of the appendix but with 14-vectors. We find equa t ions identical to
the hydrodynamical equat ions above, but with alp) = 1 + O(p). Thus th e
Euler equat ions are Galilean invar iant for our model , a lthough it is not
Galilean invari an t at the microscopic scale. This is what we call pseudo
Galilean invari ance. The pressure is now CD = P/ 4, which can be easily
understood by the fact that only half of the particles , the moving ones,
contribute to the pressure. We find a shear viscosity 'YJ = 3/7, compression
viscos ity e= 3/28 and a color diffusivity D = 6/5 . The color diffusivity is
clearly smaller than in the reve rsible case. This can be easily explained if
one notices that there are now many more possible collisions , whi ch reduces
the mean free path.

The velocity of sound is now C8 = 1/ 2, but contrarily to the reversible
case, it will now depend on the dens ity. T he steady state in the absence
of momentum can be eas ily obtained for any density and the ve locity of
sound so deduced fits well with numerical simulat ions communicated to us
by D. Rothman .

We thus have to caution that the results obtained for the irreversible
models m ight depend strongly on the dens ity. In particular, the pseudo
Galilean inva riance is lost for p = 1. Another problem could be the lack of
stability of the steady state. The stability of the equilibrium state in the
revers ible case is gene ra lly proved through the Bol tzmann H th eorem, as
shown by Henan [13]. However, the proof requires reversibility and cannot
be extended to this model. This appears not to be a problem in low density
as a ll the eigenvalues of the Boltzmann operator ar e negative or zero and all
the diffusiv it ies are pos it ive . T hese lat ter facts are necessary for stability.
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8. Conclusion

We have presented a lat t ice gas model that yields large scale equations
similar to the Boussinesq equations, but for the coefficients of the nonl inear
te rms. The model is much simpler than models with several velocities
and requi res inter actions between nearest neighbors only. The equations
obeyed by the model can be obtained by kinetic theory and the derivation
of diffus ivity coefficient is cons iste nt with the results of direct numerical
simulat ions . Prelim inary simulations a llow one to see typical b uoyancy
driven flows . T he mo de l thus appears to be a reliabl e tool for the study
of moderate Rayleigh number flow. It is, however , necessary to increas e
the complexity of the model in order to restore Galilean invariance. T h is
is done us ing a nonreversible model which is shown to yield a stable steady
state.

We believe that the state reached so far by the lat t ice gas theory does
not render just ice to its enormous potent ial ap plications. The possibility of
having very simple models of the microscopic physics should a llow one to
simulate many phenomena that cannot be attained by macroscopic equa
tio ns or are not obtained very efficien tly. Many complicated phenomena of
this type exist in mixtures, for instanc e problems with separation of compo
nents, surface tension and impurit ies. The work done so far should provide
a bas is for t he development of more complicated models.
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Appendix A. Inversion of the linearized Boltzmann operator

We look for a solution of eq uation (10) at the firs t order, in terms of the
conserved quant it ies R , p, u. We represent those solutions as vectors X =
(Rl, Be, ...,Rs,B6 ) . T he linear ized Bo ltzmann operator ca n be written at
lowest order in u and p:

on I '6X x=x(O) = n (A.I )
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where

- 2p 0 p 0 R R - 2R -2R R R p 0
0 - 2p 0 p B B - 2B -2B B B 0 p
p 0
0 P
R R

n' = ..!.. B B
12 - 2R - 2R

-2B - 2B
R R
B B
p 0
0 p
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(A .2)
Not ice th at the upper row of two by two blocks is reproduced at each level,
only shifted by two posit ions. This is a resul t of rotational invariance.
T he missing elements are eas ily deduced by noticing this fact. T he right
eigenvectors of 0' are defined by

(A.3)

(A.5)

(AA)
and are

Z, = (R , B , €,R , €,B , .... c?R, c?B )

where €. = exp(2i"k/6) , and

Zi+6 = (1, - 1, €i,-ei,...,ef,-en
Similarly, the left eigenvectors of 0 ' are

zl = (1,1,€-i ,€-i" " ' €:i,e: i)Zl+6 = (B, - R, B €- i, - R€_i, ...,B€:i, - r€:i)
(A .6)

and the eigenvalues are

There are four zero eigenvalues, corresponding to invariant conserva tion:
mass , color and momentum, plus a spurious zero eigenval ue (>"s). The
spur ious eigenvalue is a result of the fact that in the low density limit we
consider only two particle collisions. These collisions conserve momentum
line by line and thus preserve additional invarian ts . To carry out the ca l
culat ions in the low density limit we requ ire an addit ional condit ion:

This is verified if g~) = g~) = 0, where we use the reduced rates:

(n) ", <'e» = LJ gp.j;i~

i ,j

(A.S)

(A. 9)
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The linearized Boltzmann equation (3) can now be solved using the general
formula:

X(I) = L (Zl~YII) ) z,
';~o (Zi IZ;)

The resul t is best expressed as a sum of two terms:

Xii) = Xj') + Xii)

whe re

(1) _ Rei ( _I' ) _I' ) ) ( )X,,"_l a - --, 29R R + 2gB B - 3a zpw + c.c. + 0 8 tw, 6p

(A .10)

(A.ll)

(A.12 )

and c.c. stands for complex conjugate . X~~~a is obtained by exchanging R
and B in the above express ion. Also

xl) t" = e; [(ih,R - 1;',8 )0(1 - 0) - 30,01+ ~~i [(!hR - 928)0 (1 - 0)

- 3pwo,OI+c.c.+O (o,w) (A.13)

and Xm = -Xl;~ " , (A,14)

Writ ing the linearized Boltzmann equation (10) at next order orde r, we
obta in

y (2) = 0 X(1) + DXI I) + exit) + ~D(2)XIO) + ~02 X IO) +0 DX(O) . (A .1S)
t 2 2 f2 I

The hydro dynamical equations are now obtained as as the solvability con
dition for th is equat ion . T he momentum conservat ion is represented by the
equation :

(Zl ly lt) + y(2)) = O. (A. 16)

To write the co lor conservation equat ion , it is useful to define the null
eigenvector z't = (1, -1 , ..., 1, - 1), Then (14) implies

(Z' t ly ll ) + y (2)) = 0 (A.17)

It is not necessary to take all th e te rms in equa tion (15) into account. The
first te rm on the r.h.s. 8 tX(1) disappears in all the scalar products. The
next te rm is of order 1/p and dominates all the others in the low density
lim it. If one wishes to find all the relevant ter ms outside the low density
limit , they must be investigated one by one . A quick check yields the resu lt
that all these terms provide contributions wh ich are of higher order in Mach
number l so that it is consistent to neglect them as we have already made
an expansion in small u . Equations (16) and (17) can then be simplified
into

(A .18)

an d
(Z'tIYII) + DX(1) ) = 0

T h is yields the hydrodynam ical equations (15) of the text,

(A,19)
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