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Abstract. The use of lattice gas (cellular automaton) models has re-
cently been advocated as an interesting method for the simulation of
fluid flow . These automata are an idealization of the real microscopic
molecular dynamics. We present a model derived from the hexago-
nal lattice gas rules of Frisch Hasslacher and Pomeau (FHP) that
incorporates buoyant forces and discusses its properties. We derive
the hydrodynamical equations in the low density limit and find the
buoyant force and seepage effects characteristic of gravitating mix-
tures, as well as deviations from the Navier Stokes equations in the
compressible case. An equivalent of the quasi-incompressible limit of
Boussinesq exists, where the Boussinesq equations are recovered but
only for steady flow. The unsteady flow equations suffer from the lack
of Galilean invariance of FHP type models. We discuss other tentative
models that would overcome this difficulty. The self-diffusion coeffi-
cient is also computed from the theory, as well as the mean free path.
This allows one to check some of the predictions of the Chapman-
Enskog expansion for these gases. We also perform numerical simula-
tions at a Rayleigh number of 6000, showing natural convection near a
heated wall and the Rayleigh-Benard instability in a time independent
regime.

1. Introduction

Lattice gas models involve an idealization of the physical reality where
the molecules are assumed to have discrete positions in space, generally
on some regular lattice, and the velocities are also discrete [1]. The pur-
pose of this contribution is to investigate how deterministic lattice gases,
or cellular automata, can be used to simulate mixtures of fluids with exter-
nal, for instance gravitational, forces. Frisch, Hasslacher and Pomeau have
introduced models where the velocities of the particles are transformed in
collisions in a deterministic way [2] and advocated the use of the automaton
for fluid simulations. This makes the lattice gas a cellular automaton [3] . It
is in a way a very simplified model of molecular dynamics, and it allows one
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to bridge the gap between microscopic and macroscopic physics [4]. This
is of course what the kinetic theory of gases purports to do, and the first
investigations of the lattice gas were made in that context [6]. The recent
interest in lattice gases was stimulated by the discovery that the hexagonal
lattice gas or FHP gas obeys the Navier Stokes equations in the large scale
limit. This gas is thus of great interest for fundamental investigations of
large physical systems, in particular when the physics at the small scales of
the motions are complicated and the large scale behavior is not very well
understood!. Besides this fundamental interest, the lattice gas might be
able to compete with finite difference and spectral methods for the simula-
tion of some flows. Its advantages are its programming simplicity, its easy
adaptation on parallel processors, and its stability properties.

As an example of the simplicity of the cellular automaton, consider the
problem of simulating fluid flow in cavities with very convoluted shapes: the
boundaries of those cavities are no more difficult to treat with a cellular
automaton than straight walls. The cellular automaton is well adapted to
parallel machines with only local communications. This is true of others
schemes as well, but in the case of the cellular automaton, it is also likely
that one local error would not affect the accuracy of the solution, which
is obtained by averaging over many cells. Finally, the cellular automaton
is always stable: its state is always close to an equilibrium analogous to
the equilibrium state of gases. This state has maximum entropy or H
function (see [1] for an introduction to the kinetic theory of lattice gases).
The necessity of averaging the motion of the particles, the fault tolerance
and the stability all stem from the fact that in the cellular automaton the
microscopic disorder of nature is simulated. This latter fact also makes the
cellular automaton less efficient than the resolution of Partial Differential
Equations (P.D.E.’s) (assuming they exist for the problem of interest) if
what is desired is an arbitrary accuracy. However, the situation is different
if one wishes to reach larger and larger scales, or Reynolds numbers. The
efficiency of the cellular automaton is thus much harder to determine than
its programming simplicity®.

In this paper we do not try to prove that there are problems for which
the CA can be more efficient, although we briefly return to this question in
the conclusion. We rather would like to explore the ability of the automa-
ton to describe a large variety of physical situations. Can the lattice gas be
modified to model buoyancy driven flows, also of great theoretical and prac-
tical importance? This contribution is devoted to a preliminary atiempt to
answer this question. We first define the rules of our automaton, which is
best understood as a mixture of two almost identical fluids. Working with

1Examples among many are provided by rapid flow in porous media or by multiphase
flow

2 Arguments have been given [8] to the effect that for a given precision, increasing the
Reynolds number requires more work as do existing methods of solution of the Navier-
Stokes equations. However, as also explained by Orszag and Yakhot [8], if the boundary
conditions are of a complicated form the cellular automaton could be more efficient.
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Table 1: The first three rules are the rules of the hexagonal FHP gas.
The symbols p,p', etc ... denote blue or red particles (r or b). The
last line describes the effect of gravity on the particles.

mixtures has many advantages. At this stage the main one is simplicity: as
in the FHP model the temperature is not a thermodynamic variable. For
our model we show how kinetic theory can be used to predict the large scale
behavior of the automaton. We find a set of compressible hydrodynamical
equations. In the incompressible, or Boussinesq, limit, these equations are
identical to the generally accepted equations when the flow is steady.

The diffusion coefficient has been numerically computed through sim-
ulations in the absence of gravity or buoyancy effects. When gravity is
added, typical flow structures are seen. For unsteady flow, a modification
of the rules is proposed that yields the correct equations in the low density
limit. These rules include irreversible collisions, which allows one to explore
an interesting new class of models.

2. The lattice gas mixture with external force fields: defining
rules

We consider particles that live on the links of a triangular lattice. The
particles can be “blue” or “red” and have any of the six unit velocities on the
lattice, but there cannot be more than one particle with the same velocity
at the same point. The six directions on the lattice, corresponding to unit
vectors cg,...,c5 are labelled counterclockwise with cg = ey. The particles
simply cross each other on nodes, unless one of the collisions described in
Table 1 and Figure 1 occurs.

The rules (1),(2),(3) in Table 1 are just the rules of the FHP model,
but in addition we specify how particles of different colors are scattered in
a collision. Rule (4) introduces buoyant forces by deviating red and blue
particles at some sparse locations in space and time. The probability that
a particle of color P be deviated from direction ¢ to direction j is denoted
gp; (Figure 2). Boundary conditions can be free slip, no slip or periodic as
in standard lattice gas models. For instance, no slip conditions are obtained
by modelling the boundary as a barrier on which particles may only bounce
back to the site they come from. One can impose the color of the particles
coming away from a collision with the boundary, or impose a rate of change
of color at the boundary, simulating fixed concentration or fixed flux con-
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Figure 1: Collision rules for the two color reversible model. The
particles colliding head on are deviated to the right or the left every
odd or even time step.
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Figure 2: The gravity effect for the reversible model. This effect
occurs at preassigned sites.
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ditions. Qur automaton can thus be most closely compared to a mixture
of fluids with identical physical properties but for their susceptibility to
external forces. This latter property suggests the analogy with charged
particles. However, the “charge” in our model is always so small that the
interaction between the particles is vanishing. This is similar to an imagi-
nary world where the inertial mass would not be equal to the gravitational
mass. Because in many fluid configurations the only density changes that
are relevant are those producing buoyant forces (in the so-called Boussinesq
approximation) this change of gravitational mass is the only one relevant at
the large scale. We will get to this point after deriving the hydrodynamical
equations (hydrodynamical is here synonymous to large scale) from kinetic
theory. We first derive approximate equations for the compressible subsonic
flow in the CA.

3. The hydrodynamical equations

As in [6] we assume that the gas is ergodic and that ensemble averages
correspond to space and time averages at thermodynamic equilibrium. Let
R;(x,t) (Bi(x,t)) be the number of red (blue) particles headed in direction
7 at position z and time ¢ and let N; = R; + B;. Let ¢; be the unit vector
in the 7 direction. The index ¢ will always be understood to be modulo 6.
There are three independent quantities conserved in the collisions in our
model (omitting the effects of gravity):

p=2;N;
p = X; Nics (3.1)
R=% K

The local velocity u is defined by p = pu. The conservation of mass
can be immediately written as

a
3? +divpu=0 (3.2)
We assume that the state of the automaton is obtained by patching local

equilibrium states. This means that to derive the momentum and color
equations we make a Chapman-Enskog expansion of the solutions of the
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Boltzmann equation. Although it is not clear whether this procedure is well
justified for the cellular automaton, we expect it will have an asymptotic
meaning in the low density limit and not too far from equilibrium. The
numerical results we give below also partially vindicate this approach for
quite high densities.

In our derivation, we assume molecular chaos, which implies that the
n-particle distribution functions (DF) that describe the state of the system
can be written as products of one-particle DF. It will be convenient to
note X the 12-vector (Ry, By, ..., Rg, Bg). With this assumption, the time
evolution of X can be written as a discrete Boltzmann-like equation®

Ri(x + iyt + 1) — Ri(,8)i
= = GriiRi + O(X)2i-1, Bi(x + ¢t + 1) — By(x,1)
J

= — Zg:g),_,B, <t Q(X)Ziy (3'3)

where

919,-‘,' =—gpji+ E ap,ikbi;. (3.4)
E

Thus, a collision like the one of Figure 2 generates two contributions to the
Boltzmann equation. The collision operator (1 is defined by:

Q(X)es = %A(R,£+I;N,£—2]+-;—A(R,z'—1;N,£+2)
— A(R,%;N,7+3)+ A(R,i+3;N,i —1;N,7+ 1)

— A(R,%;N,i+2;N,i +4) (3.5)
with
O g p® oy P PP
A(P ,Il,...;P a’k) = 1—N' 1_—N—””];Il(1 ——N.) (36)

and where all the DF are estimated at x,¢. Identical relations hold for
1(X)2: provided B and R are exchanged. To solve the Boltzmann equation,
we make a Chapman Enskog expansion, that is, we assume that the system
is close to statistical equilibrium and that all conserved quantities vary
slowly in space and time. The intensity of the external force effects is also
small in the following sense: in the actual computer implementation of the
CA, deflections that model the action of external forces occur at sparse
locations at the microscopic scale. On the large scale, however, the CA
fluid is homogeneous, so that the distribution function behaves as if the
deflections occurred everywhere at a very small rate max(gp;;). We take

2Some of the discussion below parallels the one in [5], but for the fact that we start
from the truly discrete Boltzman equation. This has some importance for some subtle
effects that we discuss below when we compute the viscosity.
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the “distinguished limit” where the two small parameters are related by:
max(gp;;) = O(V). The Chapman Enskog expansion of the distribution
function is then

X=X+ x0 4 4+ x" 4 . (3.7)
The lowest order has already been given in many references. One only
needs to solve:

Q(x9) =o0 (3.8)

which can be done quite easily using Fermi Dirac distributions [1]. The
result is:

P,-(U) — _‘2(1 =2 2(u_c‘.) + 4a(p)(u? — 1/21&2)) +... (3.9)

where a(p) = (p — 3)/(p — 6) and P is R or B. Higher order approxima-
tions (in gradient) are obtained by linearization of the operator 1 around
RO, This expansion allows one to find explicitly that the automaton obeys
equations similar to the Navier Stokes equations. Looking for higher order
approximations generates a hierarchy of equations of the form:

(n) — 0 X (n+1) (3.10)
X=X(n)

¥

where at the first order
Y® = 3,x0 4 px© { gx© (3.11)
and where DX is the propagation term of the Boltzmann equation:
DX = (¢;.VR,c;.VB). (3.12)

Gravity is represented by GX = (¥ gk, Rj, X gp;;Bi). At this point it
is convenient to define the scalar product of two 12-vectors A' = (a!) and
B' = (b}):

12
(A'|B") = 5 albl. (3.13)
i=1

Equation (11) can be solved only if certain solvability conditions are met,
of the form:

(Zly" =0 (3.14)
where Z is a null eigenvector of §{1/8X. The solution of the first order equa-
tion is discussed in the appendix. The solvability condition or Fredholm
alternative (14) yields at second order:

ow

dpug, ad -

at

= + g1,ra(v) R + 91,82 (u)B

a Apu,
Y g (n(ﬂ)/p—azﬂ ) +0(gh V) + O(g/%,u)

a6 dlu, _ 1 @ ad
o+ L P (Do +30) (3.15)
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where @ = p(1—a(p)u?)/2 is the pressure and § = R/p is the color fraction.
The indices a,8 span the two space directions z, y. The intensity of the
buoyant forces is represented by the vectors g; p. They depend only on the
interaction coefficients gp;; and the velocity u. External forces also create
a seepage flow J,(0). We computed the gravitational force g1 p and the
seepage flow in the low density limit and to first order in the velocity u. It
is convenient to express the result in complex form:

g1.pz(w) +ig1py(w) = —% > [y;:,,-,-l;’" (1+ 8w+ Cw+ o(w’))la.m)
ig
an + iJﬂ. = “Z(glln = 81,3)9(1 e 9) + O(w) (317)

where w = u, + iy, and ¢ = exp2in/6. In equation (15),  is the shear
viscosity, already derived by this method and measured from simulations
[7]. The derivation can be found in [5] (see also [9]):

1 1
12f(1—f) 8

where f = p/6%. Although the above equations were derived in the low
density limit, we independently computed the diffusion coefficient D for
arbitrary densities using the Chapman Enskog expansion:

) -
faA-1pPEF+1) 4

This compares well with the simulations that we report below. A diffusion
coefficient is also given in [5]. The rules used in this latter reference are
slightly different but the coefficient obtained is consistent with our compu-
tations, but for the propagation diffusivity term discussed previously. At
this stage, we obtain equations that are similar to the usual fluid equations
for a mixture of two non-reacting fluids, but with some additional terms.
The fact that the CA is not Galilean invariant is reflected in three different
discrepancies with the compressible Navier-Stokes equations: (¢) in the ad-
vective term a(p); (47) in the dependence of the pressure and the external
force intensity on the local velocity; (777) in the term 85[(n /p) 8s(pu.)]. This
term produces additional contributions to the momentum flux of the form
n(ua/p)8gp. This latter symptom of the “Galilean disease” of the CA [1]
seems to have been overlooked by previous workers [9],[7].

Other terms correspond to genuine effects in a real gas mixture. The
additional flux term J,(0) in the color conservation equation tends to bring

n(e)/p= (3.18)

D(p) = (3.19)

4The —1/8 term does not appear in [5] directly in the formula given for v but can
be deduced from what is called in section 2 of this reference “higher order lattice size
corrections”. Its origin lies in the discrete character of the lattice and it is also called a
propagation viscosity. If one thinks of the flux of colored particles accross a link (it can
be written Ry — R3) the right going particles come from a site at say z but the left going
come from a site at z + ¢g. Thus the populations Ry and Rj are not estimated at the
same points, and an additional term proportional to V@ appears in the flux.
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the lighter particles above the heavier. This is a relevant effect at at-
mospheric or astrophysical scales. For convection in a laboratory setting,
however, these effects are small. In what follows, we show that there is a
corresponding limit for the CA fluid that yields a classical idealization for
buoyant fluids.

4. The Boussinesq approximation

An approximation widely used in buoyant flow is to consider the density
of the fluid and its material properties as constant except in the gravity
force term. This approximation can be shown to result from an asymptotic
expansion in some small parameters [10]. The approximation is here made
easier because the density p does not depend on the color ratio §. Here
we only have to prove that the density is approximately constant. The
thermodynamic considerations that arise in the thermal convection problem
are also avoided in the CA.

In the buoyant fluid layer, two causes can yield strong variations of
the density: (z) strong hydrostatic pressure gradient; (i7)transonic flow
velocities. The hydrostatic gradient is given by :

Vinp=gi5— (21,8 — 21,r)0 (4.2)
This suggests introducing a small parameter e:
e = gh, (4.2)

where the ratio of the depth h of the fluid layer to the gravitational ‘scale
height’ 1/g where g = |g1r — g18|- Case (1) is avoided if e << 1. To avoid
case ii) , the velocity caused by buoyant forces must be bounded. A very
likely bound is the velocity of free fall of a cold fluid lump with maximum
buoyancy:

V = (2ghA0)V? (4.3)

where A#f is the scale of color ratio variations. Thus the Mach number will
remain small if 2¢ << 1. To summarize, the density of the fluid will be
approximately constant if € << 1/2. This suggests taking the velocity scale
V and the space scale h, and rewriting equations (15). The full procedure,
as carried out by [10] in the thermal convection case, involves keeping all
the small terms in the equations and expanding the solutions in powers of €.
In this short presentation, we simply give the rescaled equations at lowest
order in €:

V'v'=0(e) (4.4)
o' ' ) 1t
¢ TuViale)u) = —V'e'+eyb
+gl?z‘;:|?2 Au' + O(EU) (4.5)
al
Fis u'\V'0 = smA'0+O(eh)) (4.6)
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where v = n/p, v' = u/V, z' = z/d, t' = tV/d. Dropping all the terms of
order ¢ yields the classical Oberbeck Boussinesq (OB) equations [11]. It is
remarkable that all non Boussinesq terms disappear at small € simultane-
ously. In addition, taking the small € limit also ensures that the expansion
of the one particle distribution function in powers of the Mach number
remains valid.

The usual choice in convection theory [12] is to take the Rayleigh num-
ber Ra and the Schmidt number ¢ as the two independent dimensionless
numbers. For our model those numbers would be:

- gABR®

R
@ Dy’

oc=v/D (4.7)
However, before the CA can model convection at such values of the param-
eters, several problems must be solved:

(2) Time dependent motion and stability of stationary motion could be
adequately computed only if the advective term a(p,) is set back to 1. A
tentative solution to this problem is presented in section 7 of this paper.

(b) The Schmidt number we obtain is rather low, of the order of 1/12
in the low density limit. It can, however, be easily increased by introducing
collisions that exchange the color but not momentum, like

i+ bie —— bt rigy (4.8)

Assuming these problems are solved, what would be the maximal Rayleigh
number in a simulation? For a 2d CA computation with e =0.1,and o =~ 1,
the answer is:

B2
10 2®
where h is the number of sites in the vertical direction.

Ra s =~ (4.9)

5. Numerical investigation of some kinetic properties

We have numerically investigated the diffusion properties of the CA mix-
ture. In all these computations the gravity was set to zero, and there was
no large scale momentum. From the assumption of molecular chaos the
mean free path can be easily estimated :

’\mfp = 1/)‘mfp2 + l/hmfps (5.1)
where
Amfpz = 6/p(1 - r/6)7* Amfps = (6/0)*(1 - p/6)~° (5.2)

These expressions are in good agreement with the measurements. We
also measured the diffusion coefficient, using a cavity of size 64 x 256 with
periodic lateral boundaries and rigid upper and lower boundaries. The color
was fixed on the upper and lower boundaries. The color fraction profile was
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Figure 3: This plot shows measurements of the flux of colored particles
in a nonequilibrium situation. The coefficient 8 is proportional to the
number of particles crossing a given plane. The full line shows the
prediction of the small gradient expansion, and the measured points
were obtained as explained in the text.
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Figure 4: Contour lines for the color ratio and the velocity field in a
closed gap with heating from the side. (a) t= 2046; (b) t= 4000.

found to be linear except for the lowest density measurements, where the
mean free path was a large fraction of the total size. The color flux was
measured at several heights. This yields an estimate of the dependency of
the flux on the color gradient: Xg)_ 1 = B/2V8¢ + c.c. in the absence of
density or momentum gradient. We plot the numerical result for § along
with the theoretical prediction (consistent with (19)) on figure 3.

6. Flow simulations

We used the model described above to simulate fluid flow. The gravity
kicks occurred every time step at preselected sites of the automaton. These
sites were regularly spaced, and we took care to maintain the “scale height”
parameter € small enough. We used a Sun-3 which gave a speed of about
50 000 site updates per second. The density was always set to 1 and the
scale height parameter ¢ was set to 0.2. This results in a Schmidt number
about 0.13. In the first simulation, a square box 1024 x 1024 was used with
four rigid walls. The left wall was blue or “cold” while the right one was
red or “hot”. The conditions on the bottom and top walls amounted to fix
the color ratio to @ = 1/2. The evolution of the flow is shown on figure 4.
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Figure 5: Benard instability. The instability was initiated by a small
perturbation near the cell center. The circulation is rapidly created

The characteristic circulation is a well known phenomenom that occurs at
any Rayleigh number. In this case the Rayleigh number based on the box
size was about 6000.

In the second simulation the box was periodic in the horizontal dimen-
sion while the upper, rigid, plate was cold and the lower was hot. The
box was of size 512 X 1024 and the Rayleigh number was also about 6000.
We have seen the Rayleigh-Benard instability develop as shown on figure
5. Its amplitude grows rapidly as expected in a low Prandtl number fluid
and the Mach number reaches 0.3 in 4000 time steps. These simulations
show that convective fluid flow is indeed realizable with cellular automaton
fluids. Further simulations are in progress on faster machines and should
allow one to treat more difficult situations such as complicated boundary
conditions.

7. Pseudo Galilean invariance in irreversible models

The model with have worked with so far has the serious flaw that the ve-
locity advection term a(p)u- Vu is different from the true term in the Euler
equations. A method that allows one to restore the correct value of that
term is presented below. It has the interesting property of involving rules
which are not reversible, i.e., for each collision configuration the configura-
tion obtained by changing the arrow of time does not necessarily produce a
collision. In this new model we introduce center particles, which are parti-
cles resting motionless on a lattice site. These particles may be red or blue
but only one is allowed at each site. They normally collide with the other
particles in the same way as in the models with centers introduced by FHP
[2]. However the collisions that create those particles are not symmetrical
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Figure 6: Collision rules for the irreversible model. The two first
diagrams show the irreversible collisions on centers. The last diagram
indicates how gravity is implemented in this model.



Buoyant Mixtures of Cellular Automaton Gases 45

with those which destroy them: see figure 6. Also, the gravity kicks can
now be imposed only on centers, making the effect more symmetrical. The
probability of creating a center is always one, while the probability of de-
stroying it is /. As a result a steady state is obtained where there are more
centers than in the reversible models.

An interesting situation occurs in the low density limit when one sets
o =1/6. To explain the derivation of the new hydrodynamical equations,
we first redefine the fundamental quantities: we let R;, B; be as before the
distribution of moving particles for ¢+ = 0,5 and Ry, B; be the distribution
of centers. We define p and u as above, and p, be the density of center
particles. R and B are as above the density of red and blue particles,
including the centers. Then for vanishing p we find that the lowest order
in the Chapman- Enskog expansion is, at third order in u:

B w %(1 +4u.¢; + 8u.c; — 2u?) R = %(1 — 2u?) (7.1)

with analogous expressions for the blue particles. It is seen that half of the
particles are centers in the zero velocity state. Proceeding as in the previous
case, we obtain the hydrodynamical equations. Computations are similar
to those of the appendix but with 14-vectors. We find equations identical to
the hydrodynamical equations above, but with a{p) = 1 + O(p). Thus the
Euler equations are Galilean invariant for our model , although it is not
Galilean invariant at the microscopic scale. This is what we call pseudo
Galilean invariance. The pressure is now @ = p/4, which can be easily
understood by the fact that only half of the particles, the moving ones,
contribute to the pressure. We find a shear viscosity n = 3/7, compression
viscosity ¢ = 3/28 and a color diffusivity D = 6/5. The color diffusivity is
clearly smaller than in the reversible case. This can be easily explained if
one notices that there are now many more possible collisions, which reduces
the mean free path.

The velocity of sound is now ¢, = 1/2, but contrarily to the reversible
case, it will now depend on the density. The steady state in the absence
of momentum can be easily obtained for any density and the velocity of
sound so deduced fits well with numerical simulations communicated to us

by D. Rothman .

We thus have to caution that the results obtained for the irreversible
models might depend strongly on the density. In particular, the pseudo
Galilean invariance is lost for p = 1. Another problem could be the lack of
stability of the steady state. The stability of the equilibrium state in the
reversible case is generally proved through the Boltzmann H theorem, as
shown by Hénon [13]. However, the proof requires reversibility and cannot
be extended to this model. This appears not to be a problem in low density
as all the eigenvalues of the Boltzmann operator are negative or zero and all
the diffusivities are positive. These latter facts are necessary for stability.
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8. Conclusion

We have presented a lattice gas model that yields large scale equations
similar to the Boussinesq equations, but for the coefficients of the nonlinear
terms. The model is much simpler than models with several velocities
and requires interactions between nearest neighbors only. The equations
obeyed by the model can be obtained by kinetic theory and the derivation
of diffusivity coefficient is consistent with the results of direct numerical
simulations. Preliminary simulations allow one to see typical buoyancy
driven flows. The model thus appears to be a reliable tool for the study
of moderate Rayleigh number flow. It is, however, necessary to increase
the complexity of the model in order to restore Galilean invariance. This
is done using a nonreversible model which is shown to yield a stable steady
state.

We believe that the state reached so far by the lattice gas theory does
not render justice to its enormous potential applications. The possibility of
having very simple models of the microscopic physics should allow one to
simulate many phenomena that cannot be attained by macroscopic equa-
tions or are not obtained very efficiently. Many complicated phenomena of
this type exist in mixtures, for instance problems with separation of compo-
nents, surface tension and impurities. The work done so far should provide
a basis for the development of more complicated models.
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Appendix A. Inversion of the linearized Boltzmann operator

We look for a solution of equation (10) at the first order, in terms of the
conserved quantities R, p,u. We represent those solutions as vectors X =
(R1, B1, ..., Rs, Bs). The linearized Boltzmann operator can be written at
lowest order in u and p:

601
Fx x=x0 = Q' (A1)
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where

(-2 0 p 0 RR -2R -2R R R p 0)
0 -2 0 p B B —-2B —-2B B B 0 p

p 0

0 p

R R

ao-1| B B

12| —2R -2R

—2B -2B

R R

B B

p 0

\ 0

(A.2)
Notice that the upper row of two by two blocks is reproduced at each level,
only shifted by two positions. This is a result of rotational invariance.
The missing elements are easily deduced by noticing this fact. The right
eigenvectors of (V' are defined by

H'Z.- =NZ; (A3)
and are
Zl' — (R,B, &’iR)siBi"')fle fl‘sB] (A'4)
where &, = exp(2imrk/6), and
Zl'+3 = (11_11 Eiv—Eisnis f,s,"f.s] (A'5)

Similarly, the left eigenvectors of {)' are

Za't = (la 1, & 5y € iy rems Ein ii)zias = (B: —R, Bt 3, —R&.ayx B‘E—E-i; _rfii)
(A8)
and the eigenvalues are

Ni=—2p+Ep+Ep—2p6—2p8 + p€* +pE¥Xie = —20+p(E+E) (AT)

There are four zero eigenvalues, corresponding to invariant conservation:
mass, color and momentum, plus a spurious zero eigenvalue (A;). The
spurious eigenvalue is a result of the fact that in the low density limit we
consider only two particle collisions. These collisions conserve momentum
line by line and thus preserve additional invariants. To carry out the cal-
culations in the low density limit we require an additional condition:

(Zy®) =0 (4.8)
This is verified if gg) = gg} = 0, where we use the reduced rates:

Q'}(an) = Zg}h-f" (A,g)
)
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The linearized Boltzmann equation (3) can now be solved using the general

formula:
x = Z (Z”TY“))
a0 (Zi12:)
The result is best expressed as a sum of two terms:

% (A.10)

X= x4 x@®) (4.11)
where

) REY

i = 53 23R + 25\ B — 38;pw) + c.c. + 0(8w)  (A.12)

and c.c. stands for complex conjugate. XU s obtained by exchanging R

2j,a
and B in the above expression. Also

() ¢ g
Xojt1p = 3 [(F1,r — T1,8)0(1L —0) — 3323}+? [(Gor — Gap)0(1 — 8)
— 3pwd;f)+ec.c.+0(dw) (A.13)
and X = -x5 4, (A.14)

Writing the linearized Boltzmann equation (10) at next order order, we
obtain

1 1
Y@ =g, x0 4 px® 4 oxM 4 5D(le((?) i Eatz?X(o) +8, DX, (A.15)

The hydrodynamical equations are now obtained as as the solvability con-
dition for this equation. The momentum conservation is represented by the
equation:

(Zziy® +y®) =0, (A.16)
To write the color conservation equation, it is useful to define the null
eigenvector Z'f = (1,—1,...,1,—1). Then (14) implies

(ZMyW+y®) =0 (A.17)

It is not necessary to take all the terms in equation (15) into account. The
first term on the r.h.s. 8, X1 disappears in all the scalar products. The
next term is of order 1/p and dominates all the others in the low density
limit. If one wishes to find all the relevant terms outside the low density
limit, they must be investigated one by one. A quick check yields the result
that all these terms provide contributions which are of higher order in Mach
number, so that it is consistent to neglect them as we have already made
an expansion in small u. Equations (16) and (17) can then be simplified
into

(zly® + px®) =0 (A.18)
and

(z" YW+ pxy =9 (A.19)

This yields the hydrodynamical equations (15) of the text.
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