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Abstract. The local structure theory (G utowitz et al. ISJ) is an
analyt ica l method for the determination of the statistical properties
of cellular automaton evolution. In this paper we develop the local
structure theory for mult i-dimens ional Euclidean lattices. The local
st ructure theory for the Game of Life [1] is st udied in detail. Some
statistica l properties of this cellular automaton are well approximated
by a low orde r th eory.

1. Intr od uction

Much of the current inte rest in cellu lar automata is due to their potenti a l for
modeling physical and biological processes ([13, 141 and refere nces therein).
T hese models are typically formulated with cellular automata on lat t ices
in more than one dimension. Much of the mathematical work on cellular
automata, on the other hand, concerns one-dimensional cellular automata.
In this paper we begin to bridge this gap by showing how the local structure
theory (Gutowitz et al, [5)) may be used to study multi-dimensional cellu lar
automata.

The local structure theory is a generalization of the mean-field theory
Ill, 131 for cellular automata. It is based on the assumption that the
correlations generated by cellular automaton evolution decay with distance.
Previously [5], we showed that this assumption leads to the derivation of
formulae fOT the assignment of probabilities to blocks of sta tes of all sizes on
the one-dimensional lattice, given a consistent assignment of probability to
blocks of a fixed finite size. These formulae allowed us to define a sequence
of measures which approximate an arbitrary shift-invariant measure. We
called these measures finite block measures.
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In one dimension a finite block measure is equiva lent to a Markov pro­
cess wit h memory n, also known as an n-step Markov process (Gutowit z et
a l, [51, Brascamp [21, Fannes and Verbeure [4]). The Markov process for­
mu lation allows a great deal of analytical machinery to be applied to these
measures. Hence their properties are re latively well known. With more
than one spatia l dimension , it is not natural to associate spatial extension
of probabilities with iter at ion of a temporal proc ess. However , on a mu lt i­
dimensional Euclidean lattice, it is st ill possible to est imate the probability
of a large block in te rms of the probabiliti es of the smaller blo cks it contains.
In this paper we present a formula which uses the prob ab ilities of blocks
of a fixed finite size to est imate the probab iliti es of blocks of larger sizes .
From this, cons t ruction of the local st ructure theory for cellular automata
on the la t tice follows immediately.

In [5] we discussed t he Bayes ian exte ns ion process in one dimension.
We defined two operators Land R which produced an (n - Ij-bl ock by
t runcat ing an n-block from the left or right respectively. T hese operators
allowed us to define an operator 1(' which mapped an order n blo ck proba­
bility function Pn to an (n + I )-block probability fun ction Pn+l as follows:

{

P.(RB)P. (LB) if IBI- n + 1 and P (RLB) > 0
Pn(RLB) - n

.- (Pn) (B l '" 0 if IBI = n + 1 and Pn(R L B ) = 0
Pn(B) if IBI :s n.

We observed t hat repeated applicat ion of 11" to Pn produces a collect ion of
func t ions {Pm}m ::: n. Members of the sequence {Pm} ass ign probabilities
to blocks of all sizes in a manner which satisfies the Kolmogorov consistency
conditions. T hus t his sequence defines a sh ift-invar iant measure on the
set of all one-dimensional configurations (Denker [3]). In more than one
dimension, simple gene ralizat ions of the procedure do not in general provide
"block probabilities" t hat sa t isfy Kolmogorov consistency. Nevertheless,
the procedure still provides approximate probabilities that may be used as
the basis of a higher dimensional loca l structure theory. We will need some
definitions to describe this more general sett ing.

2. Fundamentals, Notation

2.1 Lattices, Frames , Blocks

Let L be a discrete Euc lidean lat t ice of dimension k, with a t ranslation
group Gil' Examples are the one-dimensional lat t ice of integers Z with the
t ranslat ion group of left and right sh ifts , and the two-dimensional square
latt ice Z X Z with the translation gro up of sh ifts left , right, up and down.

Each cell of a lattice may be labeled with one of a fin ite number of
symbols {S"Si, ." ,S' } E S, usually denoted {O, I, ... , I- I }.

A frame F is a finite subset of (not necessarily contiguo us) cells of
L . The collection of all frames F is closed under intersect ion n, union U,



Local Struct ure Theo ry in Mo re Than One Dim ension 59

difference - , (FI - F2 == FI n Fi) , and the action of GL. Frames have a
defin ite position in the lattice, but are unlabeled by states.

A block B is an assignment of state labels to the cells of a frame. The set
of all blocks B for a given frame F will be deno ted BF. Blocks correspond
to cylinder sets . If F, C F, then a block B, of F, may be defined by
rest ricting a block B 2 of F2 to Fl ' We write B I = B 2 ! Fl ' In addit ion, GL
has a natural action on blocks; 't in GL maps mem bers of B F to members
of B,F.

3. Block p rob ability fun ctions

A block probabjJjty funct ion PF for a frame F is an ass ign ment of proba­
bilit ies to all iabe lings and partiallabe lings of F. T hus, it is a m ap from all
B E BF (for each F' ~ F ) to the reals. It must satisfy the Kolmogorov
consistency con dit ions:

and, for each BI E bbF Il

PF(B) ::; 0

L PF,(B) = 1
BEB,.,

(3.1)

(3.2)

(3.3)PF(BI) = L PptB)
BIBIPI=Bt

Note that it suffices to define PF on B E BFi condit ion (3.3) then forces
unique assignments of values to par tiallab elings of F. Also, (3.2) is a spec ial
case of (3.3) with F, = 0.

4. Bayesian extension in m ore t han one d imension

T he essence of Bayesian extension in one dimension is t he maximum entropy
estimation of block probabilities in te rms of the probabili t ies of smaller
blocks they contain. That is, Bayesian extension solves a variational prob­
lem in which the entropy is maximized subject to the Kolmogorov consis­
tency constraints (3.1, 3.2 , 3.3), and previously assigned probabiliti es of
smaller blocks. In one dimension this variat ional problem solves uniquely
in terms of rat ional funct ions of small block probabilit ies (Brascamp [2J).
Moreover, exte ns ion of n-b lock probabilities to m-block probabilities m > n
is simply obtained by recursive applica t ion of one step extens ion.

In more than one dimension maximum ent ropy extens ion is considerab ly
more delica te. T he variat ional problem t ranslates int o a system of po ly­
nomial equat ions, whose explicit solut ion in terms of radica ls is in general
not pos sible. Furthermore, extension to each lar ger frame typically requires
solut ion of an entirely new (and larger) system of equat ions. In this pa­
per we do not solve the more general prob lem. Ra t her , we approx imate
the maximum ent ropy exte ns ion by a formu la wh ich is a straight-forward
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analog of the one-dimensional formula . As in the one dimension al case, t he
formula is rational in smaller block probabilities.

To describe the approximat e Bayesian extens ion of k-d imension al blocks,
let us restrict at tenti on to blocks on frames wh ich are parallelepipeds. On
these blocks, define operators L; an d R; that t runcate from the left or right
resp ectively in t he j th dimension. The operators L1, ... ,Lk and Rt, ... ,RJc
all commute.

To define Bayesian extension along dimension j I let F be an (i 1 x ... x i .lJ
-frame, and Pp a block probability function on F . Let F.j be an extension
of F by one unit a long dimension j . Then the B ayesian extens ion of PF

along dim ension j is defined as the following function on blocks of F.j :

{

Pp(R;BjPF(L,B) ' f IBI E B b t B E B .
Pp(LjB) I F . , U F ,

"j(PF ) (B) '" 0 if Pp(RiLiB) = 0
P, (B ) if B E n-,

In one dimension , Bayesian extens ion always produces functions which
satisfy all of th e Kolmogorov consis tency cond itions ; i.e. , Bayesian exte n­
sion always produces block probabili ty functions. In more than one di­
mension t his is not always the case. Examples may be constructed in
which either the normalization condit ion (3.2) or local sh ift invariance is
violated (Schlijper [9, 1OJ) and personal communica t ion) . IT correlations
exist in at most one dimension , then t he problem may be reformu lated as
a one-dimensional problem in a larger state space , and no such patholo­
gies exist . However, wh en correla t ions ex ist in two or more dimen sion s, (4,
above) must be modified such that condition (3.2) is satisfied. To satisfy
the requirement of shift invariance withi n the extended frame, it suffices
to average block probabilities on frames which are related by a shift . In
this paper we will use the term Bayesian extension to refer to extension via
formula (4, above) appropriately adjusted so that th e normalization and
local shift invariance condit ions are satis fied . The adjustment used will be
described in conjunct ion with the numerical exper iments.

5. Finite block measures

Consider a parallelepiped frame F and an infinite sequence of frames be­
ginning with F which extends along each dimension in turn. This sequence
of frames grows with out bound in all d imens ions. Now suppose it possible
to use Bayesian extension to define a block probability funct ion PF on each
frame in the sequ ence such that each PF is consistent with block probabil­
ity functions on frames contained in F . In this case it is poss ible to assign
probabilities in a consistent fashi on to all fra mes. By the Kolmogorov con­
sistency theorem (Denker [3)), these probability ass ignments define a unique
measure on th e ent ire lattice L, which we will denote I'(PF). As in 151 we
call such measure a finite block measure. If some infini te extension exist s
th en a shift-invariant extension exists by averaging an (infini te) measure
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with respect to the shift . Since shift-invariance is enforced at each stage of
the Bayesian extension process, if Pp is shift-invariant, so is Il(Pp ) .

Given a block probability function PF, is it possible to define Il(PF)? In
more than one dimension, the quest ion is in general undecidable (Schlijper
[9]). However, if correlations exist in at most one dimension the construc­
tion reduces to the one dimensional case . Furthermore, at least some sets
of block probabilities with non-trivial correlation in more than one dimen­
sion may be defined using the methods of J ulesz et aI. [6] and Victor [12].
General properties of entropy (and linearity of the Kolmogorov consistency
constraints) imply that if any extension to a finite block measure exists then
a unique maximum-entropy extension exists . Thus, although Bayesian ex­
tens ion, n-step Markov processes and maximum entropy extensions coincide
in one dimension, these concepts are distinct in higher dimensions.

6. T he local str uctu re theory

Here we summarize the development of the local structure theory in the
present context. For a fuller discussion see [5]. Let B be a block on some
frame in FL. The action of a cellular automaton T on an arbitrary GF
-invariant measure Il may be defined (Lind [7J) by

(6.1)

Since a cellular automaton is a local map, the inverse image of a block
is a collect ion of finite, though typically larger, blocks. Since the inverse
image of a finite block is finite, we can define a finite approximation to
(6.1). Let us first assume that the restricti on of Il to a frame F is a block
probability funct ion which may be infinitely extended. That is, we assume
that Il may be approximated by a finite block measure IIp. We may operate
on IIp with the cellular automaton, and then again restrict the resulting
measure to F. H this new assignment of probability to blocks on F is
extendable, we may repeat the process.

We introduce an operator, Up, which operates on measures. Op is called
the scramble operator for a frame F. It maps a measure Il to the finite
block measure "F(Il) which agrees with Il on all blocks of the frame F. The
scramble operator, combined with the action of the cellular automaton map
on measures , defines the local structure operator Ap(r) by

(6.2)

4p (r ) maps the set of finite block measures on F into itself, in accor­
dance with the cellular automaton rule.

In order to define AF (r )(Il), an opera to r which approximates the action
of a cellular automaton on measures on infinite configurations, we assumed
th at a block probability function on F could be consistently extended to
block probability funct ions on frames of all larger size. In more than one
dimension, there is no guarantee that a block probability function is ex­
t end able to a finite block measure Il(PF) on infinite configurations, and
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O"F (J.L ) is not necessar ily defined. However, cellular automata can also be
characterized by how they map (finite) block probability functions to ot her
block probability functions. This motivates an interpretat ion of the local
structure operator AF (T) as an operator on block probability functions Pp

rather than on finite block measures I'(PF ) .

Given a cellular automaton T, a block probability function Pp and a
block B on F, it is natural to assign ,(PF}(B) to be the probability of
, -I(B), as suggested by equation (6.1) . , -I(B) is a union of blocks B '
on a larger frame F' which contains F. The probability of each such B' of
F' is not given directly by Pp , but may he estimated by extension of Pp

to a block probability function on F' . Thus a finite extension suffices to
estimate the action of T on a block probability function Pp, for any finite
frame F. This construction forms the basis of the computations described
below.

7. Local structure theory on the square lattice

7.1 The mean-field theory

The mean-field theory for cellular automata assumes that no correlat ion
between states of cells is generated by cellular automata evolution. Th is
assumption leads to a simple formula for the dens ity of 1's at time t + 1 in
terms of the density at time t (Schulman and Seiden [n il Let # O(B) an d
# I(B) be the number of O's and I's in a block B, and P, be the density of
1's at time t. The mean-field theory on the square lattice states that

PI+! = L: ,(B)ptl(B)(I - p,)#O(B),
B

(7.1)

where the sum is taken over all (3 X 3)-blocks . The density at t ime t + 1
is a polynomial function of the density at time t. The fixed points of this
polynom ial recursion equat ion are taken as an approximat ion to the density
in the limit of large t ime . As we showed previous ly (Gutowitz et aI. [SIl,
the local structure theory on a (1 X I )-frame is identical with the mean-field
theory.

8. T h e (1 X n) -Theory on the Square Lattice

Let B be a (hor izontal) (1 x 2)-b lock on the square lat t ice, and, a cellular
automaton which operates on the lattice. The inverse image of B under r

is a union of (3 X 4)-blocks. To implement the (1 X 2)-order loca l structure
theory, we need to compute by Bayesian extension the probability of the
(3 X 4)-blocks in terms of probabilit ies assigned to (1 X 2)-blocks at a given
generation. Then, by summing over the probabilities of the (3 X 4)-blocks
in the inverse image of B, we obtain an estimate of the probability of B at
the next generation.

Let us call a sequence of frames { F; } a Bayesian sequence if each
Fi+l is an extension of Fi along some single dimension, and write ... <I Fi
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<i F ;+! <i .... By using the Bayesian sequence (1 X 2) <i (2 x 2) <i (2 X 3) <i
(3 X 3) <l (3 X 4), we obtain an expression for the probability of a (3 X 4)­
block in terms of the probabilit ies of its (1 x 2)-sub-blocks. Since only
one-dimensional correlation may be exp ressed in terms of (1 x 2)-blocks,
(3) needs no adjustment . We will use the following notation: The rows of a
(3 X 4)-block are numbered from top to bottom and the columns from left
to right . A (horizontal) (1 x 2)-block whose leftmost cell is at position i, j
in the (3 X 4)-b lock is denoted B~ . Likewise, a (singleton) (1 x I )-block
at position i , i is denoted Bi,. . Using this notation, the probability of a
(3 X 4)-block is est imated by

(8.1)

In the (1 X 2)-t heory rows do not interact via t he block probability
function, only v ia the cellular automaton rule itse lf. In essence, the block
probability is the product of three one-dimensional funct ions . Thus we may
predict that the (1 X 2)-theory could only account for the generation of cor­
relation in one direction. This predict ion is supported by the exper iments
discussed below.

The (1 X n)-t heory for general n is constructed in the same way as th e
(1 x 2)-theory.

9. T h e (2 x 2)-theory

The inverse image of a (2 x 2)-block under a nearest neighbor cellular
automat on on the square lattice is a union of (4 x 4)-blocks. A Bayesian
extension sequence leading from a (2 X 2)-block to a (4 X 4)-b lock is: (2 X 2)
<i (2 X 3) <i (3 X 3) <i (3 X 4) <i (4 X 4). We will denote a (2 X 2)-b lock
whose upper-left cell is at posit ion i, j in a (4 x4)-block by B;; . A (vertical)
(2 x I)-block whose top cell is at posi tion i,j is denoted Bi,.. B~ and B:,.
have the previously assigned meanings. Using this notation, the probability
of a (4 X 4)-block is est imate d in te rms of (2 X 2)-b lock probabilit ies by

[££ P(B;;)] lUgP(Bt;)]

[uft P(Bi; )][£;UP(Bt)] (9.1)

That is, we mult iply toge ther all possible (2 X 2)-b locks in the (4 X 4)­
block, divide by the pr obability of the (1 x2)- and (2x I )-b lock intersections,
and then multiply by th e probabiliti es of the intersections of the (1 X 2)
and (2 X I)-blocks , which are the cent ra l (1 X I)-blocks.

In the one-dimensional theories, there is no possib ility of vio lation of the
normalization cond it ion (3.2) . In the (2 X 2)-t heory, there is this poss ibility
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(Schlijper [9,10]). In the experiments described below, normalization is
preserved as follows: Equation (8) is used to ass ign values to all (4 X
4)-blocks save the block composed of all D's. The sum of these values
subtracted from 1 is then assigned to the 0 (4 x 4)-block. Since t he 0
(4 x 4)-block is a predecessor only of the 0 (2 x 2)-block, we can make the
same adjustment by computing the probabilities of the inverse images of
all (2 x 2)-blocks save that of the 0 (2 x 2)-block. Since t he 0 (2 x 2)-block
is the (2 x 2)-block with the largest number of predecessors, this mane uver
markedly reduces the amo unt of computation needed at each ite rat ion of
the local structure theory.

In the experiments described below the amount of adjustment needed
is quite small. If we used the fixed-point (2 x 2)-b lock pro babilities of the
(2 x 2)-theory (see below) to estimate t he probabilities of all (4X4)-b locks
via equat ion (8), the sum of these estimates is 1.02. At small time less
correlation has been generated by cellul ar automaton evo lut ion , and less
adjustment is needed.

10. Empirical studies of the Game of Life

The Game of Life 11j is an oute r total ist ic 181 cellular automaton on the
square latti ce. The neighborhood of a cell includes the eight cells with
touch the given cell. Under the Game of Life rule, if a cell is in state 1 and
has either two or three neighbors also in state 1, then it remains in state l.
If a cell is in state a and has exactly three neighbors in state 1, then it goes
to state 1 at the next generation . In all other situ ations, the cell goes to
state aat the next generation. As is well known [1, 8,11], this rule has very
complicated dynamical behavior. In this section we study the evolution of
low order local structure operators for Game of Life rule. We compare the
probabilities assigned to blocks by these operators at each generation to
Monte Carlo estimates of the same probabilities.

Figure la shows the density as a function of time as determined by
Monte Carlo sampling, and the (1) , (1 x 2),( 1 x 3), and (2 x 2) local st ru cture
theory . The Monte Carlo results are derived from sampling 20 (100 x 100)­
blocks with periodic boundary conditions . These blocks were generated to
be unbiased and uncorrelated. The large time density is 0.37 for the first
order (mean-field) theory, 0.30 for the (1 x 2) and (1 x 3) theories, and 0.036
for the (2 x 2)-theory. The Monte Carlo density appears to be st ill decreas­
ing after 512 generat ions. Shulman and Seiden IUj , using (presumably
more extensive) Monte Carlo computations report the large time densi ty
as 0.029 ± 0.009. The one-dimensional theories are only slightly better at
predicting limit densi ty than the [O-dimenslonal] mean-field theory. T he
fully two-dimensional theory is much better, however. Its predicted limit
density is within experimental error of Schulman and Seiden's empirical
estimate.

There are similar improvements in the est imates for blocks on frames
of larger size. F igure 1b and 1c show the evolution of two selected (2 x 2)-
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Figure 1: The evolution of the density and two (2 x 2)-block proba­
bilities under Monte Carlo simu lations of the Game of Life rule, an d
th e (I) , (I X 2), (I X 3) , and (2 X 2) - local structu re th eory. (a)
the density P(I ), (b) , the (!V- block, and (c) the (~~)-block . Proba­
bi lities are followed for 512 generations from unbiased , uncorrelated
initial conditions. The (2 X 2)-b lock probabilities a re sca led by 2'. ± 1
standard deviation is indi cated at each generation.

65



66

1.00

0.83

0.61
~

.-
~ 0.50c;
v
a

O. ~3

0.11

Howard A. Gutowitz an d Jonathan D. Victor

0.00
10 It ...

Ge neralio" Number

Figure 2: Figure la on an expan ded time sca le. Evolution of the
density for 16 generations under the Game of Life rule.

block probabilit ies: the (A~)-block and the (~)-block . T hese da ta serve
to emphasize several points concerning the density estimate. First, that
the (1 X 2) and (1 x 3)-theories are hardly dist inguishable. Second, t hat
the (2 X 2)-theory is much bet ter at predicting large t ime probabi lities
than the lower dimensional theories. While the one-dimensional theories
are typically better than the zero-dimensional theory, this is not always
the case (figure lc) . All orders of t heory accur ate ly predict the dens ity
at the first gene rat ion (figure 2) . T he density at the first generation is
approximately 0.27. This is simply the fraction of (3 x 3)-blocks which yield
1 upon application of the ce llular auto maton. As correlat ions develop , all
orders of theory studied depart from the empirical curve. The zero and one­
dimensional theories rise to their final values. The (2 x 2)-theory proceeds
in the correct direction (downward), but at a much fast er rate than the
cellular automaton itself .

The (2 x 2)-theory is the firs t in the sequence of theories which connec ts
correlat ion in the two dimensions. Bayesian extension followed by an ad
hoc adjustement to ensure normalizat ion resul ts in a dramatic improve­
ment in the block probability est imates in the (2 X 2) case even though
the (1 X n)-theory rests on a rigorous maximum-entropy extension and the
(2 X 2)-t heory does not. It is illum inating to cons ider two dimensional con­
figurations which are obtained by simply copying a one dimensional vertical
configurat ion to all positions horizontally. The Game of Life maps the set
of such "bar-code" configurations into itself. On these configurat ions the
Game of Life acts as the one-d imensional r = 1 rule 22 on vert ical cross­
sect ions. We have previously demonstrated [5] that the one-dimensional
loca l str ucture theory of low order accurately predicts the stat istica l be­
havior of rule 22. Th is does not say however that the (1 X n) -theory is an
accurate representation of the action of the Game of Life on this special set
of configurations. The one dimensional theo ries cannot te ll that the con-
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figurat ions have a un iform structure in the hori zontal direction, however
sens it ive they may be to correla t ion in the vertical direction. Hence, even
an approximate method of relating structure in the two dimensions may
result in improved predic tions.

11 . Conclusions

Clearly, th is paper does not exhaust the possibilities inherent in its subj ect
mat te r. Topics of current research inte rest include the following: What
do the higher order t heories for complicated rules like the Game of Life
look like? How does the geometry of a lat tice shape the behavior of cel­
lular automata on that lat t ice? What is the relationship between exact
maximum-entropy extension and its approximation by Bayesian extension?

When cellular automata are use d as models of physical processes, th e
question ar ises whether the model adequately captures the behavior of the
physical system. In the same way, one is faced with the question of whether
the local structure theory adequately captures the behavior of the mod el.
If it does, benefits may accrue from working with the local structure ap­
proximations rather than the dir ectly with t he cellular automaton itself in
that analytical techniques may replace empirical techniques.
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