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Abstract. The local structure theory (Gutowitz et al. [5]) is an
analytical method for the determination of the statistical properties
of cellular automaton evolution. In this paper we develop the local
structure theory for multi-dimensional Euclidean lattices. The local
structure theory for the Game of Life [1] is studied in detail. Some
statistical properties of this cellular automaton are well approximated
by a low order theory.

1. Introduction

Much of the current interest in cellular automata is due to their potential for
modeling physical and biological processes ([13, 14| and references therein).
These models are typically formulated with cellular automata on lattices
in more than one dimension. Much of the mathematical work on cellular
automata, on the other hand, concerns one-dimensional cellular automata.
In this paper we begin to bridge this gap by showing how the local structure
theory (Gutowitz et al. [5]) may be used to study multi-dimensional cellular
automata.

The local structure theory is a generalization of the mean-field theory
[11, 13] for cellular automata. It is based on the assumption that the
correlations generated by cellular automaton evolution decay with distance.
Previously [5], we showed that this assumption leads to the derivation of
formulae for the assignment of probabilities to blocks of states of all sizes on
the one-dimensional lattice, given a consistent assignment of probability to
blocks of a fixed finite size. These formulae allowed us to define a sequence
of measures which approximate an arbitrary shift-invariant measure . We
called these measures finite block measures.
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In one dimension a finite block measure is equivalent to a Markov pro-
cess with memory n, also known as an n-step Markov process (Gutowitz et
al. [5], Brascamp [2], Fannes and Verbeure [4]). The Markov process for-
mulation allows a great deal of analytical machinery to be applied to these
measures. Hence their properties are relatively well known. With more
than one spatial dimension, it is not natural to associate spatial extension
of probabilities with iteration of a temporal process. However, on a multi-
dimensional Euclidean lattice, it is still possible to estimate the probability
of a large block in terms of the probabilities of the smaller blocks it contains.
In this paper we present a formula which uses the probabilities of blocks
of a fixed finite size to estimate the probabilities of blocks of larger sizes.
From this, construction of the local structure theory for cellular automata
on the lattice follows immediately.

In [5] we discussed the Bayesian extension process in one dimension.
We defined two operators L and R which produced an (n — 1)-block by
truncating an n-block from the left or right respectively. These operators
allowed us to define an operator m which mapped an order n block proba-
bility function P, to an (n + 1)-block probability function P,; as follows:

EalRBVALE) it |B| — 41 and Po(RLB) >0
m(Pa) (B) =4 0 if |[B|=n+1and P,(RLB) =0

Pa(B) if |B| < n.

We observed that repeated application of 7 to P, produces a collection of
functions {P,,}m > n. Members of the sequence {P,} assign probabilities
to blocks of all sizes in a manner which satisfies the Kolmogorov consistency
conditions. Thus this sequence defines a shift-invariant measure on the
set of all one-dimensional configurations (Denker [3]). In more than one
dimension, simple generalizations of the procedure do not in general provide
“block probabilities” that satisfy Kolmogorov consistency. Nevertheless,
the procedure still provides approximate probabilities that may be used as
the basis of a higher dimensional local structure theory. We will need some
definitions to describe this more general setting.

2. Fundamentals, Notation
2.1 Lattices, Frames, Blocks

Let L be a discrete Euclidean lattice of dimension k, with a translation
group G);. Examples are the one-dimensional lattice of integers Z with the
translation group of left and right shifts, and the two-dimensional square
lattice Z x Z with the translation group of shifts left, right, up and down.

Each cell of a lattice may be labeled with one of a finite number of
symbols {s,,s1,...,8} € S, usually denoted {0,1,...,{ —1}.

A frame F is a finite subset of (not necessarily contiguous) cells of
L. The collection of all frames F is closed under intersection [, union U,
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difference —, (Fy — F; = FiNF;), and the action of Gy. Frames have a
definite position in the lattice, but are unlabeled by states.

A block B is an assignment of state labels to the cells of a frame. The set
of all blocks B for a given frame F will be denoted By. Blocks correspond
to cylinder sets. If F; C F, then a block B; of F; may be defined by
restricting a block B; of F, to F;. We write B, = B, | F;. In addition, Gy,
has a natural action on blocks; v in Gy, maps members of Bp to members
of B-TF-

3. Block probability functions

A block probability function Pr for a frame F is an assignment of proba-
bilities to all labelings and partial labelings of F. Thus, it is a map from all
B € Bj (for each F! C F') to the reals. It must satisfy the Kolmogorov
consistency conditions:

Pe(B)<0 (3.1)
5 Pe(B)=1 (3.2)
BeBg:
and, for each B’ € bbg,,
Pe(B)= Y Pe(B) (3.3)
B|BLFi=Bi

Note that it suffices to define Pr on B € By; condition (3.3) then forces
unique assignments of values to partial labelings of F. Also, (3.2) is a special
case of (3.3) with Fr =0,

4. DBayesian extension in more than one dimension

The essence of Bayesian extension in one dimension is the maximum entropy
estimation of block probabilities in terms of the probabilities of smaller
blocks they contain. That is, Bayesian extension solves a variational prob-
lem in which the entropy is maximized subject to the Kolmogorov consis-
tency constraints (3.1, 3.2, 3.3), and previously assigned probabilities of
smaller blocks. In one dimension this variational problem solves uniquely
in terms of rational functions of small block probabilities (Brascamp [2]).
Moreover, extension of n-block probabilities to m-block probabilities m > n
is simply obtained by recursive application of one step extension.

In more than one dimension maximum entropy extension is considerably
more delicate. The variational problem translates into a system of poly-
nomial equations, whose explicit solution in terms of radicals is in general
not possible. Furthermore, extension to each larger frame typically requires
solution of an entirely new (and larger) system of equations. In this pa-
per we do not solve the more general problem. Rather, we approximate
the maximum entropy extension by a formula which is a straight-forward
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analog of the one-dimensional formula. As in the one dimensional case, the
formula is rational in smaller block probabilities.

To describe the approximate Bayesian extension of k-dimensional blocks,
let us restrict attention to blocks on frames which are parallelepipeds. On
these blocks, define operators L; and R; that truncate from the left or right
respectively in the jth dimension. The operators Ly, ...,L; and Ry,..., R;
all commute.

To define Bayesian extension along dimension j, let F' be an (i; X ... X #;)
-frame, and Pr a block probability function on F. Let F,; be an extension
of F' by one unit along dimension j. Then the Bayesian extension of Pp
along dimension j is defined as the following function on blocks of F,;:

PF_UT_%%_@ if | B| € Br.; but B € By,
7 (Pr) (B) =1 0 if Pp(R;L;B) =0
Py(B) if B € Bp.

In one dimension, Bayesian extension always produces functions which
satisfy all of the Kolmogorov consistency conditions; i.e., Bayesian exten-
sion always produces block probability functions. In more than one di-
mension this is not always the case. Examples may be constructed in
which either the normalization condition (3.2) or local shift invariance is
violated (Schlijper [9, 10]) and personal communication). If correlations
exist in at most one dimension, then the problem may be reformulated as
a one-dimensional problem in a larger state space, and no such patholo-
gies exist. However, when correlations exist in two or more dimensions, (4,
above) must be modified such that condition (3.2) is satisfied. To satisfy
the requirement of shift invariance within the extended frame, it suffices
to average block probabilities on frames which are related by a shift. In
this paper we will use the term Bayesian extension to refer to extension via
formula (4, above) appropriately adjusted so that the normalization and
local shift invariance conditions are satisfied. The adjustment used will be
described in conjunction with the numerical experiments.

5. Finite block measures

Consider a parallelepiped frame F and an infinite sequence of frames be-
ginning with F which extends along each dimension in turn. This sequence
of frames grows without bound in all dimensions. Now suppose it possible
to use Bayesian extension to define a block probability function Pr on each
frame in the sequence such that each Pp is consistent with block probabil-
ity functions on frames contained in F. In this case it is possible to assign
probabilities in a consistent fashion to all frames. By the Kolmogorov con-
sistency theorem (Denker [3]), these probability assignments define a unique
measure on the entire lattice L, which we will denote p(Pr). As in [5] we
call such measure a finite block measure. If some infinite extension exists
then a shift-invariant extension exists by averaging an (infinite) measure
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with respect to the shift. Since shift-invariance is enforced at each stage of
the Bayesian extension process, if Pp is shift-invariant, so is u(Pg).

Given a block probability function P, is it possible to define p(Pr)? In
more than one dimension, the question is in general undecidable (Schlijper
[9]). However, if correlations exist in at most one dimension the construc-
tion reduces to the one dimensional case. Furthermore, at least some sets
of block probabilities with non-trivial correlation in more than one dimen-
sion may be defined using the methods of Julesz et al. [6] and Victor [12].
General properties of entropy (and linearity of the Kolmogorov consistency
constraints) imply that if any extension to a finite block measure exists then
a unique maximum-entropy extension exists. Thus, although Bayesian ex-
tension, n-step Markov processes and maximum entropy extensions coincide
in one dimension, these concepts are distinct in higher dimensions.

6. The local structure theory

Here we summarize the development of the local structure theory in the
present context. For a fuller discussion see [5]. Let B be a block on some
frame in Fy. The action of a cellular automaton 7 on an arbitrary Gy
-invariant measure p may be defined (Lind [7]) by

i(B) = p(r71(B)). (6.1)

Since a cellular automaton is a local map, the inverse image of a block
is a collection of finite, though typically larger, blocks. Since the inverse
image of a finite block is finite, we can define a finite approximation to
(6.1). Let us first assume that the restriction of x to a frame F is a block
probability function which may be infinitely extended. That is, we assume
that p may be approximated by a finite block measure yr. We may operate
on up with the cellular automaton, and then again restrict the resulting
measure to F. If this new assignment of probability to blocks on F is
extendable, we may repeat the process.

We introduce an operator, o, which operates on measures. o is called
the scramble operator for a frame F. It maps a measure g to the finite
block measure oF (¢) which agrees with x on all blocks of the frame F. The
scramble operator, combined with the action of the cellular automaton map
on measures, defines the local structure operator Ar(r) by

Ar(7) (1) = orror(p). (6.2)

Ap(r) maps the set of finite block measures on F into itself, in accor-
dance with the cellular automaton rule.

In order to define Ar(7)(x), an operator which approximates the action
of a cellular automaton on measures on infinite configurations, we assumed
that a block probability function on F could be consistently extended to
block probability functions on frames of all larger size. In more than one
dimension, there is no guarantee that a block probability function is ex-
tendable to a finite block measure p(Pr) on infinite configurations, and
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op () is not necessarily defined. However, cellular automata can also be
characterized by how they map (finite) block probability functions to other
block probability functions. This motivates an interpretation of the local
structure operator Ap(r) as an operator on block probability functions Pr
rather than on finite block measures pu(Pr).

Given a cellular automaton 7, a block probability function Pr and a
block B on F, it is natural to assign 7(Pr)(B) to be the probability of
771(B), as suggested by equation (6.1). 7~!(B) is a union of blocks B’
on a larger frame F' which contains F. The probability of each such B’ of
F' is not given directly by Pp, but may be estimated by extension of Pp
to a block probability function on F'. Thus a finite extension suffices to
estimate the action of 7 on a block probability function P, for any finite
frame F. This construction forms the basis of the computations described
below.

7. Local structure theory on the square lattice
7.1 The mean-field theory

The mean-field theory for cellular automata assumes that no correlation
between states of cells is generated by cellular automata evolution. This
assumption leads to a simple formula for the density of 1’s at time £ + 1 in
terms of the density at time ¢ (Schulman and Seiden [11]) Let # 0(B) and
# 1(B) be the number of 0’s and 1’s in a block B, and p, be the density of
1’s at time t. The mean-field theory on the square lattice states that

Pi+1 = ZT(B)PfI(B)(l =3 pt)#o(s)’ (7-1)
B

where the sum is taken over all (3 x 3)-blocks . The density at time ¢ 41
is a polynomial function of the density at time ¢. The fixed points of this
polynomial recursion equation are taken as an approximation to the density
in the limit of large time. As we showed previously (Gutowitz et al. [5]),
the local structure theory on a (1 x 1)-frame is identical with the mean-field
theory.

8. The (1 x n)-Theory on the Square Lattice

Let B be a (horizontal) (1 x 2)-block on the square lattice, and 7 a cellular
automaton which operates on the lattice. The inverse image of B under 7
is a union of (3 x 4)-blocks. To implement the (1 x 2)-order local structure
theory, we need to compute by Bayesian extension the probability of the
(3 x 4)-blocks in terms of probabilities assigned to (1 x 2)-blocks at a given
generation. Then, by summing over the probabilities of the (3 x 4)-blocks
in the inverse image of B, we obtain an estimate of the probability of B at
the next generation.

Let us call a sequence of frames { F; } a Bayesian sequence if each
F;,; is an extension of F; along some single dimension, and write ... < F;
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<F;,y < .... By using the Bayesian sequence (1 x2) <1 (2x2) < (2x3) «
(3 x 3) <1 (3 % 4), we obtain an expression for the probability of a (3 x 4)-
block in terms of the probabilities of its (1 x 2)-sub-blocks. Since only
one-dimensional correlation may be expressed in terms of (1 x 2)-blocks,
(3) needs no adjustment. We will use the following notation: The rows of a
(3 x 4)-block are numbered from top to bottom and the columns from left
to right. A (horizontal) (1 x 2)-block whose leftmost cell is at position 17, §
in the (3 x 4)-block is denoted Bf;. Likewise, a (singleton) (1 x 1)-block
at position i, j is denoted Bj;. Using this notation, the probability of a
(3 x 4)-block is estimated by

3 3 h
i=1 i=2P(Ba)

In the (1 x 2)-theory rows do not interact via the block probability
function, only via the cellular automaton rule itself. In essence, the block
probability is the product of three one-dimensional functions. Thus we may
predict that the (1 x 2)-theory could only account for the generation of cor-
relation in one direction. This prediction is supported by the experiments
discussed below.

The (1 x n)-theory for general n is constructed in the same way as the
(1 % 2)-theory.

9. The (2 x 2)-theory

The inverse image of a (2 x 2)-block under a nearest neighbor cellular
automaton on the square lattice is a union of (4 x 4)-blocks. A Bayesian
extension sequence leading from a (2 x 2)-block to a (4 x 4)-block is: (2 x 2)
4 (2x3)d(83x3)<(3x4) < (4x4). We will denote a (2 x 2)-block
whose upper-left cell is at position £, 7 in a (4 x 4)-block by B;;. A (vertical)
(2 x 1)-block whose top cell is at position i,j is denoted Bj;. B‘f‘j and B}
have the previously assigned meanings. Using this notation, the probability
of a (4 x 4)-block is estimated in terms of (2 x 2)-block probabilities by

[ﬁ ﬁ P(B;;)

i=ji=j

1117

T1T1 P(BY)

i=jj=1

(9.1)

3 3
IT 11 P(B3)
i=1j=2

That is, we multiply together all possible (2 x 2)-blocks in the (4 x 4)-
block, divide by the probability of the (1x2)- and (2x 1)-block intersections,
and then multiply by the probabilities of the intersections of the (1 x 2)
and (2 x 1)-blocks, which are the central (1 x 1)-blocks.

In the one-dimensional theories, there is no possibility of violation of the
normalization condition (3.2). In the (2 x 2)-theory, there is this possibility
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(Schlijper [9,10]). In the experiments described below, normalization is
preserved as follows: Equation (8) is used to assign values to all (4 x
4)-blocks save the block composed of all 0’s. The sum of these values
subtracted from 1 is then assigned to the 0 (4 x 4)-block. Since the 0
(4 x 4)-block is a predecessor only of the 0 (2 x 2)-block, we can make the
same adjustment by computing the probabilities of the inverse images of
all (2 x 2)-blocks save that of the 0 (2 x 2)-block. Since the 0 (2 x 2)-block
is the (2 x 2)-block with the largest number of predecessors, this maneuver
markedly reduces the amount of computation needed at each iteration of
the local structure theory.

In the experiments described below the amount of adjustment needed
is quite small. If we used the fixed-point (2 x 2)-block probabilities of the
(2 x 2)-theory (see below) to estimate the probabilities of all (4x4)-blocks
via equation (8), the sum of these estimates is 1.02. At small time less
correlation has been generated by cellular automaton evolution, and less
adjustment is needed.

10. Empirical studies of the Game of Life

The Game of Life [1] is an outer totalistic [8] cellular automaton on the
square lattice. The neighborhood of a cell includes the eight cells with
touch the given cell. Under the Game of Life rule, if a cell is in state 1 and
has either two or three neighbors also in state 1, then it remains in state 1.
If a cell is in state O and has exactly three neighbors in state 1, then it goes
to state 1 at the next generation. In all other situations, the cell goes to
state 0 at the next generation. As is well known [1, 8, 11|, this rule has very
complicated dynamical behavior. In this section we study the evolution of
low order local structure operators for Game of Life rule. We compare the
probabilities assigned to blocks by these operators at each generation to
Monte Carlo estimates of the same probabilities.

Figure la shows the density as a function of time as determined by
Monte Carlo sampling, and the (1), (1x2),(1x3), and (2x2) local structure
theory. The Monte Carlo results are derived from sampling 20 (100 x 100)-
blocks with periodic boundary conditions. These blocks were generated to
be unbiased and uncorrelated. The large time density is 0.37 for the first
order (mean-field) theory, 0.30 for the (1 x2) and (1 x 3) theories, and 0.036
for the (2 x 2)-theory. The Monte Carlo density appears to be still decreas-
ing after 512 generations. Shulman and Seiden [11], using (presumably
more extensive) Monte Carlo computations report the large time density
as 0.029 £ 0.009. The one-dimensional theories are only slightly better at
predicting limit density than the (0-dimensional) mean-field theory. The
fully two-dimensional theory is much better, however. Its predicted limit
density is within experimental error of Schulman and Seiden’s empirical
estimate.

There are similar improvements in the estimates for blocks on frames
of larger size. Figure 1b and ic show the evolution of two selected (2 x 2)-
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Figure 1: The evolution of the density and two (2 x 2)-block proba-
bilities under Monte Carlo simulations of the Game of Life rule, and
the (1), (1 x 2), (1 x 3), and (2 x 2) - local structure theory. (a)
the density P(1), (b), the (33)-block, and (c) the (§3)-block. Proba-
bilities are followed for 512 generations from unbiased, uncorrelated
initial conditions. The (2 x 2)-block probabilities are scaled by 2¢. +1
standard deviation is indicated at each generation.

65



66 Howard A. Gutowitz and Jonathan D. Victor

o 2 4 & ] 10 2 L]
Generalion Number

Figure 2: Figure la on an expanded time scale. Evolution of the
density for 16 generations under the Game of Life rule.

block probabilities: the (19)-block and the (39)-block. These data serve
to emphasize several points concerning the density estimate. First, that
the (1 x 2) and (1 x 3)-theories are hardly distinguishable. Second, that
the (2 x 2)-theory is much better at predicting large time probabilities
than the lower dimensional theories. While the one-dimensional theories
are typically better than the zero-dimensional theory, this is not always
the case (figure 1c). All orders of theory accurately predict the density
at the first generation (figure 2). The density at the first generation is
approximately 0.27. This is simply the fraction of (3 x 3)-blocks which yield
1 upon application of the cellular automaton. As correlations develop, all
orders of theory studied depart from the empirical curve. The zero and one-
dimensional theories rise to their final values. The (2 x 2)-theory proceeds
in the correct direction (downward), but at a much faster rate than the
cellular automaton itself.

The (2 x 2)-theory is the first in the sequence of theories which connects
correlation in the two dimensions. Bayesian extension followed by an ad
hoc adjustement to ensure normalization results in a dramatic improve-
ment in the block probability estimates in the (2 x 2) case even though
the (1 x n)-theory rests on a rigorous maximum-entropy extension and the
(2 x 2)-theory does not. It is illuminating to consider two dimensional con-
figurations which are obtained by simply copying a one dimensional vertical
configuration to all positions horizontally. The Game of Life maps the set
of such “bar-code” configurations into itself. On these configurations the
Game of Life acts as the one-dimensional r = 1 rule 22 on vertical cross-
sections. We have previously demonstrated [5] that the one-dimensional
local structure theory of low order accurately predicts the statistical be-
havior of rule 22. This does not say however that the (1 x n)-theory is an
accurate representation of the action of the Game of Life on this special set
of configurations. The one dimensional theories cannot tell that the con-
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figurations have a uniform structure in the horizontal direction, however
sensitive they may be to correlation in the vertical direction. Hence, even
an approximate method of relating structure in the two dimensions may
result in improved predictions.

11. Conclusions

Clearly, this paper does not exhaust the possibilities inherent in its subject
matter. Topics of current research interest include the following: What
do the higher order theories for complicated rules like the Game of Life
look like? How does the geometry of a lattice shape the behavior of cel-
lular automata on that lattice? What is the relationship between exact
maximum-entropy extension and its approximation by Bayesian extension?

When cellular automata are used as models of physical processes, the
question arises whether the model adequately captures the behavior of the
physical system. In the same way, one is faced with the question of whether
the local structure theory adequately captures the behavior of the model.
If it does, benefits may accrue from working with the local structure ap-
proximations rather than the directly with the cellular automaton itself in
that analytical techniques may replace empirical techniques.
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