
Complex Systems 1 (1987) 69-80

Formal Language Characterizations of Cellu lar
Automaton Limit Sets

Lym a n P. Hurd
Mathematics Department, Princeton University,

Princeton, NJ 08544, USA

Abstract. A formal language description of one-d imensional cellu lar
automata limit sets is given, and a series of examples illustrating
several degrees of complexity are constructed. The undecidability of
membership of a string in the limit set of a cellu lar automaton ru le is
proven.

1. Introduction

Cellular automata are simple dynamical sys tems in wh ich a d iscrete lat ti ce
of sites taking on values in a finite set evolves in accordance with a local
rule. This paper provides an answer to some of the problems ra ised by
Wolfram in [11, and prov ides a framework for study ing cellular automata
in terms of formal lan gu age theory. The first sec t ion defines the langu age
associated with a cellu lar automaton limit set. T he second provides an
overv iew of the definit ions and results needed from lan gu age th eory, and
the t h ird gives a series of cellular automata wh ose lim it sets have increasing
complex ity . The fourth provides the proof to a tec hnical lemma needed in
the previous section and t he fifth gives general conclus ions .

For the purposes of this paper a cellular automaton will consist of a
one dimensional la t t ice of sites and a transit ion rule depending on ly on the
value of a site and a finite number of neighbors . Sites take values in a finite
a lphabet S with k elements. T he value assumed by a given site under the
transition rule will depend on sites of up to r steps away.

Formally, a cellu lar automaton consists of a finite set of site values S
and a local transformation

from which one constructs a global transit ion rule ~ : SZ -t SZ given
by ~(S)n = <p(sn-n ..., So, .. ., sn+r) . This construction yie lds a ll continuous
functions from SZ to itself (with S given the discrete topology, and SZ the
product topology) which are translation-invariant (commute with the shift
map) [21.

© 1987 Complex Systems Publications , Inc.

70 Lyman P. Hurd

2. Cellular automata limit sets

The limit set associated with a cellular a utomaton consists of those confi g­
urations whi ch have past histories of arbitrary length.

Given a rule ~ let n~) = SZ, and n~) = ~(n~-')) the image of S Z

under i iterations of ~ . Notice that n~) 2: n~) for all i ~ j . The set
n~ = n~o n~) is ca lled th e limit set of 4) .

Note th at an equivalent condition for a configuration c to he in the limit
set is that there exist a countably infin it e collect ion of configurations c- i

such that cO= c and ~(C-i) = c- i +1 .

3 . Limit languages of cellular automata

Since any dev ice attempting to make decisions about the limit set of a­
cellular automata in finite time can only scan a finite number of symbols,
it makes sense to deal with sets of configurations in terms of their fin ite
substrings . This reasoning motivates t he following:

Definition 1. The set of all finite conn ect ed s ubstrings of a set of con fig­
urations n ~ SZ is called the language associa ted with n, denoted Llnl.
In particular, if ~ is a cellular a utoma ton rule, L[O. l is called the]jmit
language of ~ .

The fact that the set of finite strings determines th e set of configurations
follows from:

Theorem 1. H ill and 6 2 are closed, t ranslat ion-invariant subsets of SZ,
then Llt> t1 = Llt>,] '* t> , = t> , .

Proof.
We show that t> , ~ t>, .
Given c E il l l define a family of finite substrings of c by letting

Each Cli) E Llt>,] therefore Cli) E Llt>,] by assumption.
Let Ai = {d E S Zld(i) = C(i) } and Aoo = f\O::oAi By definit ion, Aoo

consists of the single element c. Let B, = Ain il2 an d Boo = n~o Bi .
The Ai are closed; therefore the Bi are closed. Since C(i) E L[6 21 ,

B, I- 0 for any i j therefore, by compactness, Boo I- 0. Therefore since
Boo ~ Aoo an d Boo t 0, Boo = Aoo ~ t>, and th erefore C E t>, . Thus
t> , ~ t>,. Similarly t> , ~ t>, . Therefore t>, = t>, . I

Corollary 1. Given two rules ~, and ~" Lln.,1=Lln.,1'* n. , = n. ,.

Formal Lang uage Characterizat ions of Cellular A utomata

T - t a, bj,
N = {E,A}
E~A

A ~ .(empty st ring)
A~ aAb

Table 1: A generative grammar for the language a"b" .

71

4. Formal languages 1

Formal language theory provides a framework within which to st udy sets
of strings from a finite alphabet. Languages may be viewed either as out­
puts of some class of machines, or as the end product of typographical
substitution systems (generative grammars) .

T he basic mac hine model for t hese languages and ind eed for muc h of
computation is the Turing m achine. T he machines which recogni ze each
of the families of langu ages are desc ribed as restrictions of fu ll Tur ing ma­
chines.

A Turing machine T consists of a tape divided into squares each of
which contains a symbol from an alphabet A , and a head whic h occupies
some position along the tape and which is in one of a finite set of states Q.
In each t ime step the head writes a symbol in the square it occupies an d
possibly moves eit her right or left all depe nd ing on its current state and
the symbol in the square it currently occupies.

Formally, a Turing Machine is determined by a set of states Q, an
alphabe t A and three functions , t he output funct ion F : Q X A --+ A, the
state transition function, G : Q x A --+ Q and the head direct ion fun ct ion
D : Q x A ~ {- l, l } which determines whether the head will move to the
left or to the right .

Another way of describing formal languages is by means of a generative
grammar. Such a grammar consists of a start symbol, E, a set of terminal
symbols, T , a set of non-termi nal symbo ls, N, and a set of generat ive rules,
represented by typographic su bstitutions. The language corresponding to
such a grammar cons ists of all strings of te rminals which may be der ived
from the start symbol by successive application of the production ru les. An
example of such a grammar is show n in table 1. This illustration shows the
grammar corresponding to the language aRb" .

Recurs ively enumerable languages can be divid ed into the Chomsky
Hierarchy based on the complexity of the grammar which pro duces them,
or equivalently, the complexity of the machine needed to recognize them.
This hierarchy is shown in Table 2.

At the top of the hierarchy are the recursively en umerable [r.e.] lan­
guages. T his class cons ists of all languages whose strings may be produced
as the output of a general Turing Machine. Languages in this class are
gene rated by unrestricted generat ive grammars. An example of such a Ian-

IThe background material in this section can be found in 141 and [51.

72

Language Grammar

Lyman P. Hurd

Machine

r .e. languages unrestricted Turing Machine
context-sensitive string -I' longer string linear bounded automaton

or :E -10 £ (empty string)
context-free symbol - string push down automaton

regular r ight linear finite state machine
non-terminal --+ non-terminal. terminal

or non-terminal -I' terminal

Table 2: The Chomsky hierarchy of formal languages.

guage is given by st rings of the form :z;1I whe re h is the number of a halt ing
Turing Machine in some fixed enumerat ion.

A smaller class of languages are the context-sensitive languages , which
have genera t ive grammars with the property t hat every production rule in­
creases the length of the st ring. The words in such a language are recognized
by linear bounded a utomata which are Turing machines whose memory is
bounded by a linear function of the length of the word to be recognized.
An example of a context-sensitive language is the set of strings over the
alphabet {x,y,z} of the form x"ynzn.

Another example of a context sensitive language, is the language consist­
ing of valid runs for a Turing machine. A program history can be checked
in bounded space, because, in n time steps, the head cannot have visited
more than n distinct sq uares.

Simpler than context-sens it ive languages, are the context-free languages
whose grammars have the property that the on ly st rings which may appear
on the left sid e of t ransformation rul es have leng th one. T hey are recog nized
by push down automata, which are Turing machines which have a stack
(first in, las t out memory) instead of a tape. The language of balanced
parentheses is context-free .

All of the previous types of language potentially require an infinite me m­
ory capacity. Regular langu ages cons ist of those lan guages which can be
recognized by machines with a finite amount of memory, finite state ma­
chines. T hey are generated by right linear (or left linear) grammars, which
have the form that a non-terminal is sent to a non-terminal followed by a
te rminal or to a terminal .

Equivalently, words in a regular language can be represented as walks
through a grap h whose edges are labeled with symbols from the given al­
phabet. An example of a regular language is the set of all strings in the
alphabet {a, I} which do not contain two consecutive ones . The graph
to which t his corresponds is shown in figure 1. One can assume without
loss of generali ty t hat the graph has no more than one edge of a given
label leaving each no de (the finite state machine in t his case is sa id to be
determ inis tic). By t he Myhill-Ne rode T heorem, there ex ists a canonica l,
minimal such gr aph. The number of nodes in the minimal graph provides

Forma l Language Characterizations of Cellular Automata 73

o

o

Figure 1: Graph representing a regular language containing all st rings
in th e alphabet {O, I} with no two consecutive ones.

a measure of complexity for the reg ular language.
A third way of represent ing strings in a regu lar language is by means

of a regu lar express ion. A regular expression is either t he empty string E, a
symbol from the alphabet, the composition of two regular express ions under
the operations of disjunction "+" and concatenation ".", or the K leene
closure of a regular expression (any finite number of occurrences of the
expression) expression' . For example, all strings in the alphabet {O,l}
wh ich do not contain two consecutive ones satisfy the express ion (0+1) (00+
01r. Set braces around a regular exp ression will be used to denote the set
of strings satisfying the given exp ression.

T he positio n of a language in this hierarchy has a bearing on the kinds of
propos itions that can be answered about it . For example, for many classes
of lan guages, the quest ion of whether two grammars dete rm ine the same
language, is in general undecidable.

5. D eterminin g la n gu a ge complexity

Given a generat ive grammar, it is in general undecidable wh ich step of the
hierarchy it occupies, unless it is given in one of the rest ricted forms listed .
There are, however, a sequence of lemmas which in some cases guarantee
that a given language is not in a given class. T hese are the pumping lemmas.

The pumping lemma for regular languages states that for every regular
language R , there exists a number n such that every string of length greater
than or equal to n can be written as the concatenation of three str ings, abc
such that the string abic is also in R for all i. If one looks one strings
in a regular lan guage as labelled walks through a finite graph, th is is a
rest atement of the observation t hat every sufficiently long path throug h
a finite graph must contain a cycle. Thus if one can show that a given
language has a set of strings which do not satisfy the lemma, it cannot be
regular. For example, t he lan guage anbn is not regular.

Similarl y there is a pumping lemma for context- free languages . It states
that given a context-free language F , there is an n such that every st ring
of length greater than or equal to n can be writ te n as the concat enation of
five strings abcde such that abiC(f e is in F for all i . T hus, for example, the

74 Lyman P. Hurd

- , • • -
•T OX . ~ T
..Tax ~ 0

.. yol ~ I
yol .. ~ 0

..TWI ~ I
TWI.. ~ T
otherwise the identity rule

I S {T I !'Ie o} and T 2 I

Table 3: The cellu lar automaton rule A, which has 8 non-regular
limi t language. % denotes and symbol except /. 11 de notes an y symbol
except r . . denotes any symbol.

language anb"cn is not context-free.

6. Cellular automaton lim it la nguages

This sect ion contains a series of examples of rules whose limit languages
are st r ictly more complicated than a given language class. There are many
examples of rules whose limit lan guages can be proven to be regular. T he
questi on rem ains open whether there are rules whose limi t languages are
str ictly context-free or strictly context-sensit ive. Since the complexity of
a language generated by an a rbit rary generative grammar is undecidable,
this question is likely to be somew hat d ifficult .

Wolfram has shown [11 that L[nr ll is a regular language for any cellular
automaton rule~. A quest ion which naturally presents itse lf is whether
L [n~ l is regular for every rule ~ . This paper shows that this is not the
case. In fact , the limit language of a ru le need not even be recursively
enume rable.

6. 1 A cellu lar automaton with a n on-regula r limit la n gu age 2

In this exam ple, a rule A is given whose limi t language is more complica ted
than a regular language.

T his rule has S = {r,l, W, o} and r = 2. The transition rules are given
in table 3.

T he evolution of this rule from a sample init ial state is show n in figure
2.

Theorem 2. The language L[n. 1is not regular.

Proof. The intersection of any two regular languages is always a regu­
lar language . Therefo re, it suffices to produce a regular lan guage whose
int ersection with L[OAl is not regular.

Consider F = L [n.]n{oolo·Wo·Too}

2T he basic idea behind t.his rule was suggested by [61.

Formal Langu age Characterizations of Cellular A utomata

W 1 r W 1 W 1 1
W 1 r W 1 W 1 1
W1 r W 1 W 1 1
Wi r W 1 W 1 1
Wi rW 1 W1 1
Wi r Wi Wi 1
Wi i Wr Wi 1
Wi 1 Wr Wi 1
Wi 1 W r Wi 1
Wi 1 W r Wi 1
Wi 1 W r Wi 1
Wi 1 W r Wi 1
Wi 1 W r Wi 1
Wi 1 W r Wi 1
Wi 1 W r Wi 1
Wll W r WI l
Wll W rWI I
Wll W l Wrl
Wll W 1 WrI
Wll W 1 Wr i
Wll W 1 Wri
Wll W 1 Wri
Wll W 1 Wr i
Wll W 1 Wri
Wll W 1 Wr i
Wll W 1 Wri
Wll W1 Wr i
Wll Wi Wri
Wll Wi Wri
Wll Wi Wri
Wll Wi Wr i
Wll Wi Wri

Figure 2: The evolution of cellular automaton rule A from a sample
initial state. Blanks denote the symbol o.

75

76 Lyman P. Hurd

Is - {T R I L W o} and T- 4 I, , , , ,
•• •TOXy •• -4 T
....roxy. -4 0

..uvol... -4 I

.uvol. ... -4 0

..Rooxy.. -4 R

....Rooxy -4 0

..uvQaL .. -4 L
uvoaL.... -4 0

...RTWIL. -4 I

....RTWIL -4 L

.RTWIL ... -4 T
RTWIL.... -4 R
...TRWLI. -4 L
....TRWLI -4 I
.TRWLI... -4 R
TRWU.... -4 T

otherwise the identity rule

Table 4: The cellular automaton ru le A', which has a non-context-fr ee
limit language. z denotes any symbol except I or L . y is any symbol
exce pt L. tI is any symbol except r or R . u is any symbol exce pt R .
. st ands for any symbol.

F irst F '::F 0. The string oolo"WanrOD has a family of predecessor s given
by O"TOiWoilo·, It remai ns to show that t hese st rings exh aust F .

Let c = oolo"Womroo be a string in the int ersect ion. If n , m > 0, C

has a predecessor of the form OOlO " - lWOm -I r OQ• Since oolWO~TOO has no
predecessor when s > 0, n = m.

T he language {oolo"W anraD} violat es the pumping lemma for re gular
languages. Thus F is not a regular language, and th erefore Llfl,] is not.•

6.2 A cellular au t om at on rule w ith a non-context-free limit lan-
guage

By generalizing the previous construction one can construct a cellula r au­
tomaton ru le A' whose limit language is not context-free. The stra tegy is
essentia lly the same. The intersection of a regular language and a context­
free language yields a context-free language. One finds a regular language
whose intersection wi th L [OA'J is not context -free. The evolut ion of this
rule from a sample initial state is shown in figure 3.

Th eorem 3. Th e langu age L lfl,,] is not context-free.

Proof. Let F' = L[fl,,)n{ooooLo'lo'WO'T O' R oooo} .
Once again F' 'I- 0. Every string of t he form ooooLon+2lonWonron+2Roooo

has a family of predecessors of the form o"R o'ro' W o'l o' Lo",

Formal Language Characterizations of Cellular A utomata

RrW 1 LWR r W1 L 1
RrW 1 L W R r W1 L 1
RrW 1 L W R r W1L 1
RrW1 L W R r W1L 1
RrW1L W R r W1L 1
LIWrR W R rWIL 1

1Wr R W RrWIL 1
1 Wr R W LIWrR 1

1 W r R W L 1Wr R 1
W r RW L 1 Wr R1
W r RW L 1 W r R1
W r RW L 1 W r R1
W r RWL 1 W rR1
W r RWL 1 W rR1
W r RWL 1 W rR1
W rRWL 1 W rR1
W rRWL 1 W rR1
W rRWL 1 W rR1
W rRWLl W rR1
W LIWrR W rR1
W L 1Wr R W rR1
W L 1 Wr R W rR1
W L 1 W r R W rR1
WL 1 W r R W rR1
WL 1 W r RW rR1
WL 1 W r RW rR1
WL 1 W r RW rR1
WL 1 W r RW rR1
WL1 W r RW rR1
WL1 W r RW rR1
WL1 W rRW rR1
WL1 W rRW rR1

Figure 3: The evolution of cellular automaton rule At from a sample
initial state. Blanks denote the symbol c.

77

78 Lyman P. H urd

S }q } x { s,S {r I q,- , , ' '' 0' n , ... , m.

D(qnl8i) - 1 (q.,so)(r,sj)* --+ (G(qn,sol,Sj)
(qn,Si) --+ (I,F(qn,s.))

D(qn, so) - -1 *(I,sj)(qn,sol --+ \~(qn,Si);Jj)
(qn,Si) --+ T, F(qn ,Si

otherwise the identity rule

Table 5: The cellular automaton rule lifT, which corresponds to any
given Turing Machine. * denotes any symbol.

Every expression of the form. ooooLoildWo1roiRoooo has a predecessor
containing the string ooooLoi-lloi-lWok-lrol-l ROODO with i , j , k,l > O.
Now ooooLl has no predecessor, so i ~ j and I 2:: k. Furthermore. the only
context in which lWr may appear after the first time step , is L IWrR which
is the case above. Hence these strings exhaust the intersection.

F' vio lat es the pumping lemma for context-free languages. Since F' is
not a context-free language, L [OA.j is not.•

6. 3 A cellular automaton rule with a non-recursive limit lan-
guage

A Turing machine T as define d earl ier was specified by a qu intuple {Q , A,F, G, D }
in which Q = {qh " 0' qn} is a set of states, A = {81' .." 8m } is an alphabet
of symbols, andF : QxA --+ A, G: Q xA --+ Q, andD: Q xA --+ {-I , l }
are the output, state transition, and head direction functi ons respectively.
Given a Turing Machine T , we define a cellular automata rule -q,T which
emulates it . The sq uare wh ich the head occ upies will be represented by
an or dered pair (q" s;) where qi E Q indic a tes the state of the head , and
s, E A ind icates the t ap e symbol. Squares not occupied by the head are
of the form (r, so) or (I, sol indicating that the square is to the right or left
of the head, an d has symbo l Sj . The constra int that the head only writes
squares which are on the correct side assures that no square can be rewrit-
ten by two different heads. A head attempting to move into another head
or a square which is not on the appropriate side, disappears.

Theorem 4. Given a Turing machine T and a state qh , it is in general
undecidable whether (qh' s.) is in the lim it language of'iJlT.

Proof. T he question whether (qh' ail is in the limit language is equivalent
to the question whether there exist legal runs of arbitrary length which
leave T in state qh. This question is undecidable by the following lemma.

Lemma 1. Given a Turing machine T and a state qh is in general unde­
cidable whether T can assume state qh after n time steps for any n .

A proof of this result is sketched in 171 and proven in fun in 181. A proof
is sketched in section 5.

Formal Language Characterizations of Cellular A utomata

Theorem 5. Th e complement ofLin.] is r.e. for all rules iii .

79

Proof. The compl ement of the limit language of a cellul ar automata is
always recursively enumerable. If a st ring s is in th e complement of the
limit language, it must be excluded after some number of ti me-steps n .
The strings of length m excluded by the n th t ime-step may be computed
by calculat ing the image under the nth iterate of (f) of all st rings of length
m +2nr.

Corollary 2. There exists a rule <11 such that the language Lin.] is no t
recursively enumerable.

A lan guage is recursive if and only if both it and its comp lement are
r .e. We have shown that there exists a rule whose limit language is not
recursive, thus it is not r .e.

7. Turing Machine st a t e histories

Proof of lenuna. The problem of whether a Turing machine can attain
a given state after an arbitrary number of time steps can be reduced to
the problem of a machine ha lting on a blank tape , a known undecidable
problem.

Definition 2. Given a Turing machine T = {Q ,A,F,G,D} a state his­
tory for T consis ts of a finite sequence of states qo, qI, " ., Qn such th at jf
T is star ted on a blank tap e in s tate qo , it will proceed in order to st ates
qI, q2, ...qn·

The halting problem on a blank tape which is undecidable, is equivalent
to the st atement that the machine T has state histories of arbitrary lengt h.

The reduct ion proceeds as follows. Given an arbitrary Tur ing Machine
T we cons truct a new mac hine T' which recognizes stat e histories for T. In
particular if T ' is started on a tape containing the symbols L qo, qv, ." , qnR,
it checks that qO, qh ... ,qn represents a valid state history for T , and if it
does , it wr ites an Rover qn and repeats th e procedure. Otherwise it enters
an alarm state. The machine can be const rained in such a way that the
only case in which a non-alarm state can occur after an arbitrary number
of ti me steps, is that th ere are state histories of arbit rary length for T ,
i.e. T does not halt. But this quest ion is undecidable, hence the question
whether T' can be in a given state after arbitrary time is undecidable.

8. Discussion

At present only a very few limit languages have been computed explicit ly.
T his is not unexpected. According to Rice's Theorem, any non-trivial (not
always t rue or always false) proposit ion abo ut r.e. languages is in general
undecidable. An analogous result is conjectured to hold true in the case of

80 Lyman P. Hurd

cellular automata. This would mean that in part icular that it is undecidable
whether the limit language corresponding to a given ru le is regular , consists
of more than one string, or in general if two cellu lar automata yield the
same limit set.

Work needs to he done to charact er ize exact ly which lan guages can
occur as limit languages for cellular automata . Even the weaker question
of which regular langu ages can occur as the 1 time step image of a cellular
automaton is unsolved .

A cknowled gement s

I am grateful for support from Thinking Machines Corporation in the early
stages of th is work, an d for discussions with T. Hales, D. Hillis, B. Kusz­
maul, J. Milnor, N. Packard, an d S. Wolfram.

R eferences

[1] S. Wolfram, "Compu t ati on th eory of cellular automata") Communications
in Mathematical Physics, 96 (1984) 15-51.

121 G. A. Hedlund, "E ndomorphisms and automorphisms of th e sh ift dynami­
cal system", MathematjcaJ Systems Theory 3 (1969) 320j G. A. Hed lund ,
"Transformations commuting wit h the shift" , in Topological dynamics, ed.
J . Aus lander and W. H. Gottschalk, (Benjamin, 1968).

13} P. Walters, An introduction to ergodic theory, (Springer, 1982) .

14} J . E . Hopcroft and J. D. Ullman, Introduction to automata theory, lan-
guages, an d computation, (Addison-Wesley, 1979).

[5] M. Minsky, Computation: finite and infinite machines, (Prentice-Hall, 1967).

[S] D. Hillis private communication.

17J U. Golze, "Differences between 1- and 2-dimensional cell spaces", in A.
Lindenmayer and G. Rozenberg [eds.], Automata, languages, deve lopment,
(North-Holland , 1916).

181 U. Golze, "Endliche, Periodische, und Rekurs ive Zellula re Konfigurationen
: Vorgangerbe rechnung ung Gerten-Eden-Probleme" , disse rtation to dec
Technischen Univers itat Hannover.

