Complex Systems 1 (1987) 69-80

Formal Language Characterizations of Cellular
Automaton Limit Sets

Lyman P. Hurd
Mathematics Department, Princeton University,
Princeton, NJ 08544, USA

Abstract. A formal language description of one-dimensional cellular
automata limit sets is given, and a series of examples illustrating
several degrees of complexity are constructed. The undecidability of
membership of a string in the limit set of a cellular automaton rule is
proven.

1. Introduction

Cellular automata are simple dynamical systems in which a discrete lattice
of sites taking on values in a finite set evolves in accordance with a local
rule. This paper provides an answer to some of the problems raised by
Wolfram in [1], and provides a framework for studying cellular automata
in terms of formal language theory. The first section defines the language
associated with a cellular automaton limit set. The second provides an
overview of the definitions and results needed from language theory, and
the third gives a series of cellular automata whose limit sets have increasing
complexity. The fourth provides the proof to a technical lemma needed in
the previous section and the fifth gives general conclusions.

For the purposes of this paper a cellular automaton will consist of a
one dimensional lattice of sites and a transition rule depending only on the
value of a site and a finite number of neighbors. Sites take values in a finite
alphabet S with k elements. The value assumed by a given site under the
transition rule will depend on sites of up to r steps away.

Formally, a cellular automaton consists of a finite set of site values S
and a local transformation

$:85x,8

from which one constructs a global transition rule ® : S — SZ given
by ®(s)n = &(Sn—ry -y S0y -y Snsr) - This construction yields all continuous
functions from SZ to itself (with S given the discrete topology, and 5% the
product topology) which are translation-invariant (commute with the shift

map) [2].

(© 1987 Complex Systems Publications, Inc.

70 Lyman P. Hurd

2. Cellular automata limit sets

The limit set associated with a cellular automaton consists of those config-
urations which have past histories of arbitrary length.

Given a rule @ let O = 7, and Q) = &(Qf™") the image of SZ
under 7 iterations of ®. Notice that %) D 0F for all i < 7 . The set
Qs = N2 O is called the limit set of 3.

Note that an equivalent condition for a configuration ¢ to be in the limit

set is that there exist a countably infinite collection of configurations ¢t
such that ¢® = ¢ and &(c™¥) = ¢~*+1.

3. Limit languages of cellular automata

Since any device attempting to make decisions about the limit set of a
cellular automata in finite time can only scan a finite number of symbols,
it makes sense to deal with sets of configurations in terms of their finite
substrings. This reasoning motivates the following:

Definition 1. The set of all finite connected substrings of a set of config-
urations ! C SZ is called the language associated with 11, denoted L[(2].
In particular, if ® is a cellular automaton rule, L[Qlp] is called the limit
language of ®.

The fact that the set of finite strings determines the set of configurations
follows from:

Theorem 1. If A; and A, are closed, translation-invariant subsets of 5%,
then L[A1] = L[Ag] = A; = A,

Proof.
We show that A] G Ag.
Given ¢ € A;, define a family of finite substrings of ¢ by letting

C(i) = €—4---Cp---Cf

Each ¢(;) € L[A,] therefore ¢(;) € L[A,] by assumption.

Let A; = {d € Sz|d(,v} = ¢g)} and A, = 2y A; By definition, Ae
consists of the single element ¢. Let B; = A; N Az and By, = N2, Bi.

The A; are closed; therefore the B; are closed. Since ci) € L[A,] ,
B; # 0 for any #; therefore, by compactness, By # 0. Therefore since
B, C A, and By, # 0, Boo = Aww € A; and therefore ¢ € A;. Thus
A; C A,. Similarly A; C A; . Therefore A; = A,. B

Corollary 1. Given two rules ®; and ®,, L(Qs,| = L(Ns,] = Qs, = Qa,.

Formal Language Characterizations of Cellular Automata 71

T = {a,b}
N ={Z, A}
- A
A — e(empty string)
A — aAb

Table 1: A generative grammar for the language a™b".

4. Formal languages !

Formal language theory provides a framework within which to study sets
of strings from a finite alphabet. Languages may be viewed either as out-
puts of some class of machines, or as the end product of typographical
substitution systems (generative grammars).

The basic machine model for these languages and indeed for much of
computation is the Turing machine. The machines which recognize each
of the families of languages are described as restrictions of full Turing ma-
chines.

A Turing machine T consists of a tape divided into squares each of
which contains a symbol from an alphabet A, and a head which occupies
some position along the tape and which is in one of a finite set of states Q.
In each time step the head writes a symbol in the square it occupies and
possibly moves either right or left all depending on its current state and
the symbol in the square it currently occupies.

Formally, a Turing Machine is determined by a set of states @, an
alphabet A and three functions, the output function F : Q x A — A, the
state transition function, G : Q@ x A — @ and the head direction function
D:@Q x A— {—1,1} which determines whether the head will move to the
left or to the right.

Another way of describing formal languages is by means of a generative
grammar. Such a grammar consists of a start symbol, L, a set of terminal
symbols, T, a set of non-terminal symbols, NV, and a set of generative rules,
represented by typographic substitutions. The language corresponding to
such a grammar consists of all strings of terminals which may be derived
from the start symbol by successive application of the production rules. An
example of such a grammar is shown in table 1. This illustration shows the
grammar corresponding to the language a™b™ .

Recursively enumerable languages can be divided into the Chomsky
Hierarchy based on the complexity of the grammar which produces them,
or equivalently, the complexity of the machine needed to recognize them.
This hierarchy is shown in Table 2.

At the top of the hierarchy are the recursively enumerable (r.e.) lan-
guages. This class consists of all languages whose strings may be produced
as the output of a general Turing Machine. Languages in this class are
generated by unrestricted generative grammars. An example of such a lan-

!The background material in this section can be found in [4] and [5].

72 Lyman P. Hurd

[Language Grammar | Machine
r.e. languages unrestricted Turing Machine
context-sensitive string — longer string linear bounded automaton
or & — ¢ (empty string)
context-free symbol — string push down automaton
regular right linear finite state machine
non-terminal — non-terminal. terminal
or non-terminal — terminal

Table 2: The Chomsky hierarchy of formal languages.

guage is given by strings of the form z* where h is the number of a halting
Turing Machine in some fixed enumeration.

A smaller class of languages are the context-sensitive languages, which
have generative grammars with the property that every production rule in-
creases the length of the string. The words in such a language are recognized
by linear bounded automata which are Turing machines whose memory is
bounded by a linear function of the length of the word to be recognized.
An example of a context-sensitive language is the set of strings over the
alphabet {z,y, z} of the form z"y"2".

Another example of a context sensitive language, is the language consist-
ing of valid runs for a Turing machine. A program history can be checked
in bounded space, because, in n time steps, the head cannot have visited
more than n distinct squares.

Simpler than context-sensitive languages, are the contexi-free languages
whose grammars have the property that the only strings which may appear
on the left side of transformation rules have length one. They are recognized
by push down automata, which are Turing machines which have a stack
(first in, last out memory) instead of a tape. The language of balanced
parentheses is context-free.

All of the previous types of language potentially require an infinite mem-
ory capacity. Regular languages consist of those languages which can be
recognized by machines with a finite amount of memory, finite state ma-
chines. They are generated by right linear (or left linear) grammars, which
have the form that a non-terminal is sent to a non-terminal followed by a
terminal or to a terminal.

Equivalently, words in a regular language can be represented as walks
through a graph whose edges are labeled with symbols from the given al-
phabet. An example of a regular language is the set of all strings in the
alphabet {0,1} which do not contain two consecutive ones. The graph
to which this corresponds is shown in figure 1. One can assume without
loss of generality that the graph has no more than one edge of a given
label leaving each node (the finite state machine in this case is said to be
deterministic). By the Myhill-Nerode Theorem, there exists a canonical,
minimal such graph. The number of nodes in the minimal graph provides

Formal Language Characterizations of Cellular Automata 73

Figure 1: Graph representing a regular language containing all strings
in the alphabet {0, 1} with no two consecutive ones.

a measure of complexity for the regular language.

A third way of representing strings in a regular language is by means
of a regular expression. A regular expression is either the empty string ¢, a
symbol from the alphabet, the composition of two regular expressions under
the operations of disjunction “+” and concatenation “.”, or the Kleene
closure of a regular expression (any finite number of occurrences of the
expression) expression’ . For example, all strings in the alphabet {0,1}
which do not contain two consecutive ones satisfy the expression (0+1)(00+
01)*. Set braces around a regular expression will be used to denote the set
of strings satisfying the given expression.

The position of a language in this hierarchy has a bearing on the kinds of
propositions that can be answered about it. For example, for many classes
of languages, the question of whether two grammars determine the same
language, is in general undecidable.

5. Determining language complexity

Given a generative grammar, it is in general undecidable which step of the
hierarchy it occupies, unless it is given in one of the restricted forms listed.
There are, however, a sequence of lemmas which in some cases guarantee
that a given language is not in a given class. These are the pumping lemmas.

The pumping lemma for regular languages states that for every regular
language R, there exists a number n such that every string of length greater
than or equal to n can be written as the concatenation of three strings, abe
such that the string ab’c is also in R for all 1. If one looks one strings
in a regular language as labelled walks through a finite graph, this is a
restatement of the observation that every sufficiently long path through
a finite graph must contain a cycle. Thus if one can show that a given
language has a set of strings which do not satisfy the lemma, it cannot be
regular. For example, the language a"b" is not regular.

Similarly there is a pumping lemma for context-free languages. It states
that given a context-free language F', there is an n such that every string
of length greater than or equal to n can be written as the concatenation of
five strings abede such that abfed'e is in F for all . Thus, for example, the

T4 Lyman P. Hurd

| §={r,,W,0} and r = 2. |

roxT. — T
.rox — 0
.yol — 1
yol.. — o
Wl — l
Wil.. — r
otherwise the identity rule

Table 3: The cellular automaton rule A, which has a non-regular
limit language. z denotes and symbol except [. y denotes any symbol
except r. . denotes any symbol.

language a™b™c" is not context-free.

6. Cellular automaton limit languages

This section contains a series of examples of rules whose limit languages
are strictly more complicated than a given language class. There are many
examples of rules whose limit languages can be proven to be regular. The
question remains open whether there are rules whose limit languages are
strictly context-free or strictly context-sensitive. Since the complexity of
a language generated by an arbitrary generative grammar is undecidable,
this question is likely to be somewhat difficult.

Wolfram has shown [1] that L{Qg’)] is a regular language for any cellular
automaton rule ®. A question which naturally presents itself is whether
L[Qp] is regular for every rule ®. This paper shows that this is not the
case. In fact, the limit language of a rule need not even be recursively
enumerable.

6.1 A cellular automaton with a non-regular limit language *

In this example, a rule A is given whose limit language is more complicated
than a regular language.

This rule has S = {r,l,W,0} and r = 2. The transition rules are given
in table 3.

The evolution of this rule from a sample initial state is shown in figure
2.

Theorem 2. The language L[Q,] is not regular.

Proof. The intersection of any two regular languages is always a regu-
lar language. Therefore, it suffices to produce a regular language whose
intersection with L[{2,] is not regular.

Consider F = L[2,]| N{oolo*W o*roo}

2The basic idea behind this rule was suggested by [6].

Formal Language Characterizations of Cellular Automata

W 1 r© W 1 W 1 b 4
W 1 r W 1 W 1 1
Wil rW 1 W o1 1
Wl ™ 1 W 1 L
wl ™ 1 Wil 1
W1 Wl Wl 1
Wl 1wr W1 1
w1 lWr Wl 1

W1 1 Wwr Wl 1

W1 1 W r Wl 1

Wl 52 W T Wl 1

Wl 1 W r Wl 1

Wl 1 w r Wl 1

Wi 1 W r WL 1

Wl1l W r Wil

W1l W T Wil

Wil W rWll

Wll W 1vrl

Wll W 1 Wrl

W1l W 1 Wwrl

wll W 1 Wrl

Wil W 1 Wrl

W1l W 1 Wrl

Wil W 1 Wrl

Wil W o1 Wrl

Wil W1 Wrl

Wil W1l Wrl

Wil Wl Wrl

Wil w1l Wrl

Wil Wl Wrl

Wil Wl Wrl

Wil Wl Wrl

Figure 2: The evolution of cellular automaton rule A from a sample
initial state. Blanks denote the symbol o.

76 Lyman P. Hurd

[S={r,R,l,L,W,0} and r =4 |
. TOTY..
vee.TOTY.
..uvol...
uvol....
..Roozxy..
....Roozxy
..uvooL..
uvooL....

.RrWIL.

.. RTWIL

RrWIL...

RrWIL....

...rRWLI.

....rRW LI

TRWLI..

rRWLIL....

otherwise the identity rule

{530 RS 8 A O (R 1 3 O 4 I

4 Ry~ v~ Mo Mo ~|o

Table 4: The cellular automaton rule A’, which has a non-context-free
limit language. z denotes any symbol except [or L. y is any symbol
except L. v is any symbol except r or R. u is any symbol except R.
. stands for any symbol.

First F #). The string oolo"W o"roo has a family of predecessors given
by o*ro'Wo'lo*. It remains to show that these strings exhaust F.

Let ¢ = oolo"Wo™roo be a string in the intersection. If n,m > 0,¢c
has a predecessor of the form oolo™ W o™ 'roo. Since oolW o*roo has no
predecessor when s > 0, n = m.

The language {0olo"W o"roo} violates the pumping lemma for regular
languages. Thus F is not a regular language, and therefore L[(;] is not. B

6.2 A cellular automaton rule with a non-context-free limit lan-
guage

By generalizing the previous construction one can construct a cellular au-
tomaton rule A’ whose limit language is not context-free. The strategy is
essentially the same. The intersection of a regular language and a context-
free language yields a context-free language. One finds a regular language
whose intersection with L{{ys] is not context-free. The evolution of this
rule from a sample initial state is shown in figure 3.

Theorem 3. The language L[] is not context-free.

Proof. Let F' = L[| N{ooooLo*lo*W o*ro* Roooo}.
Once again F' # 0. Every string of the form ooooLo™*[0"W o"ro™*? Roooo
has a family of predecessors of the form o*Ro’ro*Wo®lo® Lo".

Formal Language Characterizations of Cellular Automata

RrW 1 L WR T Wil L 1
Rr¥W 1 L W R r Wl L X
RrW1l L W R r© WL 1
RrWl L W R r WIL 1
RrWlL W R r WIL 1
L1WrR W R rWl1L 1

iWr R W RrWlL 1
1Wr R W L1WrR 1
1 W r R W L 1wr R 1

W r RW L 1Wr Rl
W T RW) 1 W r Rl
W r RW L 1 W rBRl
W r RWL 1 W TRl
W r RWL 3 W rR1
W r RWL £ W TRl
W TRWL 1 W rR1
W TRWL 1 W TR1
W rRWL 1 W rR1
W rRWL1 W rR1
W L1WrR W rR1
w L 1wr R w TR1
W L 1Wr R W rR1
W L 1 W r R W rRl
WL 1 W r R W rR1
WL 1 W o RW rR1
WL 1 w o5 RW rR1
WL 1 W s RW rR1
WL 1 W r RW rR1l
WL 1 W r RW rR1
WL1 W r RW rR1
WL1 W TRW rR1
WL1 W rRW rR1l

Figure 3: The evolution of cellular automaton rule A’ from a sample
initial state. Blanks denote the symbol o.

78 Lyman P. Hurd

5= {T,l, 1y eeey er} X {S], wary sm}
D(Qn.’ 3:’) =1 (Qn;si)(ra 'sj)* — (G(qn-u 3-’), sJ')
(qnv S,') —* (l'rF(ql'l!st'))
D(qrn 35) =—1 *(1,3;')(9", 31) ¥ (G(an si)|sj}
(ql'u‘sl') — (ra F(qfusl’
otherwise the identity rule

Table 5: The cellular automaton rule ¥y, which corresponds to any
given Turing Machine. * denotes any symbol.

Every expression of the form ooooLo*lo?W 0*ro' Roooo has a predecessor
containing the string ooooLo' o’ *Wo*'ro'~!Roooo with i,j,k,l > 0.
Now ooooLl has no predecessor, so ¢ > j and [> k. Furthermore, the only
context in which IWr may appear after the first time step, is LIWr R which
is the case above. Hence these strings exhaust the intersection.

F' violates the pumping lemma for contexi-free languages. Since F' is
not a context-free language, L[] is not. B

6.3 A cellular automaton rule with a non-recursive limit lan-
guage

A Turing machine T as defined earlier was specified by a quintuple {Q, A, F, G, D}
in which Q = {gi,...,q»} is a set of states, A = {sy,..., S} is an alphabet
of symbols,and F: QxA— A,G:@QxA— Q,and D: Qx A — {-1,1}
are the output, state transition, and head direction functions respectively.
Given a Turing Machine T', we define a cellular automata rule W7 which
emulates it. The square which the head occupies will be represented by
an ordered pair (¢;,s;) where ¢; € Q indicates the state of the head, and
s; € A indicates the tape symbol. Squares not occupied by the head are
of the form (r,s;) or (/,s;) indicating that the square is to the right or left
of the head, and has symbol s; . The constraint that the head only writes
squares which are on the correct side assures that no square can be rewrit-
ten by two different heads. A head attempting to move into another head
or a square which is not on the appropriate side, disappears.

Theorem 4. Given a Turing machine T and a state gy , it is in general
undecidable whether (g, s;) is in the limit language of V.

Proof. The question whether (gy,a;) is in the limit language is equivalent
to the question whether there exist legal runs of arbitrary length which
leave T in state g;. This question is undecidable by the following lemma.

Lemma 1. Given a Turing machine T and a state g, is in general unde-
cidable whether T' can assume state g, after n time steps for any n.

A proof of this result is sketched in [7] and proven in full in [8]. A proof
is sketched in section 5.

Formal Language Characterizations of Cellular Automata 79

Theorem 5. The complement of L[y is r.e. for all rules 0.

Proof. The complement of the limit language of a cellular automata is
always recursively enumerable. If a string s is in the complement of the
limit language, it must be excluded after some number of time-steps n.
The strings of length m excluded by the n** time-step may be computed
by calculating the image under the n** iterate of ® of all strings of length
m + 2nr.

Corollary 2. There exists a rule ® such that the language L[(ls] is not
recursively enumerable.

A language is recursive if and only if both it and its complement are
r.e. We have shown that there exists a rule whose limit language is not
recursive, thus it is not r.e.

7. Turing Machine state histories

Proof of lemma. The problem of whether a Turing machine can attain
a given state after an arbitrary number of time steps can be reduced to
the problem of a machine halting on a blank tape, a known undecidable
problem.

Definition 2. Given a Turing machine T = {Q, A, F,G, D} a state his-
tory for T consists of a finite sequence of states qy,qy,...,q, such that if
T is started on a blank tape in state qp, it will proceed in order to states

g15G925 +-+Gn-

The halting problem on a blank tape which is undecidable, is equivalent
to the statement that the machine T has state histories of arbitrary length.

The reduction proceeds as follows. Given an arbitrary Turing Machine
T we construct a new machine T" which recognizes state histories for T'. In
particular if 7' is started on a tape containing the symbols Lqq, g1, ...; ¢n ,
it checks that go,4q1,...,q, represents a valid state history for T, and if it
does, it writes an R over g, and repeats the procedure. Otherwise it enters
an alarm state. The machine can be constrained in such a way that the
only case in which a non-alarm state can occur after an arbitrary number
of time steps, is that there are state histories of arbitrary length for 7",
i.e. T does not halt. But this question is undecidable, hence the question
whether T' can be in a given state after arbitrary time is undecidable.

8. Discussion

At present only a very few limit languages have been computed explicitly.
This is not unexpected. According to Rice’s Theorem, any non-trivial (not
always true or always false) proposition about r.e. languages is in general
undecidable. An analogous result is conjectured to hold true in the case of

80 Lyman P. Hurd

cellular automata. This would mean that in particular that it is undecidable
whether the limit language corresponding to a given rule is regular, consists
of more than one string, or in general if two cellular automata yield the
same limit set.

Work needs to be done to characterize exactly which languages can
occur as limit languages for cellular automata. Even the weaker question
of which regular languages can occur as the 1 time step image of a cellular
automaton is unsolved.

Acknowledgements

I am grateful for support from Thinking Machines Corporation in the early
stages of this work, and for discussions with T. Hales, D. Hillis, B. Kusz-
maul, J. Milnor, N. Packard, and S. Wolfram.

References

[1] 8. Wolfram, “Computation theory of cellular automata”, Communications

in Mathematical Physics, 96 (1984) 15-57.

[2] G. A. Hedlund, “Endomorphisms and automorphisms of the shift dynami-
cal system”, Mathematical Systems Theory 3 (1969) 320; G. A. Hedlund,
“Transformations commuting with the shift”, in Topological dynamics, ed.
J. Auslander and W. H. Gottschalk, (Benjamin, 1968).

[3] P. Walters, An introduction to ergodic theory, (Springer, 1982).

[4] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, lan-
guages, and computation, (Addison-Wesley, 1979).

[5] M. Minsky, Computation: finite and infinite machines, (Prentice-Hall, 1967).
[6] D. Hillis private communication.

[7] U. Golze, “Differences between 1- and 2-dimensional cell spaces”, in A.
Lindenmayer and G. Rozenberg (eds.), Automata, languages, development,
(North-Holland, 1976).

[8] U. Golze, “Endliche, Periodische, und Rekursive Zellulare Konfigurationen
Vorgangerberechnung ung Garten-Eden-Probleme”, dissertation to der
Technischen Universitat Hannover.

