Complex Systems 1 (1987) 81-106

Self-Configuration of
Defective Cellular Arrays

Myoung Sung Lee
Gideon Frieder
Departments of Electrical Engineering and Computer Science,
University of Michigan,
Ann Arbor, MI 48109, USA

Abstract. Rapid advances in VLSI technology are making it feasible
to consider the construction of parallel computers with very large
numbers of cells. One promising architecture for such computers is a
VLSI cellular array that interconnects many simple processing cells on
a single large chip or wafer. It will be very difficult, however, to make a
chip of this kind without many defects. With a fixed interconnection
pattern between cells, the whole cellular array may not be usable
when there are any defects. Furthermore, an architecture with a fixed
interconnection pattern is limited in the range of computations that
can support efficiently. By providing reconfiguration mechanisms, a
VLSI cellular array can be designed so that it can be reconfigured for
fault-tolerance and specialized for various computations.

This paper discusses a massively fault-tolerant cellular array, which
contains identical cells with connections only to immediate neighbors,
where the cells and the connections may be defective with a high prob-
ability. The cell can function as a processing element, as a memory,
or as a switching element that connects to other cells. On the defec-
tive array, a large cluster of interconnected working cells is formed,
and the working cells in the cluster are configured into a graph that
determines the function of the array.

The detailed architecture of the massively fault-tolerant cellular
array is described, and the distributed algorithms for forming the
cluster of working cells and configuring the cells into a linear array,
a two-dimensional array, a binary tree, and signal flow graphs for
various filters are presented. Simulation data are presented when
both cells and connections are defective with various probabilities.

1. Introduction

Since cellular automata provide a theoretical model for a parallel computer,
many proposals and attempts to build cellular computers have been made.

© 1987 Complex Systems Publications, Inc.

82 Myoung Sung Lee and Gideon Frieder

Cellular array machines built in the past are SIMD (single instruction mul-
tiple data) machines with a small number of cells like Solomon [18] and
ILLIAC [15,2]. More recent cellular array machines are typically SIMD
machines with a large number of simple bit-processors with storage at each
cell. Examples include CLIP [5], a 96 by 96 array with 32 bits of storage
at each cell; Massively Parallel Processor [3], a 128 by 128 array with 1K
bits per cell; the Distributed Array Processor [11], a 64 by 64 array with 4k
bits per cell; and the Adaptive Array Processor [12], whose building block
is a single chip 8 by 8 array with 96 bits per cell. Because of the limita-
tions and high cost/performance ratio of available components, however,
these machines were quite limited in power. With the rapid progress in
integrated circuit technology, low-cost, high-density, fast VLSI devices are
making it feasible to consider the construction of large-scale MIMD (mul-
tiple instruction multiple data) computers that were previously considered
too complicated. One promising area in this class of machines is a VLSI
processor array that interconnects a very large number of processing cells
on a large single chip or wafer.

For large-scale multiprocessors, however, VLSI technology imposes a
local communication constraint, since communication in VLSI medium is
very expensive in terms of area, power and time consumption [16]. This
local communication constraint makes cellular array machines particularly
attractive because of their simple connection patterns. On any intercon-
nection pattern, however, only a rather small set of computations can be
performed efficiently. Furthermore, when defects appear on the chip, the
whole cellular array may become unusable. By using the cells as switches
for changing the interconnection pattern, ia cellular array can however be
designed so that it can be reconfigured for fault-tolerance and for specializa-
tion to specific computations. By changing the connection pattern to suit
the specific computation, one multiprocessor system can support a wide
range of computations efficiently, and by changing the connection pattern
to route around the defects, the cellular array can function in the presence
of the many defects that are expected on a large chip.

To take full advantage of reconfigurable cellular arrays, it is desirable
to arrange for distributed self-configuration, in which cells determine the
configuration pattern without knowledge of the state of the array as a
whole. Efficient procedures of this kind have not, however, been given for
the case of many defective cells [14,1,10,7]. Nevertheless, as shown in this
paper, distributed self-configuration can be done efficiently when there is
sufficient computing power in each cell. In this paper we will describe a cel-
lular array machine that can be configured efficiently despite many defects.
The cellular array, here called the massively fault-tolerant cellular array,
is an array of identical cells with connections only to immediate neighbors
where each cell can function as a processing element, as a memory, or as
a switching element that connects to other cells. Input and output termi-
nals are connected only at the boundaries of the array. The cellular array
anticipates the occurrence of massive defects in the cells and in the inter-

Self-Configuration of Defective Cellular Arrays 83

(a) square array (b) hexagonal array (c) octal array

Figure 1: Interconnection patterns of the cellular array.

connections. The cellular array is designed in such a way that there exists
a set of working cells which maintains a desired processing capability de-
spite many defective cells and defective interconnections, by changing the
connection pattern.

To maintain processing capability despite many defective cells and in-
terconnections, cells in the massively fault-tolerant cellular array need to
have some mechanism to identify defective cells and interconnections, and
configure themselves around these defective elements. By employing built-
in self-testing techniques, we should be able to devise a testing mechanism
by introducing additional testing hardware. In this work, we have assumed
that by some mechanism, each cell knows if its neighbor and the connection
to its neighbor is working or is defective.

After the defective cells are identified, a big cluster of interconnected
working cells is formed from a subset of all working cells in the array. The
cells without an adequate number of working neighbors are pruned out from
the cluster. Then cells in the cluster are then configured into a graph that
implements the function of the array.

In the following sections, we will describe the architecture of the mas-
sively fault-tolerant cellular array, and the algorithms for the formation of
the cluster, the pruning of the cluster, and the configuration of the cells
into a linear array, a two-dimensional mesh, and a complete binary tree.
Simulation of the massively fault-tolerant array and simulation results of
the formation of the cluster, pruning, and configuration of cells into a lin-
ear array, a two-dimension mesh, and a complete binary tree are shown on
arrays of size 40 x 40, 80 x 80 and 120 x 120.

2. Massively fault-tolerant cellular array

The three regular interconnection patterns studied in this paper are shown
in figure 1. They are selected to study the effect of the number of the neigh-
bors on the behavior of the cellular array. The three arrays with the three
interconnection patterns of figure 1 are called square array, hexagonal array,

84 Myoung Sung Lee and Gideon Frieder

working cells

defective cells

working connections

defective connections

Figure 2: A defective square cellular array.

and octal array, respectively. Figure 2 shows a square array with defective
cells and defective interconnections. Note that although the initial array is
regular, the ensuing array is not (see figure 2), as the faults cause break-
down in the regularity of the array. Though there are many defects, there
are still many working cells in the array so that useful computation can be
performed. The computations that the array is intended to perform will
determine how the working cells are configured. The logical interconnec-
tion of cells for any particular computation can be represented by a graph
called the computation graph in this paper. The configuration of cells into
a computation graph is the process of embedding the computation graph
in the defective array. The embedding of the computation graph in the
defective array is represented by a graph, called the connection graph. For
example, the tree in figure 3(a) is a computation graph; figure 3(b) shows
an embedding of the tree on the defective square array; figure 3(c) is the
connection graph of the embedding of figure 3(b). In figure 3(b), some cells
are mapped to the nodes of the computation graph, while other cells are
used to connect the cells that are mapped into the nodes of the graph. The
cells mapped into the nodes of the graph are called the computation cells,
and the cells used to connect the computation cells are called the connec-
tion cells. The connection cells are represented by dots on the connection
graph.

A cell in the massively fault-tolerant cellular array is configured into a
computation graph by identifying the logical connections of the cell. For
example, a cell is configured into a binary tree by saving in special registers
the directions of the neighbors as a father, a left child, and a right child of
the cell. The configuration can be changed by changing the contents of the
registers. The configuration is performed in a distributed fashion: each cell
makes a decision only with the information that is available at the cell.

Self-Configuration of Defective Cellular Arrays 85

O
O
O O O
oo O
(a) computation graph (b) embedding of a tree (c) connection graph
(binary tree) on a defective array of the embedding(b)

Figure 3: A computation graph, its embedding, and a connection
graph.

2.1 Architecture of a Cell

Each cell has a processor, local memory, and a set of registers used for self-
configuration. The processor is an instruction set processor with a small
instruction set. The instructions include usual arithmetic, logical, data
transfer, program control operations, and send and receive for input and
output. For the communication with neighbors, the cell has Communica-
tion Registers, and for the self-configuration, the cell has an ID Register,
Neighbor Status Registers, and Configuration Registers. The Configuration
Registers consist of a Status Register, a Pattern Register, and Connection
Registers. Figure 4 shows the architecture of a cell in the square array. On
the hexagonal and octal array, the number of Communication Registers
and Neighbor Status Registers increase to six and eight, respectively. The
purposes of these registers are as follows:

ID Register: Stores the row and column indices of the cell in the array.

Neighbor Status Register, NS[0..N-1 :] Stores the status of the neighbors.
It shows whether communication to each neighbor is working or de-
fective. When either the neighbor is defective or the connection to
the neighbor is defective, the NS shows ‘that communication to that
neighbor is defective. Here N is the number of immediate neighbors.

Status Register, SR: Stores the current status of the cell. The states of a
cell are “idle”, “live”, “pruned”, “computation”, and “connection”.
The status of all working cells are initially “idle”. The clustering
procedure changes the status of the cells belonging to a big inter-
connected cluster to “live”, and the pruning procedure changes the
status of the working cells without an adequate number of cells to
“prune”, so that they are not used in the configuration procedure.
The configuration procedure changes the status of the “live” cells to

86

Mpyoung Sung Lee and Gideon Frieder

'y

]

PE D
,S:.E L Cell A Cell B
CR
M AH.

:IEI

O
b 4

s

Figure 4: Architecture of a cell and communication register of the
cellular array.

“computation” or “connection”, depending upon whether the cell is
used as a computation cell or a connection cell.

Pattern Register, PR: Stores the current configuration pattern. The con-

figuration patterns that we currently recognize are linear array, two-
dimensional mesh, complete binary tree, spanning tree, and FIR and
IIR filter graphs.

Connection Register, CR[0..N-1 :] Stores the directions of neighbors in the

configuration specified by the Pattern Register, PR. The meanings of
the CR[0..N-1] are different for each configuration: when PR specifies
that the configuration is a linear array, CR[0] is the direction of the
predecessor, and CR[1] is the direction of the successor; When PR
specifies a binary tree, CR[0], CR[1], and CR[2] are the directions of
the father, the left child, and the right child; When PR specifies a two-
dimensional mesh, CR[0], CR[1], CR[2], CR[3] are the directions of
the up, right, down, and left neighbors of the cell. When PR specifies
a spanning tree, CR[0] is the direction of the father, and CR[1..N-1]
are the directions of the sons, etc.

2.2 Communication mechanism of the array

Cells communicate with other cells by sending and receiving messages
through Communication Registers. Each Communication Register provides
a one-way communication between two neighbors, and between a boundary
of two cells, two Communication Registers provide two-way communication.
Figure 4 shows a pair of Communication Registers. The arrows in figure 4
show the directions of the data. The fields of the Communication Register
are as follows:

Self-Configuration of Defective Cellular Arrays 87

Full Bit, FB: Shows if the Communication Register is full or empty.

Enable Bit, EB: Shows if the other cell is willing to receive the message.
If EB is 0, the other cell may not read the Communication Register.
EB is used to prevent deadlock.

Messages, Mesg: Contains the messages. It includes a tag bit that shows if
the message is a datum or an instruction.

The FB is used to synchronize the communication between two cells. A
cell can read a Communication Register when the Communication Register
is full, and after the cell reads the Communication Register, FB is reset to 0.
If a cell wants to read a message from an empty Communication Register,
the cell waits until the Communication Register is full again. A cell can
write to an empty Communication Register, and if a cell initiates write to a
full Communication Register, the cell has to wait until the Communication
Register is empty. This provides the synchronization between two cells.

At the processor level, communication is handled by “send” and “re-
ceive” instructions. “Send (direction, message)” writes the “message” on
the Communication Register located at “direction”: Return from “Send”
acknowledges that the message is written to the Communication Register.
“Receive (direction)” reads a message from the Communication Register in
“direction”, and “Receive (any)” reads a message from any Communication
Register that is full: Return from “Receive” acknowledges that a message
has been read from the Communication Register in “direction.”

The Communication Register and “Send”, and “Receive” instructions
provide the asynchronous communication protocol required in the data flow
computation model. These are also used for input and output with the
outside.

2.3 Operation of the array

In the massively fault-tolerant cellular array, an external machine is at-
tached to the boundary cells to control the operation of the array. The
external machine initiates the operations of the array, and provides the
data to the array by sending messages to the array. The external machine
will be called a Controller.

When the massively fault-tolerant cellular array is powered on, Neigh-
bor Status Registers, NS[0..N-1], of each cell are set to indicate the status
of the communication to neighbors of each cell (working or defective) by
some testing mechanism. The hardware and algorithms for the testing have
not been studied yet. We assumed that the testing can be done by some
mechanism.

After the Neighbor Status Registers are set correctly, the controller ini-
tiates the clustering procedure which identifies the largest cluster of inter-
connected working cells in the array. If the size of that cluster is adequate,
the cells in the cluster are given identification numbers that are stored in

88 Mpyoung Sung Lee and Gideon Frieder

the ID Registers of all cells in the cluster. After all the cells in the cluster
are given identification numbers, the controller initiates the pruning proce-
dure which prunes out the cells in the cluster without an adequate number
of working neighbors. The controller then initiates the configuration proce-
dure to configure the cells in the cluster into a desired computation graph.
When the Controller sends a message to a cell at the boundary of the array,
the cell relays the message to its neighbor cell, and the message will prop-
agate through the working cells. The cells will be configured into a graph
specified on the message. The configuration of the cells is finished when all
the cells set their Configuration Registers correctly and the boundary cell
connected to the controller returns a message to the controller.

3. Formation of the cluster of cells

Since the cells in the cellular array connect only to the immediate neighbors,
when a cell wants to communicate with another cell that is not directly
connected to it, the message should be relayed by intervening working cells
to the target cell. Therefore, a small cluster of working cells surrounded by
defective cells cannot be used. The array can be useful only when a large
cluster of of interconnected working cells is formed in the array.

We can use the percolation theory [17,6] to predict if a large cluster
appears on the array, and if the cluster appears, to predict the size of the
cluster. According to the percolation theory there exists a critical proba-
bility such that when the probability that a cell is working is more than
the critical probability, there appears an infinite cluster of interconnected
working cells in the defective infinite array of cells.

3.1 Percolation theory and the cellular array

Consider a lattice L defined as a graph of N sites (or vertices) and M bonds
(or lines). In most cases of practical interest, L will be a regular two or
three dimensional lattice of finite or infinite extent. In the bond problem,
each bond of L is occupied (or open, or working, etc.) with probability p
or vacant (or blocked, or defective, etc.) with probability 1 — p. Occupied
bonds are connected if they meet at a common site, and a connected set
of s bonds form a bond cluster of size s. In the site problem, each site is
occupied with probability p and vacant with probability 1 — p. Occupied
sites are connected to form site clusters if they are adjacent through the
bonds of L.

For an infinite lattice L there is a critical probability p. = p.(b, L) or
pc(s, L) for the bond or site problems such that for p < p. all clusters
will be finite while for p > p. there will, with positive probability, be an
infinite cluster in L. The infinite cluster is called a percolation cluster. We
can define the percolation probability, P(p), as the probability that a site,
chosen at random, belongs to an infinite cluster. One defines the critical

Self-Configuration of Defective Cellular Arrays 89

probability, p,., as
p. = sup{p|P(p) = 0}.

The sites in the percolation model corresponds to the cells of the mas-
sively fault-tolerant cellular array, and the bonds in the percolation model
corresponds to the connections between cells. In the site percolation prob-
lem, all the bonds are assumed to be occupied and only the sites can be
vacant; this corresponds to the assumption that all connections are working
and only cells can be defective. In the bond percolation problem, all the
sites are assumed to be occupied and only the bonds can be vacant; this cor-
responds to the assumption that all cells are working and only connections
can be defective.

Since the area of a cell is much bigger than the area of a connection
in the cellular array, and the defect probability of an integrated circuit
is at least proportional to the area of the integrated circuit, the defect
probability of a cell is much greater than that of a connection. Therefore,
as a first approximation, the array can be modeled by the site percolation
model. On the site percolation model of the defective array, we can take
into account that connections can be defective by associating connections
with neighboring cells. When a connection is defective, the cells associated
with the defective connection are considered defective. When we need to
use the working cells connected to the defective connections, the defective
array should be modeled by the combination of site and bond percolation
problem [9].

In percolation theory the percolation cluster is an infinite cluster that
appears on the infinite lattice. On the cellular array of finite size, we
define the percolation cluster as the largest cluster that is connected to
all four borders of the array when the array is rectangular. Using the
percolation theory, we can predict that the percolation cluster will appear
in the defective cellular array when the probability that a cell is working,
P, is more than the critical probability, p. of percolation theory.

Figure 5 shows the formation of the clusters in a square array where the
critical probability is 0.59. Here cells in solid boxes belong to the largest
cluster. When p is 0.5, the percolation cluster does not appear (figure 5(a));
when p is 0.61, a thin percolation cluster appears (figure 5(b)); when p is
0.75, a thick percolation cluster appears (figure 5(c)).

However, as we can see in figure 5(b), even though the percolation clus-
ter appears in the array, when p is not high enough, the percolation cluster
is “thin”, contains many branches, and does not include many boundary
cells. The cells on the thin percolation cluster may not be used effectively
because communication between two cells in the thin cluster is difficult,
and configuration of cells into a computation graph is not efficient. Fur-
thermore, input and output on the thin percolation cluster is difficult due
to the lack of the boundary cells. Therefore the thin percolation cluster
in figure 5(b) may not be useful. When p is high enough, the percolation
cluster that appears in the array is “thick”, and has many boundary cells.

90 Myoung Sung Lee and Gideon Frieder

b
Trrga x
= 217 TaTs

L

(@) p=05 (b) p = 0.61 (c) p=0.75
a percolation cluster a thin percolation a thick percolation
does not appear cluster appears cluster appears

Figure 5: The formation of clusters on the square array.

The cells in the thick cluster may be used effectively for configuration and
computation. The cluster in this case is shown in figure 5(c).

The usefulness of the percolation cluster depends on the computation
graph that will be embedded on the percolation cluster. For example, a
percolation cluster may be considered adequate enough to embed a linear
array but the same percolation cluster may not be adequate to embed a
two-dimensional array.

3.2 Formation of the cluster

When p is more than p., we can form a percolation cluster of working cells
in the defective array. The cluster is formed by connecting the working
cells into a spanning tree which spans all the working cells connected to a
certain boundary cell. The controller sends a message to a working cell at
the boundary, where the message specifies that a spanning tree of working
cells be formed. The cell that received the message from the controller
becomes the root of the spanning tree.

After a spanning tree is formed with the cell that received a message
from the controller as the root of the spanning tree, the cell returns the
number of cells connected into a spanning tree to the controller. If the
number is greater than the critical number, the cells in the spanning tree
are taken as the percolation cluster. The critical number of cells is chosen
as

critical probability x N?
2

where N? is the size of the array. Because of the distribution of size of the
clusters, a cluster of less than this size cannot be the percolation cluster.
If the number is less than critical number, another message is sent to some

(3.1)

Self-Configuration of Defective Cellular Arrays 91

other working cell on the boundary, and a new spanning tree is formed with
the new cell as the root of the spanning tree. This process continues until a
percolation cluster is found, or the controller gives up finding a percolation
cluster in the defective array.

Figure 6 shows the algorithm for connecting the cells into a spanning
tree. Here, scopes of ‘if’, ‘then’, ‘else’, ‘repeat’, etc. are determined by
the indentation, and comments are enclosed by ‘{” and ‘}’. The first two
lines show the contents of the message. A line beginning with ‘Receive’
shows the content of the message when a cell receives a message, and a
line beginning with ‘Return’ shows the content of the message when a cell
returns a message. The message field includes a tag that tells if the message
is an instruction or data. Fach cell receives a message with an instruction
that says ‘configure into a spanning tree’, and returns a message with a
data that is the number of cells in the subtree. All the cells execute the
same program.

When a cell receives a message from a neighbor, the cell changes its
state by setting the Status Register, SR to “live”, and it saves the direction
of the neighbor on CR[0] as the father of the cell. The cell then sends the
message to its working neighbors. If a neighbor returns the message that
the neighbor is a part of the spanning tree, the direction of the neighbor
is saved on CR[1..N-1] as a son. The spanning tree grows in depth first
order. The enabling and disabling of communication registers is necessary
to prevent deadlock. Figure 7 show the percentage of working cells that
are in the largest cluster in the 120 by 120 square, hexagonal, and octal
array, respectively. The experimental results are generally in agreement
with percolation theory. When connections are not defective, we can see
that more than 90% of working cells belong to the percolation cluster when
p is more than 0.7 on the square array, when p is more than 0.6 on the
hexagonal array, and when p is more than 0.5 on the octal array. As the
connections become defective, these numbers decrease as shown in figure 7.
The cellular array can be used on the plateau region of figure 7 the area of
which increases as the degree of the array increases.

3.3 Assignment of identification numbers

After the working cells are connected into a spanning tree, the cells on
the spanning tree are assigned identification numbers. The identification
number of a cell is the row and column indices of the cell in the array. The
identification number is saved in the ID register.

The controller sends a message to the root cell of the spanning tree
where the first field of the message specifies the operation, and the next
fields are the row and column indices of the root cell. When a cell receives
the message, the cell saves the row and column indices on the Id register,
and computes the Id of the son. Then the cell sends the message with the
computed Id to the son. When the cell receives the message from the son,
it iterates the same operations on the next son.

92 Mpyoung Sung Lee and Gideon Frieder

Receive: mesgl: opcode telling the cell to configure into a spanning tree
Return: mesgl: number of cells in the subtree of the cell

L: recv(any, mesgl)

if the cell is not idle_cell

then send(dir, 0) {message came here already}
goto L

else {I am a idle cell}
status 1= live_cell
number of sons := 1 {including this cell}
connect the sender as my father

repeat for all neighbors
send to a working neighbor with enabled communication
disable all communication except the neighbor
recv from the neighbor
enable all communication
if mesgl > 0 then connect the cell as my son.
number of sons := number of sons + mesgl

send(father,number of sons)
goto LL

Figure 6: Clustering algorithm.

0 % wnen

(a) square array (b) hexagonal array (<) octal array

Figure 7: Percentage of working cells that are in the largest cluster.

Self-Configuration of Defective Cellular Arrays 93

3.4 Pruning

After a percolation cluster of working cells is formed in the defective array,
the cells in the percolation cluster can be configured into a computation
graph. However, some cells in the percolation cluster form a single-width,
dead-end branch, and they may not be configured effectively. Furthermore,
they may slow down communications between cells. To facilitate the con-
figuration of working cells and the communication between cells, we may
prune out the dead-end branch of cells from the percolation cluster.

Pruning of the dead-end branches from the cluster can be generalized
to pruning-to-k. The Pruning-to-k operation prunes out the cells which are
connected to less than or equal to k working neighbors. Here k is called
the level of the pruning. Pruning of the dead-end branch corresponds to
pruning-to-1: the cells connected to only one working neighbor are pruned
out from the cluster. Pruning is applied repetitively until no more cells are
pruned.

By pruning the cells from the cluster, we can have a cluster of tightly
connected cells. After the pruning-to-k operation, all the cells in the cluster
are connected to at least k + 1 working neighbors. This can facilitate the
configuration of cells into a graph and the communication among the cells
in the cluster. When the working probability is adequate, most of the cells
in the percolation cluster are connected to several working neighbors [13].

4., Configuration of cells

The cells have to be configured into a general computation graph which
specifies the function of the array. Before the configuration of the cells
into a general computation graph, we studied the configurations into three
particular graphs: linear array, complete binary tree, and two-dimensional
array (mesh). Many computations can be done efficiently on these graphs.

The configuration of cells into a computation graph is the process of
embedding the computation graph on the defective array. Since the cells
that do not belong to the percolation cluster cannot be used, the compu-
tation graph is embedded on the percolation cluster. Note that when the
percolation cluster appears on the defective array, most of the working cells
belong to the percolation cluster.

The efficiency of the configuration into a graph G, eg, is defined as

number of cells used as computation cells
- : : x 100 (4.1)
number of working cells in the cluster

€c

The delay dg(C4,C2) between the two cells, C; and Cj, in a configuration
into a graph G is defined as one plus the number of connection cells be-
tween the two cells C;, and C;. Therefore, the delay between two directly
connected cells is 1, and the delay is 2 when there is one connection cell
between two cells. The maximum delay of the configuration is the max-
imum delay among all two adjacent computation cells, and the average

94 Myoung Sung Lee and Gideon Frieder

delay of the configuration is the average of all delays among two adjacent
computation cells.

We define the degree of a graph G, dg, as the average degree of the
vertices of the graph. To configure the cells in the defective array into a
computation graph of degree dg efficiently, the number of neighbors on the
array, or the degree of the array, d4, needs to be greater than dg. When
d4 is less than dg, the efficiency of the configuration becomes low. We
can expect that cells can be configured into a linear array (dg = 2), and a
tree (dg = 3) efficiently on the square array (ds = 4), the hexagonal array
(da = 6), and octal array (ds = 8). But the configuration of cells into a
mesh (dg = 4) on the defective square array may not be as efficient as the
configuration on the hexagonal array or on the octal array.

In the following sections an overview of configuration procedures into a
linear array, a tree, and a mesh are described. The detailed algorithms can
be found in [13].

4.1 Linear Array

In the linear array, every cell has two neighbors: the predecessor, and the
successor. The configuration of cells into a linear array is the process of
identifying predecessors and successors and saving the directions of the
predecessors and successors in the Connection Registers, CR[0], and CR[1].

The configuration procedure consists of three parts: Linear, Extend, and
Join. Procedure Linear grows the linear array into the defective array of
cells. When the linear array is grown in the defective array by the Procedure
Linear, Procedure Extend finds the cells which are not in the linear array,
but which can be connected into the linear array. Then Procedure Join
connect the cells identified by Procedure Extend into the linear array. By
combining the three procedures, Linear, Extend, and Join, most of the cells
in the cluster are connected into the linear array.

The controller initiates the configuration by sending a messages to a cell
at the boundary of the array. The message consists of the fields specifying
the operation, the number of cells to be connected into the linear array, and
the direction of the successor neighbor. When a cell B receives a message
from a neighboring cell A, the cell B sets the Pattern Register PR to “linear
array”, and saves the direction of the cell A on CR|[0] as a predecessor. Then
the cell B tries to grow the array by adding a neighbor as its successor.
First, if the neighbor C specified as the successor on the message is working,
the message is sent to C. If C is connected to the linear array, the linear
array grows from C again. The cell C returns the message to B with the
number of cells on the linear array after C. Then cell B saves the direction
of the cell C on CR[1] as a successor, and increases the number of cells
by one, and returns the message to the predecessor, A. If C fails to be
connected into the linear array, then the neighbor on the direction of the
growth of the linear array as specified on the message is tried. If this fails
too, then any working neighbor is tried. If all fail, the linear array retracts

Self-Configuration of Defective Cellular Arrays 95

to the cell A, and growth of linear array is tried at cell A again. Since the
cells do not know the global state of the network, the linear array can be
grown into the dead-end, and the cells may have to backtrack often.

When Procedure Linear is finished, the cell at the boundary which re-
ceived the message from the Controller returns the number of cells con-
nected into the linear array to the controller. If the number of cells is less
than the number the Controller wants, the controller sends a new message
to the cell. The new message consists of the fields specifying Procedure
Extend and the number of cells to be joined to the linear array. The cells
which were not part of the linear array but adjacent to the linear array are
identified and joined into the linear array.

With the three configuration procedures, Linear, Extend, and Join,
most of the cells are configured into a linear array when the working prob-
ability of a cell is adequate. Figure 8 shows the algorithm of Procedure
Linear. Figure 9 shows the cells connected into a linear array on the defec-
tive array. Figure 10 shows the percentage of cells in the cluster that are
connected into a linear array on the square array, on the hexagonal array,
and on the octal array.

From figure 10, we can see that most working cells are connected into a
linear array with adequate working probabilities of cells and connections.
Since degree of the linear array is two, the configuration of cells into a
linear array should be efficient on all arrays even when working probability
of a cell is not high. As the degree of the array increases, efficiency of the
configuration increases rapidly. When the connections are not defective, on
the square array, when the working probability of cells is 80%, more than
85% of the working cells are connected into the linear array. On the octal
array, with the working probability of cells 60%, about 90% of the working
cells are connected into the linear array.

Since all computation cells are connected directly to the other compu-
tation cells without intervening connection cells, no delay has been intro-
duced, and the average delay is 1.

4.2 Tree

In the complete binary tree, every cell has three neighbors: a father, a
left child, and a right child. The working cells of the defective array are
configured into a complete binary tree by setting their Connection Registers
CR[0..2] to the directions of a father, a left child, and a right child of each
cell respectively, and saving the level of the cell in the tree on CR[3]. (The
level of the leaf node is defined as one, and the level of a father is one more
than that of its child.) Some working cells are used as the nodes of the
tree, which are computation cells, and some are used as connection cells,
which are used to connect computation cells.

Since the topology of the binary tree and that of the array of cells do
not match, we need to use many working cells as connection cells even when
there are no defects in the network. Koren [10] studied embedding of a tree

96 Myoung Sung Lee and Gideon Frieder

Receive: mesgl: opcode telling the cell to connect into a linear array (op-line)
mesg2: direction of the neighbor to be tried first
mesg3: direction of the linear array
mesg4: number of cells to be connected into the linear array
Return: mesgl: number of cells connected into the linear array
mesg2: maximum number of cells connected into the linear array

L: recv(any, mesgl, mesg2, mesg3, mesg4)
if the cell is not live_cell
then send(dir, 0, 0)
else { connect me as part of the linear array }
predecessor := dir of the neighbor which sent the message
make a table of neighbors to try to connect
repeat for each neighbor in the table
if a neighbor is working and communication is enabled then
send (neighbor, op_line, mesg2, mesg3, mesg4)
disable all communication registers except the neighbor
recv(neighbor, mesgl, mesg2)
enable all communication registers
if mesg2 > 0 then
connect the neighbor into a linear array
successor ;= dir of the neighbor
goto L

send to predecessor
goto L

Figure 8: Linear array configuration algorithm.

97

Self-Configuration of Defective Cellular Arrays

Salgitt bty oS
mlunmﬂMluul M|umm H

2yin ? Jyafed iE
=4 MHnltI'al. 8 u N
SafiegiEes fefls
g o
MI"II“I I_.“m m.“m ‘“
*I'". ““I“.. wan

..-Hm-n.___ e
H mnm”

: i
Mmm"mmu.“.“"

i u-”m
,.m,.“mmmumm

e
|

nEEE

“ n n ﬂ.-_.a
B

]
afes o
PR TR
aeizsaeer 030
it Rt A e
LR TR

Eyedtttaataiatgd
T
i- amanm uoo

(c) octal array,

(b) hexagonal array,

p=20.38

(a) square array,

p=038

p=0.7

Figure 9: Configuration of cells into linear arrays on the defective

array.

X certin)

7 .|

L]

(<) octal array

(b) hexagonal array

(a) square array

Figure 10: Percentage of cluster cells that are connected into a linear

array.

98 Myoung Sung Lee and Gideon Frieder

in a defective square array, but his procedure allows few defects, and its
efficiency is very low when there are many defects. The algorithm sets all
working cells in the row and the column of the defective cell as connection
cells, thereby making a reduced array without defect of one less row and
one less column for each defects. Note that when there are many defects,
none of the rows and columns will be without defective cells.

The algorithm we devised allows efficient configuration even when many
cells are defective. The algorithm has two parts: Tree and Retract. Proce-
dure Tree connects the cell into a tree, and Procedure Retract retracts the
subtree when it cannot increase the level of a subtree.

The Controller initiates the configuration into a tree by sending a mes-
sage to a cell at the boundary of the array. The message consists of a field
specifying the operation and the level of the tree desired. If the cells are
successfully configured into a tree of the level specified on the message, the
cell returns the level of the tree. The Controller then increases the level of
the tree by one, and sends the message again to the cell until the desired
level is achieved.

When a cell receives the message from the father cell, the cell tries to
increase the level of the left subtree by one. If it is successful, the cell
tries to increase the level of the right subtree by one. If it is successful,
the level of the tree has been increased by one, and the cell returns the
message to its father. But if it fails, the cell is changed into a connection
cell, the right subtree is retracted, and the tree expansion is tried at the
left subtree again. If the level of the left subtree cannot be increased, the
left subtree is retracted, and the cell is changed to the connection cell, and
the tree expansion is tried at the right subtree again. The tree is expanded
in breadth-first order. Figure 11 shows the trees embedded in a defective
array. Since the average degree of the tree graph is three, configuration
of cells into the tree in the square, hexagonal, and octal array could be
efficient even when working probability of a cell is not high. Table 1 shows
the maximum level of the tree into which cells are configured. Note that
to increase the level of a tree by one, the number of computation cells in
the tree should be multiplied by two. Figure 12 shows the percentage of
working cells that are connected into a tree. When the level of the tree does
not increase as the working probability increases, the percentage decreases
as more working cells are available. Table 2 shows the average delay of the
configuration,

As the number of neighbors in the array increases, and as the working
probability increases, efficiency of the configuration increases, and average
delay decreases as can be expected.

We compared the efficiency of our configuration algorithm with the
embedding of H-tree in a defectless square lattice. H-tree is a complete
binary tree embedded in a recursive pattern that looks like the letter ‘H’
[4]. H-tree is known to be the most efficient way of embedding a complete
binary tree in a square lattice. The maximum level of H-tree that can be
embedded in a defectless square lattice is 9 in a 40 by 40 lattice, and 11

Self-Configuration of Defective Cellular Arrays 99

[318]
oounn

oog o - nooono onooo

(a) level 6 tree (b) level 7 tree
on octal array on octal array
p=07 p=07

Figure 11: Configuration of cells into trees in the defective array.

connection cellular array

type probability cell (%)
(%) 60 70 80 90 100
square €0 o g ves, was 450
array 70 e .. 50 70 75
(c=4) 80 e .. 65 T0 80
90 .. 45 7.0 80 8.0
100 .. 70 75 80 8.0
50 s ey w60 LD
hexagonal 60 .. 55 65 7.5 8.0
array 70 .. 65 70 80 80
(c=6) 80 .. 70 80 80 80
90 65 70 80 80 80
100 70 75 80 80 8.0
50 .. 60 7.0 80 8.0
octal 60 35 70 80 80 8.0
array 70 70 75 80 80 9.0
(c=8) 80 70 80 80 85 9.0
90 7.0 80 80 90 90
100 80 80 80 90 90

Table 1: Size of the embedded tree.

100 Myoung Sung Lee and Gideon Frieder

1] n L n callfg)

(a) square array (b) hexagonal array (c) octal array

Figure 12: Percentage of working cells that are connected into a tree.

connection cellular array
type probability cell (%)

(%) 60 70 80 90 100

square 60 e 2.33
array 70 .. 3.08 261 247
(c=4) 80 w253 251 223
90 .. 1.81 269 235 2.16

100 .. 270 231 225 1.96

50 . 244 201

hexagonal 60 .. 243 270 207 201
array 70 .. 226 204 221 1.92
(c=86) 80 .. 236 204 193 1.78
920 252 198 187 1.78 1.69

100 209 181 192 181 1.61

50 . 222 207 2.09 1.90

octal 60 1.80 2.16 2.09 1.84 1.87
array 70 2.08 206 196 1.79 1.90
(c=8) 80 204 204 183 180 173
90 1.98 195 170 1.84 1.67

100 1.87 1.80 166 1.75 1.58

Table 2: Delay on the embedded tree.

Self-Configuration of Defective Cellular Arrays 101

in a 80 by 80 lattice, and the efficiency of embedding the largest H-tree on
lattice of size 40 by 40, or 80 by 80 is 32%, and the delay on the H-tree is
about 3.4 [13]. Comparing these with table 1 and table 2, we see that we
can configure cells into a defective array without much penalty even when
there are many defective cells in the array.

4.3 Mesh

On the mesh of cells, every cell has four neighbors: left, right, up, and
down. The working cell on the defective array are configured into a mesh by
setting its Connection Registers CR[0..3] to the directions of the neighbors
connected as up, right, down, and left neighbor of the cell.

Manning [14] describes the algorithm for embedding a mesh on the
defective square array, and Green [8] describes embedding a mesh using
the channel between the cells. Both use the knowledge of the global state
of the defective array. Here a distributed algorithm where each cell knows
only the state of the neighbors (working or defective) is described.

The Controller sends a message to the cell at a boundary of the mas-
sively fault-tolerant cellular array, where the message tells the cell to grow
a horizontal line of the mesh. If it is successful, the Controller sends a
message to the cell at the other boundary to grow a vertical line of the
mesh. Growth of the horizontal and vertical line alternates until no more
lines of the mesh can be grown on the array. The cells at the junction of a
horizontal line and a vertical line become the nodes of the mesh. The cells
at the nodes of the mesh are computation cells, and the cells connecting the
nodes are connection cells. The computation cells are given the coordinates
of the mesh.

Since the complexity of the mesh is four, and the degree of the defective
square array is less than four, efficiency of the configuration may be low on
the square array. When a growing horizontal line comes across a defective
cell, the line should veer around the cell, and this uses the cells which
can be used for a vertical line. Veering around the defective cell on the
square array while growing a horizontal line blocks the growth of a vertical
line, and vice versa. Therefore, bending the line should be done sparingly.
On the hexagonal and octal array, the growing horizontal line can use the
connection without occupying the cell in the other direction. This increases
the efficiency of configuring the cells into a mesh on hexagonal and octal
array.

When the cell receives the messages, it tries to grow in the direction
of the line. When the neighbor on the direction of the line is defective, it
tries to grow on the direction specified on the message. If the cell cannot
grow the line, it backtrack to its predecessor cell. Figure 13 shows the cells
configured into a mesh.

Figure 14 shows the size of the mesh as the percentage of the array
size, and table 3 shows the size of the embedded mesh. and table 4 shows
the delay of the configuration. As shown in the figure 13 and table 4,

102 Myoung Sung Lee and Gideon Frieder

== == 3fc=c——oo £
% 4 8RR
-SeSSSNEseel FEFE ___ 1_FF EEEE mBSE-
ires EEEEE B&F
E] 4 Ex b E EEEEEE
R & Fea-Fea [4 SEEED
FEEEEET S g Feal i = EEED
I_E"HD =988 FIFOa Nl _F IEEE
B e b e
H e IS SEECE
EE -5} =322 FIIFCIICFACIFAF0553 333322 BO-E0 !!ﬁ!:
BIFFEERFIIH l{’ CIIC FICHARSEA O SoSEE -0-0-8-
EIEFEE__EN FERE ER _iFeEs a5 BGEE-
CEIN =BS5S -Seee FTEFICAE_3C3H ==]
FAINCEFEE S CEEZF®S 3 _FECIC BC FICrei30ZIIDREIReaDRc
3 FREFIEII-IC E ;| 3= EEEICICREL GO0~
Pl aed 41 : At
C CcC =
3 _sEsw 5 = | EEFEFIINLOd
FCIEC=S 5 OO ICI3EI_Avessesdm’® 8 C"TOCCC EEE
(a) square array {b) hexagonal array (C) octal array
p =095 p=09 p=09

Figure 13: Configuration of cells into meshes in the defective array.

0% " i]
{c) octal array

(a) square array (b) hexagonal array (c) octal array

Figure 14: Percentage of working cells that are connected into a mesh.

the efficiency of the configuration increases rapidly and the delay decreases
rapidly with the increase of the number of the neighbors.

5. Conclusion

As shown in this paper, self-configuration of cells into various computation
graphs can be done efficiently when cells are adequately powerful. This
paper presents the data for various working probabilities of cells and con-
nections with various degrees of the computation graph and of the array.
When we use the massively fault-tolerant cellular array for a particular ap-
plication, we need to configure cells into a particular computation graph,
and we can determine the defect rate of cells which allows acceptable ef-
ficiency of configuration from the data in this paper. We can change this
acceptable defect rate by changing the interconnection patterns or the size
of a cell to find the feasible implementation on available technology. Cur-
rently we are designing a wafer-scale signal processing chip using the mas-
sively fault-tolerant cellular array. The architecture is very homogeneous
and simple, and shows the potential for high performance.

Self-Configuration of Defective Cellular Arrays 103
connection 40 x 40 array 80 x 80 array
type probability cell (%) cell (%)
(%) 80 90 95 100 80 90 95 100
80 20 33 54 175 30 6.0 115 17.0
square 90 33 78 88 133 65 115 180 233
array 95 43 7.5 103 208 7.2 133 213 358
(c=4) 100 5.3 10.5 13.8 40.0 8.0 185 29.0 80.0
80 1.8 45 74 103 15 9.5 150 205
hexagonal 90 45 10.0 14.0 20.3 7.0 18.8 230 383
array 95 6.5 123 168 26.8 || 10.0 240 315 483
(c=6) 100 6.8 143 20.8 400 | 13.0 310 435 80.0
80 28 98 134 170 6.0 200 27.2 345
octal 90 55 130 17.0 243 9.5 230 31.0 46.0
array 95 6.7 145 195 280 (12.7 29.0 39.8 55.0
(c=8) 100 8.0 16.8 22.0 40.0 | 16.0 325 47.3 80.0
Table 3: The size of the embedded meshes.
connection 40 x 40 array 80 x 80 array
type probability cell (%) cell (%)
(%) 80 90 95 100 80 90 95 100
80 21.21 11.11 8.77 6.44 || 32.17 16,51 11.17 5.83
square 90 1353 594 5.14 331 | 1574 825 523 394
array 95 11.13 598 4.46 206 | 1364 6.99 426 243
(c=4) 100 873 417 3.24 1.00| 11.55 486 3.03 1.00
80 1562 7.53 560 3.67| 3471 7.73 575 3.77
hexagonal 90 781 416 275 193 (10.13 4.12 3.38 2.06
array 95 6.56 3.24 2.31 .1.48 796 3.25 251 1.65
(c=6) 100 531 273 189 1.00 579 254 182 1.00
80 11.15 392 3.10 2.28 | 11.57 3.86 3.07 2.28
octal 90 651 299 228 163 7.73 3.38 255 173
array 95 555 2.67 2.00 1.42 624 270 199 1.45
(c=8) 100 459 233 1.79 100| 476 242 168 1.00

Table 4:

The delay on the embedded meshes.

104

Myoung Sung Lee and Gideon Frieder

References

(1]

2]

&

[4]

5

(6]

[7]

(8]

(9]

[10]

11

12

[13]

[14]
(1]

[16]

R. Aubusson and I. Catt, “Wafer-scale integration - a fault tolerant proce-
dure,” IEEE Journal of Solid State Circuits, SC-13 (1978) 339-344.

G. H. Barnes, “The Illiac IV computer,” IEEE Transactions on Computers,
C-17 (1986) 746.

K. E. Batcher, “Architecture of a massively parallel computer,” Proc. 7th
Annual Symposium on Computer Architecture, pp. 168-174, 1980.

R. P. Brent and H. T. Kung, “On the area of binary tree layouts,” Informa-
tion Processing Letters, 11 (1980) 46-48.

M. B. Duff, “Review of the CLIP image processing system,” Proceedings
National Computer Conference, pp 1055-1060, 1978.

John W. Essam, “Percolation theory,” Reports on Progress in Physics, 43
(1980) 833-912.

D. Fussel and P. Varman, “Fault tolerant wafer-scale architectures for VLSI,”
Proceedings 9th Annual Symposium on Computer Architectures, pp. 190—
198, 1982.

J. W. Greene and A. El Gamal, “Configuration of VLSI arrays in the pres-
ence of defects,” Journal of the ACM, 31 (1984) 694-717.

J. Hoshen, P. Klymko, and R. Kopelman, “Percolation and cluster distribu-
tion. III. Algorithm for site-bond problem,” Journal of Statistical Physics,
21 (1979) 583-599.

Israel Koren, “A reconfigurable and fault tolerant VLSI multiprocessor
array,” Proceedings 8th Annual Symposium on Computer Architectures,
pp- 425-442, 1981,

J. K. Tlliffe, Advanced Computer Design, (Prentice-Hall, 1982).

T, Kondo, T, Nakashima, M. Acki, and T, Sudo, “An LSI adaptive array
processor,” IEEE Journal on Solid State Circuits, SC-18 (1983) 147-156.

Myoung Sung Lee, “Self-configuration of the massively defective cellular ar-
ray,” Ph. D. Dissertation, Dept. of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, 1986.

F. Manning, “An approach to highly integrated, computer-maintained cel-
luar arrays,” IEEE Transactions on Computers, C-26 (1977) 536-552.

B. H. McCormick, “The Illinois pattern recognition computer, ILLIAC III,”
IEEE Transactions on Computers, EC-12 (1977) 791-813.

C. Mead and L. Conway, Introduction to VLSI Systems, (Addison-Wesley,
1980).

Self-Configuration of Defective Cellular Arrays 105

[17] Vindo K. S. Shante and Scott Kirkpatrick. “An introduction to percolation
theory,” Advances in Physics, 20 (1971) 325-357.

(18] D. L. Slotnick, W. C. Borck, and R. C. McReynolds, “The SOLOMON
computer,” Proceedings Western Joint Computer Conference, pp. 87-107,
1962.

