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Abstract. Rapid adv an ces in VLSI technology are making it feasible
to cons ider th e const ruction of parallel compute rs with very lar ge
numbers of cells. On e promising architecture for such computers is a
VLSI cellula r array that interconnects many simp le processing cells on
a single lar ge chip or wafer. It will be very difficult , however, to make a
chip of this kind without many defects. With a fixed int erconn ection
pattern between cells, the whole cellular array may not he usable
when there are any defects. Furthermore , an architecture with a fixed
interconnection pattern is limited in the range of computations t hat
can support efficiently. By providing reconfiguration mechanisms, a
VLSI cellular array can be des igned so t hat it can be reconfig ured for
fau lt-tolerance and specialized for var ious computations.

This paper di scusses a massively fault -tolerant cellular array, wh ich
contains ident ical cells with connections on ly to immediate nei ghb ors,
where the cells and the connections may be de fective with a high prob­
ability. The cell can function as a processin g element, as a memory,
or as a switchin g element that connects to ot her cells. On t he defec­
t ive array, a large clus ter of interconnected working cells is formed ,
and the working cells in t he cluster are configured into a gra ph th at
de termines the function of the ar ray.

The de tailed architecture of the massively faul t- tolerant cellular
array is described, and the distributed algorithms for forming the
cluster of working cells and configuring the cells into a linear array,
a two-dimension al array, a binary t ree, and signal How gr aphs for
various filters are prese nted. Simulation data are presented when
bo th cells an d con nec t ions are de fect ive with various probabilit ies.

1. Introduction

Since cellu lar a ut omata provid e a t h eo re t ical model for a p aralle l computer ,
many p roposals and attempts to build cellu la r computers h ave been m ad e.

© 1987 Com plex Syst.ems P ublicat.ions , Inc.



82 Myo ung Sung Lee and Gideon Frieder

Cellular array machines built in the past are SIMD (sing le instruction mul­
t iple data) machines with a small numb er of cells like Solomon 1181 an d
ILLIAC 115,21. More recent cellular array machines are ty pically SlMD
machines with a large number of simple bit-processors with storage at each
cell. Examples include CLIP 151, a 96 by 96 array with 32 bits of st orage
at each cell; Massively Parallel Processor 131, a 128 by 128 array with 1K
bits per cell; the Dist ributed Array P rocessor [n ], a 64 by 64 array with 4k
bits per cell; and the Adaptive Array Processor [12], whose bu ilding block
is a single chip 8 by 8 array with 96 bits per cell. Because of the limit a­
tions and high cost/performance ratio of ava ilable components, however,
these machines were quite limited in power. With the rapid prog ress in
integrated circuit technology, low-cost , h igh-density, fas t VLSI devices are
making it feasible to consider the construction of large-scale MIMD (mul­
tiple instruction multiple data) computers that were previously considered
too complicated. One promising area in this class of machines is a VLSI
processor array that interconnects a very large number of processing cells
on a large sing le chip or wafer.

For large-scale mult iprocessors, however, VLSI technology imposes a
local commun ication constraint , since communication in VLSI medium is
very expensive in terms of area , power and t ime consumpt ion [16]. T his
local communication constraint ma kes cellular array machines part icularly
attractive because of their simple connection pattern s. On any intercon­
nection pattern, however 1 only a rather small set of computations can be
performed efficiently. Furthermore, when defects ap pear on the chip, the
whole cellular array may become unusable. By using the cells as switches
for changing the interconnection pattern, ia cellular array can however be
designed so that it can be reco nfigured for fault-tolerance and for spec ializa­
tion to specific computations. By changing the connection pattern to suit
the specific computat ion, one multiprocessor syst em can sup port a wide
rang e of comput at ions efficiently, and by changing the connect ion pat tern
to route around the defects, the cellular array can function in the presence
of the many defects that are expected on a large chip.

To take full advantage of reconfigur able cellular arrays, it is desirabl e
to arrange for distributed self-configurat ion, in which cells determine the
configuration pattern without knowledge of the state of t he array as a
whole. Efficient procedures of this kind have not , however, been given for
the case of many defective cells [14,1, 10,7j. Never theless, as shown in this
paper, distributed self-configuration can be done efficient ly when there is
sufficient comput ing power in each cell. In this paper we will describe a cel­
lular array machine t ha t can be configured efficiently despite many defect s.
T he cellu lar array, here ca lled the m assively fault -t olerant cellular array,
is an array of identical cells with connections only to immedi ate neighbors
where each cell can funct ion as a processing eleme nt, as a memory, or as
a switching element that connects to other cells. Inp ut and output termi­
nals are connected only at the bo undar ies of the array. T he cellu lar array
ant icipates the occur rence of massive defects in the cells and in the int er-
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(a) square array (b) hexagonal arr ay (c) octal arr ay

Fi gure 1: Inter con nection patterns of the cellular ar ray.

connections. T he cellula r array is designed in such a way t hat there ex ists
a set of working cells which maintains a desired processing capability de­
spite many defective cells and defective interconnections , by changing the
connection pattern .

To maintain processing capability despite many defect ive cells and in­
terconnections, cells in t he massively faul t-toler ant cellu la r a rray need to
have some mechan ism to identify de fective cells and interconnecti ons, and
configure themselves around these defective elements. By employing built­
in self-tes t ing te chn iques , we sho uld be able to devise a test ing mechani sm
by introducing addi tional test ing hardware. In this work, we hav e ass u med
that by some mechanism, each cell knows if its ne ighbor and the connect ion
to it s neighbor is working or is defective.

Aft er the defective cells a re identified, a big cluster of int erc onnected
working cells is formed from a subset of a ll working cells in the array. The
cells without an ad equ ate numbe r of wor king neig hbors are pruned ou t from
the cluster. T hen cells in the cluster are then configured into a graph that
implements the functi on of the array.

In the following sections, we will describe the arc h itecture of the mas­
sive ly fau lt-tolerant cellular array, and the algor ithms for the format ion of
the cluster, the pruning of the cluster, and the configuration of the cells
into a linear array, a two-dimensional mesh, and a complete binary tree.
Simulation of the massively fault-tolerant array and simulation resu lts of
the format ion of the cluster, pruning, and configu ration of cells into a lin­
ea r array, a two-dimension mesh, and a complete binary tree are show n on
arrays of size 40 X 40, 80 X 80 and 120 X 120 .

2. M a ssively fault- t ol er ant cellula r array

The three regular inter connection patterns stud ied in this paper are shown
in figure 1. They are se lected to st ud y the effect of the number of th e neigh­
bors on the behavior of th e cellular arr ay. The three arrays wit h t he three
int erconnection patterns of figure 1 are called square array, hex agonal array,
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F igure 2: A de fect ive square cellular ar ray.

and octa l array, respectively. Figure 2 shows a square array with defective
cells and defective in terconn ecti ons. Note that although the init ia l array is
regular, the ensuing array is not (see figure 2), as t he fau lts cause break­
down in th e reg ula rity of the array. Though there are man y defects , there
are still many working cells in the array so that useful com pu tation can be
pe rforme d. T he computat ions that the array is inten ded to perform will
determ ine how th e working cells are configu red . The logical interconnec­
t ion of cells for any particular computat ion can be represented by a gra ph
ca lled the compu tation graph in this pap er . The configuration of cells in to
a computat ion graph is the process of embedd ing the com putation graph
in the defective arr ay. T he embedding of th e computation graph in the
defect ive array is rep resented by a graph, ca lled the connection graph . For
example, the tree in figure 3(a) is a computat ion graph; figure 3(b) shows
an embedding of the t ree on the defecti ve square array; figure 3(c) is the
conn ect ion gr aph of the embedding of figure 3(b). In figure 3(b), some ce lls
are mapped to the nodes of the computation graph, wh ile ot her cells are
used to connect the cells t hat are mapped into the nodes of the graph. T he
cells mapped into the nod es of the graph are ca lled the compu tation cells,
and t he cells used to connect the computation cells are ca lled the connec­
tion cells . The connection cells are represented by do ts on the connection
graph.

A cell in t he massively fault-tolerant cellular array is configured into a
com putat ion graph by identifying the logical connect ions of the cell. For
example, a cell is configured into a binary t ree by saving in specia l registers
t he directions of the neighbors as a father, a left child , and a right child of
the cell. The configurat ion can he changed by changing t he conte nts of the
regist ers . The configura t ion is performed in a distributed fashion: each cell
makes a decision on ly with t he infor mation tha t is availabl e at t he cell.
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Figure 3: A computation graph, its embedding, and a connect ion
graph.

2.1 A r ch itecture of a Cell

Eac h cell has a processor , local me mory, and a set of registers used for self­
configurat ion. The processor is an instruction set processor with a small
instruction set. T he instructions include usual arithmetic, logical , data
transfer, program control operations , and send and receive for input and
ou tput. For the communication with neighbors, the cell has Communica­
t ion Registers, and for the self-configu ra t ion, the cell has an ID Register ,
Neighbor Status Registers, and Configura t ion Registers. The Configuration
Registers consist of a Status Register, a Pattern Reg ister, and Con nect ion
Registers. F igure 4 shows the archi tec ture of a cell in the square array. On
the hexagonal and octal array, the number of Communication Regist ers
an d Neighb or St a tus Registers increase to six and eigh t, respectively. T he
purposes of these regist ers are as follows:

ID Reg ister: Stores the row and column ind ices of the cell in the array.

Neighbor Status Register, NSIO..N-l :J Sto res the status of the neighbors .
It shows whether communication to each neighbor is working or de­
fecti ve. When either t he neighbor is defect ive or the con nect ion to
the neig hbo r is defecti ve, the NS shows 'that communicat ion to that
neighbor is defect ive. Here N is the numbe r of immedia te neighbors.

Status Regist er , SR: Stores the current status of the cell. T he states of a
cell are "idle", "live", "p runed" I "com putat ion", and "connect ion".
T he status of all work ing cells are ini t ially "Id le" . T he clustering
procedure changes t he status of t he cells belonging to a big inter­
connected cluster to "live" , an d the pruning procedure changes the
status of the working cells without an adequate number of cells to
"prune", so that they are not used in the config uration procedu re.
T he configuration procedure changes the status of the "live" cells to
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Figure 4: Architecture of a cell and communica tion register of the
cellular array.

"computation" or "connect ion", depending upon whethe r the cell is
used as a computation cell or a connection cell.

Pattern Register, PR: Sto res the current configuration pattern. The con­
figurat ion patterns that we current ly recognize are linear array, two­
dimensional mesh , complete binary tree, spanning tree, and FIR and
IIR filte r grap hs.

Connect ion Register, CRlo..N-l :1Stores the direct ions of neighbors in the
configurat ion spec ified by the Pattern Register I PRo The meanings of
the CRIO..N-li ar e differen t for each configurat ion: when PR specifies
that the configuration is a linear array, eRlo] is the direction of the
predecessor, and CRill is the direct ion of the successor; When PR
specifies a binary tree, CRI0], CRI1], and CRI2J are the direct ions of
the father , the left child, and the right child; When PR spec ifies a two­
dimensional mesh, CRIOI, CRill, CRI2], CRI3] are the directions of
the up, right, down, and left neighbors of the cell. When PR speci fies
a spanning tree, CRIO] is t he direction of the fath er , and CRll..N -lj
are the directions of the sons, etc .

2 .2 Commun ication mechan ism of the array

Cells communicate with other cells by sending and recervmg messages
through Communication Registers. Each Communication Register provides
a one-way communicat ion between two neighbors, and between a boundary
of two cells, two Communication Registers provide two-way communica tion.
Figure 4 shows a pair of Communicat ion Registers. The arrows in figure 4
show the directions of the data. The fields of the Communicat ion Regist er
are as follows:
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Full Bit, FB: Shows if the Communication Register is full or empty.

Enable Bit, EB: Shows if the other cell is willing to rece ive the message.
IT EB is 0, the other cell may not read the Communication Register.
EB is used to prevent deadlock.

Messages, Mesg: Contains the messages . It includes a tag bit t hat shows if
t he message is a datum or an inst ruction.

The FB is used to synchronize the commun ication between two cells. A
cell can read a Communication Register when the Communicat ion Register
is full , and aft er the cell reads the Communication Reg ister , FB is reset to o.
If a cell wants to read a message from an empt y Communicat ion Register ,
the cell waits un t il the Communicat ion Registe r is full aga in. A cell can
wr ite to an empty Communication Register, and if a cell initiates wr ite to a
full Communication Register, the cell has to wait until the Communication
Register is empty. This provides the synchronization between two cells.

At the processor level, communication is handled by "send" and "re­
ceive" instructions. "Send (direction, message)" wr ites t he "message" on
the Communication Reg ister located at "direction": Return from "Send"
acknowledges that t he message is wr itten to the Commun ication Register.
"Receive (direct ion)" reads a message from the Communication Reg ister in
"direction", an d "Rece ive (any)" reads a message from any Communication
Reg ister that is full: Return from "Receive" acknowledges th at a message
has been read from the Communication Register in "direct ion."

The Communication Registe r and "Send", and "Receive" instructions
provide the asynchronous communicat ion protocol required in the data flow
computation model. These are also used for input and output with the
outside.

2.3 Operation of the array

In the massively fau lt-tolerant cellular array, an external machine is at­
tached to t he boundary cells to contro l the operation of the arr ay. The
external machine initiates the operations of the array, and provides t he
data to the array by sending messages to the array. The external machine
will be called a Controller.

When the mass ively fault-tolerant cellu lar array is powered on , Neigh­
bor Status Registers, NS!O..N-I], of each cell are set to indicate the status
of the commun ication to ne ighbors of each cell (working or defective) by
some testing mechanism. The hardware and algorit hms for the testing have
not been studied yet . We assumed that th e testing can be done by some
mechanism.

Afte r the Neighbor Status Registers are set correct ly, the controller ini­
ti ates t he clustering procedure which identifi es th e largest cluster of inter­
connected working cells in t he array. If the size of that cluster is adequ ate,
the cells in the cluster are given identification numb ers that are stored in
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the ID Regist ers of all cells in the cluste r. After all the cells in the cluster
a re given identification numbers, t he cont ro ller initiates the pruning proce­
dure whi ch prunes out the cells in the clu ster wi thou t an adequate numb er
of workin g neighbors . The controller then initi ates t he configuration proce­
dure to configure the cells in the cluster into a desired computat ion graph.
When the Contro ller sends a message to a cell at the boundary of the ar ray,
the cell re lays the message to its neighbor cell, and the message will prop­
agate t hro ugh the work ing cells. T he cells will be config ured into a graph
specified on the message. The configurat ion of the cells is finished when all
the cells set their Configurat ion Registers correct ly and the boundary cell
connected to t he controller returns a message to the controller.

3. Form ation of t h e cluster of cells

Since t he cells in the cellular array connect on ly to the immed iate neighbors,
when a cell wants to communicate with another cell that is not directly
connected to it , the message sho uld be re layed by inte rvening wor king cells
to the t arget cell. T herefore, a small cluster of work ing cells surrounded by
defective cells cannot be used . The array can be useful on ly when a large
cluster of of interconnected working cells is formed in the array.

We can use the percolation theory [17,6) to predic t if a large cluster
appears on the array, and if the cluster appears, to predict the size of the
clust er . According to the percolation theory there exists a crit ical proba­
bility such that when the probabili ty that a cell is working is more than
the critical probability, there appears an infinite cluster of int erconnected
working cells in the defective infinite array of cells.

3 .1 Percolatio n theory a n d the cellular a rray

Consider a lattice L defined as a graph of N sites (or vertices) and M bonds
(or lines) . In most cases of practical interest, L will be a regu lar two or
three dimensional lattice of finit e or infinite exte nt . In the bond problem ,
each bond of L is occupied (or open , or working, etc.] with probability p
or vacant ( or blocked, or defective, etc.) with pro babi lity 1 - p. Occupied
bonds are connected if they meet at a common site, an d a connected set
of s bonds form a bond clus ter of size s. In the site problem , each site is
occ upied with probability p and vacant with probability 1 - p. Occupied
sites are connected to form site clusters if they are adjacent th rough the
bonds of L.

For an infinite lat tice L there is a critical probability Pc = Pc(b, L) or
p, (s , L) for the bond or site prob lerus such that for p < p, all clusters
will be finite whil e for P > Pc there will, with positive probability, be an
infini te cluster in L . T he infinite cluster is called a percolation cluster. We
ca n define the percolation probability, Pip), as the probability that a site,
chose n at r and om , be longs to an infinite cluster. One defines the critical
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probability, Pc, as

p, = sup{pIP (p) = O}.

89

The sites in the percolation model corresponds to the cells of the mas­
sively fault-tolerant cellular array, and the bonds in the percolation model
corresponds to the connections between cells. In the site percolation prob­
lem, all the bonds are assumed to be occupied and only the sites can be
vacant; this corresponds to the assumption that all connections are working
and only cells can be defective. In the bond percolation problem, all the
sites are assumed to be occupied and only the bonds can be vacant; this cor­
responds to the assumption that all cells are working and only connections
can be defective.

Since the area of a cell is much bigger than the area of a connection
in the cellular array, and the defect probability of an integrated circuit
is at least proportional to the area of the integrated circuit, the defect
probability of a cell is much greater than that of a connection. Therefore ,
as a first approximation, the ar ray can be modeled by the site pe rcolat ion
model. On the site percolation model of the defective array, we can take
into account that connections can be defective by associat ing connections
with neighboring cells. When a connection is defective, the cells associated
with the defective connection are considered defective. When we need to
use the working cells connected to the defective connections, the defect ive
array should be modeled by the comb ination of site and bond pe rcolation
problem [91.

In perco lat ion theory the percolation cluster is an infini te cluster that
appears on the infinite lat t ice. On the cellular arr ay of fin ite size, we
define the percolation cluster as the lar gest cluster that is connected to
all four borders of the array whe n t he array is rectangular. Using the
percolation theory, we can pred ict that the percolation cluster will ap pear
in the defective cellular array when the probability that a cell is work ing,
P, is more than the critical probabili ty, p, of percolation theory.

Fig ure 5 shows the format ion of the clusters in a square array where th e
crit ical probability is 0.59 . Here cells in solid boxes belong to the lar gest
cluster. When p is 0.5, the percolation cluster does not appear (figure 5(a));
when p is 0.61, a thin percolation cluster appears (figure 5(b)); when p is
0.75, a thick percolation cluster appears (figure 5(c)).

However, as we can see in figure 5(b) , even though the percolation clus­
ter appears in the array, when p is not high enough, the percolation cluster
is "thin", contains many branches, and does not include many boundary
cells. The cells on the thin percolation cluster may not be used effectively
because communication between two cells in the thin cluster is difficult,
and configuration of cells into a computation graph is not efficient. Fur­
thermore, input and output on the th in percolation cluster is difficult due
to the lack of the boundary cells. Therefore the thin pe rcolation cluster
in figure 5(b) may not be useful. When p is high enough, the percolat ion
cluster that appears in the array is "thick", and has many bounda ry cells.



90 Myoun g Sung Lee and Gideon Frieder

r-, ~'" :~.! . £ ",. "''' i. . -":;._

~~•.. .l~t""'l' .......;:"".ii" •

(a) p = 0.5
a percolation cluster
do es not appear

(b) p = 0.61
a thin percol ation
cluster appears

(e) p = 0.75
a thick percolation
cluster appears

Figure 5: The formation of cluste rs on the square array.

T he cells in t he thick clu ster may be used effectively for configuration and
computat ion. The cluster in this case is shown in figure 5(c).

The usefulness of the pe rcolat ion cluster dep ends on the computation
graph that will be embedded on th e percolation cluster . For example, a
percolation cluster may be cons idered adequate enough to embe d a linear
a rray but t he same perco lation cluster may not be adequate to embed a
two-dimensiona l array.

3 .2 Forma tion of the cl us ter

When p is more than PCl we can form a percolation cluster of working cells
in the defect ive array. The clu st er is formed by connec t ing the working
cells int o a spanning t ree which spans all the working cells connected to a
certain boundary cell. T he controller sends a message to a work ing cell at
the boundar y, where the message specifies that a spanning tree of working
cells be for med. The cell that rece ived the message from the controller
becomes t he root of the spanning t ree.

After a spanning tree is form ed with the cell that received a message
from the controller as the root of the spanning t ree, the cell returns the
number of cells connect ed into a spanning t ree to the cont roller . If the
number is greate r than the critical number, the cells in the sp anning tree
are taken as the percolat ion cluster. The critical number of cells is chosen
as

critical probability x N 2

2
(3.1)

where N 2 is t he size of the array. Because of the dist ribu t ion of size of the
clusters, a cluster of less tha n t his size cannot be the percola tion cluster .
If the number is less than critical number, another message is sent t o some
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other working cell on the boundary, and a new spanning tree is formed with
the new cell as the root of the spanning tree. This process continues until a
percolation cluster is found, or the controller gives up finding a percolation
cluster in the defective array.

Figure 6 shows the algorithm for connect ing the cells into a spanning
tree. Here, sco pes of ' if' , 'then' , 'else', 'repeat" et c. are determined by
the indentation, and comments are enclosed by '{' and '}'. The first two
lines show the contents of the message. A line beginning with 'Receive'
shows the content of the message when a cell receives a message, and a
line b eginning with 'Return' shows the content of the message when a cell
returns a message. The message field includes a tag that t ells if the message
is an instruction or data. Each cell receives a message with an inst ruction
that says 'configure into a spanning tree', and returns a message with a
data that is the number of cells in the subt ree. All the cells execute the
same program.

When a cell receives a message from a neighbor, the cell changes its
st ate by setting the Status Register, SR to "live" , and it saves the direction
of the neighbor on GRla] as the father of the cell. The cell then sen ds the
message to its working neighbors. IT a neighbor returns the message that
the neighbor is a part of the spanning tree, the dir ection of the neighbor
is saved on CR[l..N-l] as a son . The spanning tree grows in depth first
order. The enabling and disabling of communication registers is necessary
to prevent deadlock. F igure 7 show the percentage of working cells that
are in the largest clus ter in the 120 by 120 square, hexagonal, and octal
array, respectively. T he experimental results are generally in agreement
with percolation theory. When connections are not defective, we can see
that more than 90% of working cells belong to the percolation cluster when
p is more than 0.7 on the square array, when p is more than 0.6 on the
hexagonal array, and when p is more than 0.5 on the octal array. As the
connections become defective, these numbers decrease as shown in figure 7.
The cellular array can be used on the plateau region of figure 7 the area of
which increases as the degree of the array increases.

3 .3 Assignment of identification numbers

After the working cells are connected into a spanning tree, the cells on
the spanning tree are assigned identification numbe rs. The identification
number of a cell is the row and column indices of the cell in the array. The
identification number is saved in the ID register .

The cont roller sends a message to the root cell of the spanning tree
where the first field of the message specifies the operat ion, and the next
fields are the row and column indices of the root cell . When a cell receives
the message, the cell saves the row and column indices on the Id register,
and computes the Id of the son . Then the cell sends the message with the
computed Id to the son. When the cell receives the message from the son ,
it iterates the same operations on the next son.
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Re ceive: mesgl: opcode t elling the cell to config ure into a spann ing tree
Return: mesg1: number of cells in th e subtree of the cell

L: r ecv (any, mesg I]
if the cell is not idle.cell
then sen d (dlr , 0) {message came here already}

got o L
els e {I am a idle cell}

st atus := live.cell
number of sons := 1 {including this ce ll}
connect the sender as my father

r epeat for all neighbors
send to a working neighbor with enabled communication
disable all communication exc ept the ne ighb or
recv from t he neighbor
enable all communic at ion
if mesgl > 0 then connect the cell as my son .

number of sons := nu mb er of sons + mesgl

send(father ,numb er of sons)
goto L

Figure 6: Clustering algorithm .

(a) square array

a la tolOCl JO

(b) hexagonal array

a ~'OI080\III

(c) octal array

Figure 7: Pe rcentage of working cells that are in th e lar gest cluster .
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3 .4 Pruning

Afte r a percolation cluster of working cells is formed in the defect ive array,
the cells in the percolation cluster can be configured int o a computation
graph. However, some cells in the percolation cluster form a single-width ,
dead-end branch, and they may not be configured effectively. Furthermore,
they may slow down commun ications between cells . To facilitate the con­
figuration of working cells and the communication between cells, we may
prune out the dead-end branch of cells from the percolation cluster.

Pruning of the dead-end branches from the cluster can be generalized
to pruning-to-k. The Pruning-to-e operation prunes out the cells which are
connected to less than or equal to k working neighbors. Here k is called
the level of t he pruning. P runing of the dead-end branch corresponds to
pruning-to-l: the cells connected to only one worki ng neighbor are pruned
out from the cluster. Pruning is app lied rep etitively until no more cells are
pruned.

By pruning the cells from the cluster, we can have a cluster of tightly
connected cells. After the pruning-to-k operation, all the cells in the cluster
are connected to at least k + 1 working neighbors. This can facilitate the
configuration of cells into a graph and the communication among the cells
in th e cluster. When the working probability is adequate , most of the cells
in the percolation cluster are connected to several working neighbors 113].

4 . Configuration of cell.

The cells have to be configured int o a general computat ion graph wh ich
specifies the function of the array. Before the configurat ion of the cells
into a general computation graph, we studied th e configurations into three
particular graphs: linear array, comp lete binary tree, and two-di mens ional
arr ay (mesh). Many computations can be done efficiently on these graphs.

The configuration of cells into a computation graph is the process of
embedding the computation graph on the defective ar ray. Since th e cells
that do not belong to the percolation cluster cannot be used , the compu­
tation graph is embedded on the percolation cluster. Note that when the
percolation cluster appears on the defective array, most of the working cells
belong to the percolation cluster.

The efficiency of the configuration into a graph G, eG, is defined as

number of cells used as comput at ion cells
eo = . x 100 (4.1)

number of working cells in the cluster

The delay do (C" C, ) between the two cells, C. and C" in a configurat ion
into a graph G is defined as one plus the number of connection cells be­
tween the two cells Cit and C2 • Therefore, the delay between two direct ly
connected cells is 1, and the delay is 2 when there is one connection cell
between two cells. The maximum delay of the configuration is the max ­
imum delay among all two adjacent computat ion cells, and the average
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delay of the configuration is the average of all delays among two adjacent
computation cells.

We define the degree of a graph G, de, as the average degree of the
vertices of the graph. To configure the cells in the defective array into a
computat ion gr ap h of degree dG efficien tly, the number of neighbors on the
array, or the degree of the array, dA.1 need s to be greater than de . When
dA is less than de , the efficiency of the configurat ion becomes low. We
can expect that cells can be configured into a linear array (eta = 2), and a
t ree (do = 3) efficiently on the square ar ray (dA = 4), the hexagonal array
(dA = 6), and octal array (dA = 8). But the configuration of cells into a
mesh (de = 4) on t he defective square array may not be as efficient as the
configuration on the hexagonal array or on the octal array,

In the following sections an overview of configuration procedures into a.
linear array, a. tree, and a mesh are described. The detailed algorithms can
he found in 113).

4 .1 Linear Array

In t he linear array, every cell has two neighbors : the predecessor , and the
successor. The con figuration of cells into a linear array is the process of
ident ifyin g predecessors and successors an d saving the directi ons of the
predecessors and successors in the Connection Registers, CRIOI, and CRill.

The configuration procedure consists of three parts: Linear, Extend, and
Join. Procedure Linear grows the linear array into the defective array of
cells. When the linear array is grown in the defective array by the Procedure
Linear, Procedure Extend finds the cells which are not in the linear array,
but which can be connected into the linear array. Then Procedure Join
connect the cells identi fied by P rocedure Extend into the linear array. By
combining the three procedures, Linear, Ex te nd , an d Jo in, most of the cells
in the clu st er are connected into the linear array.

T he controller ini ti ates the configuration by sending a messages to a cell
at the bo undary of the array. T he message consists of the fields specifying
the operation, the number of cells to be connected into the linear array, and
the direction of the successor neighbor. When a cell B receives a message
from a neighboring cell A , the cell B sets the Pat tern Register PR to "linear
array", and saves the d irection of the cell A on CRIOI as a predecessor. Then
the cell B tries to grow the array by adding a neighbor as its successor.
First, if the neighbor C specified as the successor on the message is work ing,
the message is sent to C. IT C is connected to the linear array, the linear
array grows from C again. T he cell C returns the message to B with the
number of cells on the linear array after C . T hen cell B saves the direct ion
of the cell C on CRill as a successor, and increases the number of cells
by one , and returns the message to the predecessor, A . IT C fails to be
connected into the linear array, then the neighbor on the direct ion of the
growth of the linear array as specified on the message is tried. If this fails
too, then any working neighbor is tried. IT all fail, the linear array retracts
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to the cell A, and growth of linear array is tried at cell A again . Since th e
cells do not know the global state of the network, the linear array can be
grown into the dead-end, and the cells may have to backtrack often.

When Procedure Linear is finished, the cell at the boundary which re­
ceived the message from the Co ntroller returns the number of cells con­
nected into the linear array to the controller. If the number of cells is less
than the numb er the Cont ro ller wants, the controller sends a new message
to the cell. The new message consists of the fields specifying Procedure
Extend and the numb er of cells to be joined to the linear array. The cells
wh ich were not part of the linear array but adjacent to the linear array are
ident ified and joined int o the linear array.

Wit h the three con figurat ion procedu res, Linear , Extend, and Join,
most of the cells are config ured into a linear ar ray when the working prob­
ability of a cell is adequate. Figure 8 shows the algorithm of P rocedure
Linear. Figure 9 shows the cells connected into a linear array on the defec­
tive array. Figure 10 shows the percentage of cells in the cluster that are
connected into a linear array on the square array, on the hexagonal array,
and on the octal array.

From figure 10, we can see that most working cells are connected into a
linear array with adequate working probabilities of cells and connections.
Since degree of the linear array is two, the configuration of cells into a
linear array should be efficient on all arrays even when work ing probability
of a cell is not h igh . As the degree of the array increases , efficiency of the
configurat ion increases rapidly. Wh en the connections are not defective, on
the sq uare array, when the working probability of cells is 80%. more than
85% of the working cells are connected int o the linear array. On the octal
array, with the working probability of cells 60%, about 90% of the workin g
cells are connected into the linear array.

Since all computati on cells are connected di rect ly to the other compu­
t ation cells without intervening connect ion cells, no delay has been intro­
duced, and the average delay is 1.

4.2 Tree

In the complete binary tree, every cell has three neighbors: a father, a
left child, and a right child. The work ing cells of the defect ive array are
configured into a complete binary tree by setting their Connection Registers
CRIO..2] to the directions of a father, a left child, and a righ t child of each
cell respectively, and sav ing the level of t he cell in t he t ree on CRI3]. (The
level of the leaf node is defined as one, and the level of a father is one more
t ha n that of its child. ) Some working cells are used as the nodes of the
tree, wh ich are computetion cells, and some are used as connectjon cel1s,
which are used to connect comput at ion cells.

Since the topology of the binary tree and that of the array of cells do
not match, we need to use many worki ng cells as connection cells even whe n
t here are no defects in the network. Koren 110] studied embedd ing of a t ree
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Receive: mesgl: opcode telling the cell t o connect into a linear array [op.Jine)
mesg2: direction of the neighbor to be tried first
mesg3: direction of th e linear array
mesg4: number of cells to be connected into the linear array

Return: m esgl: nu mber of cells connected into the linear array
mesg2: maximum number of cells connected into the linear array

L: r ecv (any, mesgl, mesg2, mesg3, mesg4)
if t he cell is not live.cell
then send(dir, 0, 0)
else { connect me as part of the linear array}

predecessor := dir of the neighbor wh ich sent the message
mak e a table of neighbors to try to connect
repeat for each neighbor in the table

if a neighbor is working and communication is enabled then
send(neighbor, op.Hne, mesg2 , mesg3 , mesgd]
d isable a ll communication registers except t he neighbor
recv(neighbor, mesgl , mesg2)
enable a ll communication regist er s
if mesg2 > 0 t h en

connect the neighbor into a lin ear array
successor := dir of the ne ighbor
goto L

send to predecessor
goto L

Fig ure 8: Linear array configuration a lgorithm.
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Figure 10: Percentage of cluster cells t hat are con nected into a linear
array.
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in a defective square array, but his procedure allows few defects, and its
efficiency is very low when there are many defects. The a lgorithm sets a ll
working cells in the row and the column of the defect ive cell as connect ion
cells, thereby making a reduced array without defect of one less row and
one less column for each defects. Note that when th ere are many defects,
none of the rows and columns will be without defective cells.

The algorithm we devised allows efficient configuration even when many
cells are defective. The algorithm has two parts: Tree and Retract. Proce­
dure Tree connects the cell into a t ree , and Procedure Retract retracts the
subtree when it cannot increase the level of a subtree.

The Controller initiates the configuratio n into a tree by sending a mes­
sage to a cell at the boundary of the arr ay. The message cons ist s of a field
spec ifying the operat ion and the level of the tree desired. If the cells are
successfully configured into a tree of the level specified on t he message, the
cell returns the level of the tree. The Controller then increases t he level of
the tree by one, and sends the message again to the cell until the desired
level is achieved.

When a cell receives the message from the father cell, the cell tries to
increase the level of the left subtree by one . If it is successful, the cell
t ries to increase th e level of the r ight subt ree by one . If it is successful,
the level of t he t ree has been increased by one, and the cell returns the
message t o its father. But if it fails, the cell is chan ged into a connect ion
cell, the right subtree is ret racted , and the t ree expans ion is t ried at the
left subtree again. If the level of the left subtree cannot be increased , the
left subtree is retracted, and the cell is changed to the connection cell, and
the tree expansion is tried at the right subtree again. The tree is expanded
in breadth-first order. F igure 11 shows t he t rees embedded in a defective
array. Since the average degree of t he t ree graph is three, configurat ion
of cells into the t ree in t he square, hexagonal , and oct al array could be
efficient even when work ing probability of a cell is not high . Table 1 shows
the maximum level of the t ree into which cells are configured . Note that
to increase t he level of a t ree by one, the number of computation cells in
the tree should be multiplied by two . Fig ure 12 shows the percentage of
working cells that are connected into a t ree. When the level of the tree does
not increase as the work ing probability increases, the percentage decreases
as more work ing cells are availab le. Table 2 shows the average delay of the
configurat ion,

As the numbe r of neighbors in th e array increases, and as the working
probability increases, efficiency of the configuration increases, and average
delay decreases as can be expected.

We compared the efficiency of our configurat ion algorithm with the
embedding of H-tree in a defectless square lattice. H-t ree is a complete
binary t ree embedded in a recursive pattern that looks like the letter 'H'
141 . H-tree is known to be the most efficient way of embedding a complete
binary t ree in a square lat tice. The maximum level of H-t ree that can be
embedded in a defectless square latt ice is 9 in a 40 by 40 lattice, and 11
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(a) level 6 tree
on octal array
p = 0.7

(b) level 7 tree
on oc tal array
p = 0.7

Figure 11: Configuration of cells into trees in the defective array.

connection cellular array
ty pe probability cell (%)

(%) 60 70 80 90 100

50 ... ... ... '" ...
square 60 ... ... ... ... 7.0
array 70 ... ... 5.0 7.0 7.5
(c=4) 80 ... ... 6.5 7.0 8.0

90 ... 4.5 7.0 8.0 8.0
100 ... 7.0 7.5 8.0 8.0
50 ... ... ... 7.0 7.0

hexagonal 60 ... 5.5 6.5 7.5 8.0
array 70 ... 6.5 7.0 8.0 8.0
(c= 6) 80 ... 7.0 8.0 8.0 8.0

90 6.5 7.0 8.0 8.0 8.0
100 7.0 7.5 8.0 8.0 8.0
50 ... 6.0 7.0 8.0 8.0

oct al 60 3.5 7.0 8.0 8.0 8.0
array 70 7.0 7.5 8.0 8.0 9.0
(c=8) 80 7.0 8.0 8.0 8.5 9.0

90 7.0 8.0 8.0 9.0 9.0
100 8.0 8.0 8.0 9.0 9.0

Table 1: Size of the embedded tree.
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(a) square array (b) hexagonal array (c) octal array

Figur e 12: Percentage of working cells that are connected into a tree .

con nection cellular array
type proba bility cell (%)

(%) 60 70 80 90 100

50 ... ... ... ... ...
square 60 ... ... ... ... 2.33
array 70 ... ... 3.08 2.61 2.47
(c=4) 80 ... ... 2.53 2.51 2.23

90 ... 1.81 2.69 2.35 2.16
100 ... 2.70 2.31 2.25 1.96
50 ... ... ... 2.44 2.01

hexagonal 60 ... 2.43 2.70 2.07 2.01
array 70 ... 2.26 2.04 2.21 1.92
(c=6) 80 ... 2.36 2.04 1.93 1.78

90 2.52 1.98 1.87 1.78 1.69
100 2.09 1.81 1.92 1.81 1.61
50 ... 2.22 2.07 2.09 1.90

octal 60 1.80 2.16 2.09 1.84 1.87
array 70 2.08 2.06 1.96 1.79 1.90
(c= 8) 80 2.04 2.04 1.83 1.80 1.73

90 1.98 1.95 1.70 1.84 1.67
100 1.87 1.80 1.66 1.75 1.58

Table 2: Delay on the embedded tree.
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in a 80 by 80 lattice, and the efficiency of emb edding the largest H-tree on
lattice of size 40 by 40 , or 80 by 80 is 32%, and t he del ay on the H- tree is
about 3.4 [131. Comparing these with table 1 and table 2, we see th at we
can configure cells into a defective array without much penalty even when
there are many defective cells in t he array.

4 .3 Mesh

On the mesh of cells, every cell has four neighbors: left , r ight, up, and
down. The working cell on th e defect ive array are configured into a mesh by
setting its Connection Registers CR[O..3) to the direc tio ns of th e neighbo rs
connected as up , right , down, and left neig hbor of t he cell .

Manning [141 describes the algorithm for emb edding a mesh on the
defective square array, and Green 181describes embeddin g a mesh using
the channel between the cells. Both use the knowledge of the global state
of the defect ive array. Here a distributed algorithm where each cell knows
only t he state of the neighbors (working or defective) is described.

The Con troller sends a message to the cell at a boundary of the mas ­
sively fault-tolerant cellular array, where th e message te lls the cell to grow
a horizontal line of the mesh. IT it is successfu l, the Controller sends a
message to the cell at the other bonndary to grow a vertical line of th e
mesh. Growth of the horizontal and vert ical line alternates until no more
lines of the mesh can be grown on the array. T he cells at the junction of a
horizontal line and a vertical line become the nodes of the mesh. The cells
at the nodes of the mesh are comp utation cells, and the cells connect ing t he
nodes are connection cells. The computat ion cells are given the coordinates
of the mesh.

Since the complexity of the mesh is four, and the degree of the defect ive
square array is less than four , efficiency of the configurat ion may be low on
the square array. When a growing horizontal line comes across a defective
cell, the line should veer around the cell, and this uses the cells which
can he used for a vertical line. Veering around the defective cell on the
square array while growing a horizontal line blocks the growth of a vertical
line, and vice versa. Therefore, bending the line should be done sparingly.
On the hexagonal and oct al array, the growing horizontal line can use the
connecti on without occupying the cell in the other direction. This increases
the efficiency of configuring th e cells into a mesh on hexagonal and octal
array.

When the cell receives the messages, it t ries to grow in the direction
of the line. When the neighbor on the direction of the line is defect ive, it
tries to grow on the direct ion specified on the message. IT the cell cannot
grow the line, it backtrack to its pre decessor cell. F igure 13 shows the cells
configured into a mesh.

F igure 14 shows the size of the mesh as t he percentage of the array
size, and table 3 shows the size of the embedded mesh. and t able 4 shows
the delay of the configuration. As shown in the figure 13 and table 4,
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(a) squar e array
p = 0.95

(b) hexagonal array
p = 0.9

(c) octal array
p = 0.9

Figure 13: Configurat ion of cells into meshes in the defecti ve array.

(a) square ar ray (b) hexagonal array

~•.~::J._"J...--'_"'"

I<l on a ' ..... ,

(c) octal array

Figure 14: Percentage of working cells t hat are connected into a mesh.

the efficiency of the con figura t ion increases rapidly and the delay decreases
rapidly with the increase of t he number of the neighbo rs.

5. Conclusion

As shown in t his paper, self-configuration of cells into variou s computation
graphs can be done efficient ly when cells are ade quately powerful. T his
paper presents the data for various working probabilit ies of cells and con­
nect ions with vari ous degrees of the computat ion graph and of the array.
When we use the massively fault-tolerant cellular array for a particula r ap­
p lication , we need to con figure cells into a particular comput ation graph,
and we can determine the de fect rate of cells which a llows acceptable ef­
ficiency of configuration from t he data in this pape r . We can change this
acceptable defect rate by changing t he interconnect ion patterns or t he size
of a cell to find the feasible implement at ion on ava ilable tec hnology, Cur­
rent ly we ar e design ing a wafer-sca le signal processing chip using the mas­
sively fault- to lerant cellula r ar ray . The arc hite ct ure is very homogen eous
and simple, and shows the potent ial for high per formance .
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connection 40 x 40 array 80 x 80 array
type probability cell (%) cell (%)

(%) 80 90 95 100 80 90 95 100

80 2.0 3.3 5.4 7.5 3.0 6.0 11.5 17.0
square 90 3.3 7.8 8.8 13.3 6.5 ll.5 18.0 23.3
array 95 4.3 7.5 10.3 20.8 7.2 13.3 21.3 35.8
(c= 4) 100 5.3 10.5 13.8 40.0 8.0 18.5 29.0 80.0

80 1.8 4.5 7.4 10.3 1.5 9.5 15.0 20.5
hexagonal 90 4.5 10.0 14.0 20.3 7.0 18.8 23.0 38.3

array 95 6.5 12.3 16.8 26.8 10.0 24.0 31.5 48.3
(c=6) 100 6.8 14.3 20.8 40.0 13.0 31.0 43.5 80.0

80 2.8 9.8 13.4 17.0 6.0 20.0 27.2 34.5
octal 90 5.5 13.0 17.0 24.3 9.5 23.0 31.0 46.0
array 95 6.7 14.5 19.5 28.0 12.7 29.0 39.8 55.0
(c=8) 100 8.0 16.8 22.0 40.0 16.0 32.5 47.3 80.0

Table 3: The size of the embedded meshes .

connection 40 X 40 array 80 x 80 array
type probability cell (%) cell (%)

(%) 80 90 95 100 80 90 95 100

80 21.21 ll.ll 8.77 6.44 32.17 16.51 11.17 5.83
square 90 13.53 5.94 5.14 3.31 15.74 8.25 5.23 3.94
array 95 11.13 5.98 4.46 2.06 13.64 6.99 4.26 2.43
(c=4) 100 8.73 4.17 3.24 1.00 11.55 4.86 3.03 1.00

80 15.62 7.53 5.60 3.67 34.71 7.73 5.75 3.77
hexagonal 90 7.81 4.16 2.75 1.93 10.13 4.12 3.38 2.06

array 95 6.56 3.24 2.31 .1.48 7.96 3.25 2.51 1.65
(c=6) 100 5.31 2.73 1.89 1.00 5.79 2.54 1.82 1.00

80 ll .15 3.92 3.10 2.28 n .sr 3.86 3.07 2.28
octal 90 6 .51 2.99 2.28 1.63 7.73 3.38 2.55 1.73
array 95 5.55 2.67 2.00 1.42 6.24 2.70 1.99 1.45
(c=8) 100 4.59 2.33 1.79 1.00 4.76 2.42 1.68 1.00

Table 4: The delay on the embedded meshes .
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