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Abstract. The spatial structure of attractors produced by many one-
dimensional cellular automata can be described by regular languages.
This paper gives simulations and analytical results for the power spec-
tra of such attractors. The power spectra are Fourier transforms of
autocorrelation functions which are exponentially damped (sometimes
with oscillations). The characteristic length scale is related to non-
trivial eigenvalues of the arc-to-arc transition matrix in the regular
language graph.

1. Introduction

Spectra or Fourier transforms are some of the most frequently used tools
in physics to reveal regularity in seemingly irregular behaviour. Recent
examples in experimental physics include such events as the discovery of the
so-called quasicrystals in MnAlg by electron diffraction [1] which in effect
is a spatial Fourier transform, and the observation of the period-doubling
route to chaos in Rayleigh-Bernard cells found by looking at the temporal
spectra of the temperature oscillation [2]. It is also an indispensable method
in numerical studies of dynamical systems, where nonlinearities generally
prevent one from getting exact solutions.

A cellular automaton (CA) is a spatially-extended dynamical system
with discrete states on each site of a lattice, and dynamics in discrete time
steps. For elementary CA (with 2 states, and nearest neighbour updat-
ing rule in 1-dimension) [6] a typical random initial configuration will be
attracted to an “equilibrium” set which is called an attractor. !

10ne uses the term limiting set for limiting configurations obtained from all any initial
configurations, and attractor for those from typical random initial configurations. The
attractor is thus a stable limiting set.

© 1987 Complex Systems Publications, Inc.
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Generally it does not take very long for a cellular automaton to settle
down onto a attractor. An attractor can either be a time-invariant con-
figuration (possibly after a spatial shift), a temporally periodic cycle, or it
may exhibit chaotic dynamics. For most CA rules, the properties of the
attractor, such as the density or the spatial spectrum, are not sensitive to
the initial configuration [12]. In addition most CA rules (except the rules
with infinitely long transient times) have time-invariant statistical quanti-
ties which characterize their attractors. These facts ensure that the study
of an attractor at any instant after it has reached the “equilibrium” state
beginning in a typical random initial configuration (even if one has a poor-
quality random number generator) will be a study of properties intrinsic to
the rule itself. 2

I have carried out a numerical discrete Fourier transformation (DFT)
of the spatial configurations obtained after many large time steps for each
of the elementary CA rules. Out of 28 = 256 elementary rules 88 are
independent. Of these 8 yield the all 0’s configuration from every initial
condition. Figure 1 shows power spectra for the remaining 80 rules. The
number of sites used in the computations was 2! = 4096. The number of
time steps before a measurement was made varied from 15 to more than 100.
Each spectrum is an average of 18 runs. The fluctuations seen in the figure
are due to statistics. Only half of the Fourier components are shown since
the other half are redundant (N real data points but N complex Fourier
components). The spatial-temporal patterns generated by the rules shown
in figure 1 are given for example in [7].

The spectra in figure show quite a variety of shapes. Some are white
noise (constant spectrum), others Brownian noise (with 1/w? tails). Many
of the spectra show discrete peaks. Some spectra follow continuous dis-
tributions which are not fit by any 1/w” laws. In this paper, I will show
that many of these spectra, particularly those with peaks, can be calculated
exactly.

A key concept used in the paper is that of a class of formal languages
known as regular languages. Following the standard terminology, a formal
language is a set of strings satisfying certain properties. A string or a
word is a finite sequence of symbols chosen from a finite alphabet of letters,
numbers, etc. There are several ways to describe a regular language: (i) by
regular expressions, (ii) as the language accepted by a finite automaton, and
(iii) by a regular grammar [3]. Here we shall represent regular languages by
directed graphs, called a regular language graphs (RLG) *, having a finite
number of nodes and arcs (edges with arrows). When a letter is attached
to each arc, any path in this graph will generate a word of the regular
language.

Before defining the “spectrum of a regular language”, several comments
should be made:

2The spatial spectrum of the two-cycle configuration at even time steps may differ from
that at odd steps (e.g. rule 1). But it is not a problem for most of the rules.
3 Also called transition diagram of the finite automaton.
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Figure 1: The spatial power spectra for all the independent elementary
CA rules (except the trivial null rules). The x-axis is the frequency
v/N, y-axis is power |A(v)|2N (see Appendix). Analytical results for
the spectrum of rule 58 (indicated by an arrow) will be given below.
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(1) Numbers will be used as the symbols. In the case of elementary CA
rules they are the numbers {0,1}.

(2) Transient parts in the graph will not be considered here. (see Figure
2).

Figure 2: A regular language graph (RLG) with non-stationary (tran-
sient) part. See Figure 8 for the graph without a transient part.

(3) At each node the probabilities for making transitions to other nodes
are given. Such “weighted” RLG were not considered in [3] and [8].

(4) Only words of infinite length will be considered.

The regular language considered above can be viewed as a stationary
Markov chain. In this context, the limitations have the following conse-
quences. (2) makes the process stationary. (3) allows a Markov transition
matrix to be defined. (4) makes fluctuations negligible. We will use the no-
tation Ppyxn, where n is the number of arcs, to denote the symbol-to-symbol
(or arc-to-arc) transition probability matrix.

It is important to note that not every possible set of sequences can
be represented as a regular language, or for that matter, as any kind of
standard formal language. The finiteness of the description of the words
in a regular language makes possible many computations, including the
calculations of spectra given here.

From the definition of a regular language, we can immediately deduce
some of the properties of its spectrum.

First of all, it is a “local language” which means any part of a word
cannot be correlated with other parts far away from it. This is because the
finite automaton which generates or recognizes the regular language has
no internal memory. From the point of view of stochastic processes, this
fact is reflected in the exponential decay of the autocorrelation function
for a Markov process. (As discussed for example in [4] no eigenvalues of
a Markov matrix can be larger than one, so the powers of the eigenvalues
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decay exponentially). Now suppose the autocorrelation function *
R =gm L[ o g 2 2
(r) = Jim = jo z{t)a(t +7r)dt — ( Jim = fu z(t)dt (11)
is a normalized exponential function with correlation length 7;:
1 _Irt

Then by the convolution theorem and the eveness of R(r), the power spec-
trum °

. L. —1i2xwt §
TEEEO T—[_me z(t)dtl -T

S5(w)

- f_m e ™7 (R(1) + const.)dr = Zj;m cos(2nwr)R(r)dr
(1.3)

takes on the “Lorentzian form”:

Sofus) = — 30 (14)

~ (2mw)’ + (1/n)’

with a maximum at w = 0 and half-width equal to 1/7.

A second feature of regular languages is they can repeat substrings
many times (as gauranteed by the “pumping lemma”). This leads to loop
structures in the RLG, and gives peaks at nonzero frequencies in the power
spectra. The simple exponential form used above does not show this phe-
nomenon. To see it, instead, some of the eigenvalues of the Markov matrix
must be negative or complex. When this happens, the autocorrelation func-
tion acquires an oscillating exponential form. This modulation splits the
w = 0 peak into two peaks (the peak at negative frequency simply reflects
the eveness of the power spectrum). (See e.g. [17]:page 108)

The plan of this paper is as follows. Section 2 treats the relation be-
tween CA attractors and regular languages. Section 3 gives the detailed
procedures for calculating power spectra of regular languages. Section 4
shows several examples, and section 5 gives some further discussion and
conclusion.

4Some authors distinguish the autocorrelation function from the autocovariance func-
tion by whether it is normalized; others distinguish them by whether the “DC” component
is subtracted. To avoid confusion, the “autocorrelation function” will be used exclusively
in this paper.

Although notations such as T, ¢ and 7 are used, the spectra to be discussed are mainly
spatial Fourier transforms at fixed time.

5The discreteness of CA makes the discrete Fourier transformation seem more appro-
priate. On the other hand, the discreteness introduces periodicity into the spectra which
makes some features difficult to discern. I will use the continuous Fourier transform as
an approximation of the DFT to illustrate the features of the spectra and mention DFT
only when these two differ greatly. The equivalent DFT formulas are in the Appendix.
Remember that they are the exact formulas for discrete processes like CA.
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2. Cellular automata attractors and regular languages

Several class of behaviour in cellular automata can be identified from com-
puter experiments.

1. The evolution leads from a typical random initial configuration to a
time-invariant configuration (perhaps after a simple spatial shift). The ele-
mentary CA rules f of this kind are (where C denotes the CA configuration,
and s a shift to the right):

Rule 4, 12, 13, 36, 44, 72, 76, 77, 78, 104, 132, 140, 164, 172, 200,
204, 232 with f(C) = C.

Rule 2, 10, 34, 42, 46, 58, 130, 138, 162, 170 with f(C) = s7(C).
Rule 24, 56, 152 with f(C) = s(C).

Rule 57 and rule 184 can satisfy either f(C) = s(C) or f(C) = s71(C),
depending on initial conditions. The reason for this is that there exist
some particle-like substrings (also called gliders) which move either
to the right or left. Pairs of such gliders annihilate when they collide.
But due to the finite size of simulations, which direction of glider
survives depends on which predominates in the initial condition.

2. Some rules lead to temporally periodic cycles with period equal to
two. They are:

Rule 1, 5, 19, 23, 28, 29, 33, 37, 50, 51, 108, 156, 178 with f*(C) = C.
Rule 3, 7, 25, 27, 35 with f*(C) = s(C).

Rule 6, 38, 74, 134 with f?(C) = s7%(C).

Rule 9, 11, 14, 15 with f*(C) = s*(C).

Rule 142 with either f*(C) = s*(C) or f(C) = s~ 1(C) depending on
initial conditions.

3. Some rules evolve to cycles with longer periods.

4. Some rules do not ever enter cycles in the infinite lattice size limit.

The attractors of the first two kinds of CA rules can be characterized
by simple regular languages; those of the third kind by more complicated
regular languages. The chaotic attractors of the fourth class may or may
not be described by regular languages.

The way to write down the RGL corresponding to the attractor for
a particular CA is very simple (see [8]). Take the fixed point case, for
example. Imagine a “window” with length equal to two sites, which is
moved from the left side of the configuration to the right. Each such two-
site window will be a node in the RLG. Now suppose this window is moved
by one site. It then covers a three-site region which will become an arc in
the graph. For the elementary CA rules, each block of three sites at time ¢
will yield the value of a single site at time £ + 1, and we attach this value to
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the corresponding arc in the RLG. Only some of the arcs will not violate
the invariance condition (e.g. for f(C) = C rules, the middle site value of
the three-site block at ¢ must be equal to the single site value at ¢+ 1); other
arcs must be deleted. The remaining graph is then the RLG for the fixed
point attractor (see Figure 3 (a) for 2 RLG of a fixed point attractor which
characterizes one row in the spatial-temporal pattern in Figure 3 (b)).

Figure 3: (a) The RLG for a fixed-point attractor of elementary CA
rule 42. (b) Spatial-temporal pattern of rule 42.

For two-cycles or k-cycles (k > 2), only trivial extensions are needed.
Instead of using a two-site window, one uses four-site window, or in general
a 2k-site windows. The maximum number of nodes and arcs are, respec-
tively, 16 and 32 for two-cycles, 2%¥ and 22+ for k-cycles (see Figure 4 (a)
for a RLG of a 2-cycle attractor which charaterizes one row in the spatial-
temporal pattern shown in Figure 4 (b) [10]). In fact, the actual number
of nodes and arcs is strictly smaller than this upper bound; otherwise the
graph is equivalent to the simplest “white noise” graph (see Figure 5), cor-
responding to the trivial regular language in which all possible sequences
can occur.

Generally simplifications may be carried out by combining equivalent
nodes. The distinction between deterministic finite automata (DFA) (at
every node all the symbols attached to the outgoing arcs are different) and
non-deterministic finite automata (NDFA) is not important for our pur-
poses. The conversion from NDFA to DFA is desirable only if the resulting
graph has fewer arcs, but in practice even the minimum DFA can have
more arcs than the equivalent NDFA. ©

The spatial spectra of CA attractors are related to the autocorrelation
functions for the configurations they contain. Having shown above that
at least some such attractors can be characterized by regular languages,
or, equivalently, by Markov chains, we can borrow techniques used in the
theory of stochastic processes to calculate the necessary autocorrelation
functions and thus the power spectra.

SUnlike DFA, there is no theorem about the uniqueness of minimal NDFA, and no
standard algorithm to simplify a NDFA.
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Figure 4: (a) The RLG for a 2-cycle attractor of elementary CA rule
37. (b) The spatial-temporal pattern of rule 37.

3. Calculating the power spectrum of a regular language

The procedure for calculating power spectra of regular languages is as fol-
lows.
1. Write down the arc-to-arc transition matrix Ppy,. The sum of elements
in each row is equal to one since it is the total probability for any letter
to follow the letter corresponding to that row. No such meaning can be
given to the sum of elements in the same column. The usual node-to-node
transition matrix, or “weighted adjacency matrix”, is not the one we are
using here, although the two share common elements, and some common
eigenvalues.
2. Calculate the 7-th power of the matrix P. The elements in PT are the
7-step transition probabilities from one arc to another. Since it is the main
part of the computation, I will write the steps in more detail (see [5], [4]):
Let Ay, Az, -+ A, be the eigenvalues of the matrix P,,,, r; be any nonzero
right eigenvector (j = 1,---n) and 1; be any nonzero left eigenvector (=
1,-+-n) (rj is a column vector and I; is a row vector).
Put all the r; together to define a “right” matrix

R ={ri;} = (ry,12,"+ 1) (3.1)

and do the same for I; to define a “left” matrix

L={y=| 7. (3:2)

=t

If all the A;’s are distinct 7, then the matrix

C=LR (3.3)

TIf there are degeneracies among the ), the matrix may not be diagonizable. But if it
can be diagonized, then with a little care in choosing the r;’s and I;’s, the C' will still be
diagonal with nonzero diagonal elements.
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is diagonal for any non-zero r;’s and Ii’s with all ¢; # 0. We may write

C = diag(cy,¢3...¢c). (3.4)
We also define
A =diag(Ay,Az---Ay). (3.5)
Then
P = RANR'=RACIL
Afer?
Afey?
= R . L. (3.6)
Anen!

Note that although we could simply calculate R~! instead of left eigen-
vectors, the latter is somewhat easier to handle, especially for a large ma-
trix.

3. Calculate the autocorrelation function R(r). If the alphabet set is {0,1},
then by eqn. (A.3)

R(r) = (égb.-u")ﬂ-xez,-) —(leb;n)=
= 2 ba(Pap—( X0 ba)? (3.7)
5! (za=1,2,=1) i'(zp=1)

where {b;} is the equilibrium probability distribution for each arc; the {z;}
are the values attached to the arcs 7. Obviously only nonzero arc values
enter the expression.

In the present calculations, the transitions probabilities {p;;} from which
the {b;} are determined are taken as given. Although to my knowledge there
is no way to predict these parameters from the first principles, one can use
a mean-field theoretic scheme (e.g. [11]) to calculate the limiting density
and possibly also the {p;;}.

In the case where all the eigenvalues are real (with Api positive and A
negative),

R(r) = 3 [aidf; + bi(~[Ami])"] - (38)

The coefficients a; and b; have a simple relation with the elements of the
eigenvectors. Since all powers of 1 or 0 are still 1 or 0, the trivial eigenvalues
(A =0,1) can contribute only a constant term to R(r).

4. The power spectrum S(w). For the simplest case with all ); real, the
spectrum is:

2/Tp,' 1/7'""

S) =2 |a Gyt @t T2 ((zw gy cy e R ‘“”)J
(3.9)
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where 7,; = log(1/);) and 7,y = log(1/|Ani)

In general when the eigenvalues are complex, the position of the peak
is no longer at w = 1/2 as given by the above formula, but at the positions
determined by the angles of the eigenvalues in the complex plane. In a
case where the RLG is very complicated, the number of eigenvalues of the
matrix is very large, and we expect the shape of the spectrum will also be
complicated.

4, Examples

In this section several examples of the spectra of regular languages are
given to illustrate the method presented in the last section. Example 1 isa
simple random process which generates “white noise”. Example 2 contains
a two-loop in the graph which produces a peak at w = 1/2. Example 3
illustrates the relationship between the cycle structure of the RLG and the
eigenvalues of the corresponding transition matrix. Example 4 has both a
two-loop and a three-loop in the graph, and with continuous changes in the
transition probability the peak can move between w = 1/3 and w = 1/2.
Example 5 gives a simple model for “Brownian noise” in terms of a regular
language.

P 1-p

Figure 5: RLG for a biased random sequence. This regular languages
characterizes the initial CA configuration used (with p = 0.5) and the
attractors for some chaotic rules.

Example 1 (see Figure 5): The graph is a simple representation of a
coin-tossing sequence with bias p. It becomes purely random when p = 1/2.
The arc-to-arc transition matrix is (¢ = 1 is arc 0; ¢ = 2 is arc 1):

Piy= (p l_p) (4.1)

p 1-p
det{P —~ AI) = (A —1)A (4.2)

The eigenvalues are
)\1 = 1, Az =3

(1) (17 (1)

1" 0 P 7#0
P'—R(O 0,), L={I e (4.4)

and
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Defining b; as the stationary probability for arc 1, and Z the average value
for the sequence, one may write by = 1 — p = T, and the autocorrelation
function becomes:

Ay T = 0 T % 0
B = (a2 ={ 0y, IO (4.5
The power spectrum defined by (A.2) then assumes a constant value
S(v) = -%T-R(O) = w = const. (4.8)
o q=1-p
1
0
0

Figure 6: (2) RLG for the attractor of rule 56. (b) Spatial-temporal
pattern for rule 56.

Example 2 (Figure 6): This regular language characterizes many one-
dimensional CA attractors (e.g. rule 56)

Assigning arc AB=1toi=1; BA=0toi=2; AA=0to ¢ =3, the
transition matrix becomes (define ¢ = 1 — p for simplicity):

OO =

0 0
Pysz=1 ¢ P (4.7)
q P

det(P —AI) = —(A—1)A(A+q) (4.8)

The eigenvalues are:

1 p 1 1 1 plq
R=|1 0 —¢|, L=|0 1 s (4.9)
1 —qg —g 1 —-1/¢g —1/q
(1+49)/q
£ s q (4.10)
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The average value T is given by T = ¢/(1 + g), and

z 0 0
= R(O 0 0 )L (4.11)
0 0 (—9g/(1+4)
f-

9)/(1+q) zT—(—q)/e(1+4q) p/e(E+(—a)/(1+4q)
+ (-9 /(1+q) T—(—a)"/q(1+4q) p/e(Z+(—9)"/(1+4q))
+(=a™/(1+q) T—(-a)"/a(1+4q) p/a(z+(—9)7/(1+4q)

(4.12)

It is easy to show that b 7, the equilibrium probability for arc AB, is equal
to T since it is the only arc with symbol 1, so that

R(1) = bap{P o~ 7 =

The spectrum according to (1.3) is then given by

S(w) = 2/ cos(2nwr) )zq " cos(mT)dr

(1+
1
= log(= )(1+q) [(w_%)247|-3+10g2(q)

(cos(nr) is used here as the continuous analog of (—1)7. It will not cause
any problem in this example. Also see (A.5).)

The spectrum (4.14) has a maximum at w = 1/2. The existence of this
peak can be understood directly in terms of the structure of the RLG in
figure 6(2). The loop on the right-hand side of the graph has length two,
yielding a period two component in the spatial configurations. and thus a
peak at w = 1/2 in the power spectrum. The existence of this peak can also
be understood from the eigenvalues (4.9). It is the presence of a negative
real eigenvalue which yields a peak at exactly w = 1/2. (The existence of
negative eigenvalue can correspondingly thus be seen as a consequence of
the RLG structure.) Eqn. (4.14) also shows that the half width log(1/q) of
the peak decreases as g increases, as expected from the fact that the period
two part of figure 6(a) is then entered more often.

Example 3 (Figure 7): The graph shows a pure loop structure with
length equal to n (see [13]:chapter 2). The transition matrix ® is:

+ (w — —w)| (4.14)

01
01
Prxn = ’ (4.15)

01
1 0

nxn

8In fact it is a adjacency matrix with all the elements equal to either 1 or 0. The
relation between a graph and the characteristic polynomial of its adjacency matrix is well
studied. For more details see [13].

gl (4.13)

|
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A,
An A,

Figure 7: A simple loop structure with length n. It is not a generic
RLG since all the transitions are deterministic.

det(P — M) = (-1)"(A" — 1) (4.16)

All the n eigenvalues equally divide the unit circle, and the autocorrelation
function involves cos(277/n) terms which will generate peaks at wo = 1/n,
and possibly the multiples of wyq.

7

Figure 8: (a) RLG for the attractor of rule 58. (b) Spatial-temporal
pattern of rule 58.

Example 4 (Figure 8): This is a more complicated regular language
with 4 arcs and 3 nodes, representing the attractor for elementary CA rule
58. After assigning AB=1toi=1; BC=0to:=2;CA=1toi=3;
AC = 0 to 1 = 4, the transition matrix is (¢ =1 — p):

0100
0010
P‘X4= q 00 P (4'17)
0010
det(P—AI)=(A—-1)A(XN+ )X +4q) (4.18)

The eigenvalues are

i —-1+4/1—4g X —-1—+/1—4q
§m T 0 P == e
2

A1=1, A2=O, 2
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1 p 1 1 1 1 1/qg p/g
10 as A o 1 0 -1
R=11 0 a2 x| L=(1 1/a 2/a p/a (4.19)
1 —q As A 1 1/A Mifq p/g
(2+49)/q
C= 4.20
(3¢ +2pAs)/q 52
(3¢ -+ 2p)y)/q
100 0 a/(2+q) © 0 0
wop|®0 9 D 0 1/q 0 0
- 00X 0 0 0 g/(3¢+2pls) 0
00 0 X 0 0 0 g/(3q + 2pAs)
(4.21)

We define the probabilities of 1’s as by = ¢/(2 + q), bgz = 1/(2 + gq),
while the average T = by + bz = (1+¢)/(2+ q).

Ifdp—-3 >0o0r g < %, the autocorrelation function and the power
spectrum by (1.3) are:

R(r) = bap(Pi; + Py) +bgz(Psy + Pgg) — 7°

= ¢y(—rs)" + ca(—ra)” (4.22)
¢; log(1/rs) czlog(1/ry)

S(w) (2&) + l)gxg _l_]og! rs (2&1 + l)zﬂ_z + log3 T4 + (w — -—W)

(4.23)
with rg4 = —As4 and ¢12 = (prs — q(2¢ + 1)) /((2 + ¢)*(1 — 4q)).
Ifdp—3<0org> %, the results are:

R(r) = dyr"cos(r8) — dpr”sin(r6) (4.24)
Sw) = dy log(1/r) — da (27w + 6) P —— (4.25)

(27w + 6)2 + log®r

with re? = A;, where r = V3 8 = tan"'(—/4¢—1) + 7 and d, =
(1+9)/(2+49)? d2 =p/((2+9)*Vig—T).

Notice there is a “critical” probability p, = 3/4 such that when p > p,
the two-loop dominates and the peak stays at w = 1/2, but when p < p,
the position of the peak is determined by #/2r, as a compromise between a
two-loop and a three-loop. At p = p, the matrix is not diagonalizable, the
above procedure may not give a correct result; in this case, one may use the
Jordan canonical form to calculate P*. Eqn. (4.25) is not always a good
approximation to the DFT and gives negative results at some parameter
values. Figure 9 shows the spectrum obtained in this case using the exact
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Figure 9: The spatial power spectrum obtained from eqn. (A.7) for
rule 58 with p = 0.3. This is to be compared with the result of
simulations shown in figure 1.

DFT formula (A.7). The similarity with the simulation (rule 58 in figure
1) is clear.

Example 5 (Figure 10): This regular language specifies the attractor
for rule 200, which is a typical one with a “Brownian spectrum?, having a
1/w? tail. The feature distinguishing these regular languages from others
is that the “one-loop” labeled with symbol 1 has a large probability. This
is similar to the situation of a random walk (or Brownian motion) where
the increment is random. The difference is that in Brownian motion the
increment is in state space while in rule 200 the state is limited to {0, 1},
so the increment is in the width of domains in which all sites have value 1.

- 0. 000 0.12% 0.25%0 0.375 0.300
Figure 10: RLG for the attractor of rule 200, which has a Brownian
spectrum.

Notice that the simple spectrum (1.4) has a 1/w? tail when the first
term in the denominator (27w)? overwhelms the second term (1/7)% in
order to keep the peak at w = 0 all the eigenvalues must in addition be
positive real numbers. In our example, the transition matrix is

p 1—-p 0 O

o 0 1 0
Pas=|0 0 0 1-—g¢ (4.26)
0 0 0 1-—g¢
p 1—p 0 0

o OO
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nomial is
det(P—AI) = —(A— 1)A*(A* + (g — p)A + (1 — p)g)- (4.27)

The resulting eigenvalues

(P—a)£\/(p+a+2,0)(p+a—2/0)
2

)‘1 =1 A2,3 =) A'l,ﬁ = (428)

are positive and real when

p>q and p+g>2/q

This condition is satisfied when either g is small enough or p is big enough,
or both. The configuration so generated will have distinct regions of 1’s
and 0’s where the length of the “l-region” is controlled by parameter 1—g,
while the length of the “O-region” is controlled by p.

5. Extensions and Conclusions

The method for calculating the spectra of regular languages described in
this paper is applicable mainly to simple cellular automaton rules. The
spectra of some more complicated chaotic rules can also potentially be re-
lated to regular languages. This is the case particularly when the spectrum
is flat (white noise), or has sharp peaks.

Rules 30 and 90 are two examples of chaotic rules which evolve to max-
imum entropy, so that all possible configurations occur with equal proba-
bility, and white noise power spectra are obtained. Rules 54 and 110 show
complicated behaviour, but yield comparatively simple power spectra with
definite peaks. The configurations produced by these rules can be viewed
as consisting of “gliders” showing complicated motion, on a rather simple
periodic background. At large times, the gliders tend to annihilate, so that
the background “crystalline” form dominates. The transient time required
for this to occur is very long; these rules have Lyapunov exponents (defined
by the rate of spatial expansion of perturbations) which are smaller than
for most chaotic rules. As a result, power spectra obtained after just a
few time steps may not reflect the true “attractor” results. The peaks for
these rules shown in Figure 1 become progressively sharper at later times.
Although it is hard to predict the complete language which characterizes
the attractor, it is conceivable it is heavily weighted on some subsets on
which it is a simple regular language.

The method used here to calculate spatial spectra in cellular automata
can also be used to calculate spectra in other dynamical systems. One-
dimensional mappings of the interval provide an example. These are deter-
ministic processes, but when they have positive Lyapunov exponents, and
when initial conditions are coarse grained, their coarse-grained dynamics
may be indistinguishable from a genuinely stochastic or random process.
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The probabilities for one coarse-grained subinterval to be mapped to others
can then be used to form the elements of a Markov transition matrix, and
the formalism discussed above may then be applied.

When the dynamics is the same with or without such “Markov parti-
tion” coarse graining, the temporal spectra computed by these are exact.
This is the case for piecewise linear mappings (even though the mapping
as a whole is extremely non-linear in this case) [15]. In other cases, the
calculations required may be much than for simple CA, since the number
of intervals (and thus the number of arcs in the RLG) needed to obtain
a good approximation may be very large. Nevertheless, we expect that
the bifurcation in the simple logistic map, (i.e. the accumulation of peaks
with higher order sub-harmonics and the onset of broad-band noise) can
be related to some qualitative changes in the eigenvalues of the Markov
transition matrix. (For a different way of approximating such spectra see
(16]).

This paper has concentrated on systems which can be described by reg-
ular languages. One may also consider systems described by more compli-
cated formal languages. In particular, one may imagine using context-free
languages (the next level in the Chomsky hierarchy) to explain for example
the spatial spectra of some CA (e.g. rule 126).

Context free languages can be obtained from derivation trees [3], at
each step of which some branches grow leaves, which then in turn grow
further branches. One famous example of a context-free language is the
Fibonacci sequence. This can be generated by any fixed number of steps of
the generative grammar: A - B, B — BA, A — a, B — b where A and B
are “non-terminals” (intermediate states) and @, b are terminals (symbols
appearing in the words at the end of the derivation).

Notice that (i) Context-free languages contain regular languages but the
impression that a context-free language is always more complicated than a
regular language is not correct. The Heaviside step function 01", for ex-
ample, is very simple, yet it is a context-free language which is not regular.
(ii) Sometimes a context-free language does generate interesting non-trivial
sequences such as self-similar sequences. In fact, this self-similarity is in-
herited in the context-free language itself since the same grammar governs
branches at all stages and thus all “sizes” in the derivation tree.

The self-similarity aspect of context-free languages may make them rel-
evant to the study of 1/f noise . One school in 1/f theory uses a large
number of Lorentzian spectra (1.4) with correlation lengths {7;} following
a log-normal distribution [19]. This approach ensures that there will be no
intrinsic time scale (or length scale if we consider spatial spectra), which
is one of the most important features of 1/f noise. Since Lorentzian spec-
tra are typical for regular languages, the above approach is equivalent to
having a regular language with very large number of arcs and a certain

91/ f noise appears in many different natural phemomena and there is still no satisfac-
tory theory to explain all of them. For 1/f in condensed matter physics see the recent
review article [18]
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distribution for its eigenvalues. In order to have a 1/f spectrum we may
either construct a complicated regular language with this constraint, or
perhaps use a simple context-free language as an approximation to it. The
latter stores the long range correlation in the operation of the grammar,
while the former build up this correlation by a large assembly of “local”
components.

In conclusion, the study of the spectra of regular languages is not only
useful in explaining numerical results from cellular automata but it also pro-
vides a framework unifying many different types of spectra. Many features
of the spectra can be found by examining the eigenvalues of the weighted
arc-to-arc transition matrix and the structure of the RLG, without detail
calculations of coefficients. This is similar to the situation in chemistry
where the energy levels of a molecule can be related to its topological con-
figuration of atoms. (One difference here is that our graphs are weighted
and directed.)
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Appendix A. Discrete Fourier Transform formulas

The definition of the autocorrelation function from a finite number of data
points z(t) (¢t = 0,1, -- - N—1) is meaningful only if an appropriate boundary
condition is specified. Generally the periodic boundary condition z(t) =
z(t — N) (t > N) is used, so that the DFT spectrum of these data is both
discrete (since the function is periodic) and periodic (since the function is
discrete).
If the DFT is defined as
AW) = = 3 el Nig () firm O, 10 0 1) (A1)
N =0

its power spectrum S(v) = |A(v)|* will be related to the autocorrelation
function as follows (remember that periodic boundary conditions are im-
posed):

i R(0) 2732
S(v) = = 3 e WINT R(7) » %) + N 2603(21[’%1’)}2(1') (A.2)

=0
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where the autocorrelation function is defined as:
1 N-1 2
R(r) = > z(t)z(t+1)| - :c(t) (A.3)
N t=0

The three relevant formulas after neglecting higher order terms are
(R(r) & NS(v)):

A
—ar e*cos(2av[/N) — 1
¢ ok g (c”‘ — 2e*cos(27v[N) +1 ta)
b
ey _ e*cos(2nv/N) + 1
1y il (e” + 2e*cos(27v /N) + 1 (A.5)

e*cos(2nv [N +0) —1 +( )
.
e? — 2ercos(2nv /N + 0) + 1 ¥ ¥

cas(rﬂ)e""’ o 1+(

(A.6)
The spectrum for Example 4 when 4p — 3 > 0 by (A.2) is:
die > cos(r8) — dze " sin(r6)
di(e*cos(2mv [N + 0) — 1) — dy(e*sin(27v/N + 6
dl 1( ( 3{\ - ) ) ( ( / )) ( —V) (A7)
e?* — erecos(27v /N —0) + 1
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