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Abstract. The spatial structure of attractors produced by many one­
d imensional cellular automata can be described by regu lar languages.
This paper gives simulations and analytical resu lts for the power spec­
tra of such at t ractors. The power spectra are Fourier t ransforms of
autocorrelation func tions which ar e exponentially damped (sometimes
with oscillations) . The characteristic length scale is related to non­
trivial eigenvalues of the arc-to-arc transition matrix in the regular
language graph.

1. Intro duction

Spectra or Fourier transforms are some of the most frequently used tools
in physics to reveal regularity in seemingly irregular behaviour. Recent
examples in experimental physics include such events as the discovery of the
so-called quasicryst aIs in MnAla by electron diffract ion [11 which in effect
is a spat ial Four ier transform, and t he observation of the pe riod-doubling
rout e to chaos in Rayleigh-Bernard cells found by look ing at the t emporal
spectra of the temperature oscillation 12]. It is also an indispensable method
in numerical studies of dynamical systems , where nonlinearities generally
prevent one from getting exact solutions.

A cellular automaton (CA) is a spatially-extended dynamica l system
with discrete states on each site of a lattice, and dynamics in discrete time
steps. For elementary CA (with 2 states, and nearest neigh bour updat­
ing r ule in I-dimension) [61 a typical random init ial configu ration will be
attracted to an "equilibrium" set which is called an attractor. 1

"One uses t he term limiting set for limi ting configurations obt ain ed from all any init ial
configurations, and attractor for t hose from typical random init ial configur at ions. The
attracto r is thus a stable limiting set.

© 1987 Complex Systems Publications, Inc.
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Gene rally it does not take very long for a cellu lar automaton to set t le
down onto a attractor. An attractor can eithe r be a time-invariant con­
figuration (possibly after a spatial shift), a temporally pe riodic cycl e, or it
may exhibit chaotic dynamics. For most CA rules, the prop er ties of the
attractor 1 such as the density or the spatial spectrum, are not sensit ive to
the initi al configurat ion 112J. In addition most CA rules (except the rules
with infini tely long transient times) have time-invariant statistical quanti­
ties which characteri ze their attractors. T hese facts ensure that the study
of an at t ractor at any instant after it has reached the "equilibrium" state
be gin ning in a typical random init ial configuration (even if one has a poor­
quality random number generator) will be a st udy of propert ies int rinsic to
the rule itse lf. 2

I have carried out a numerical discrete Fourier transformation (DFT)
of th e spatial configurations obtained after many large t ime st eps for each
of the elementary CA rul es . Out of 28 = 256 elementary rul es 88 are
indep endent. Of these 8 yield th e all D's configurat ion from every initi al
condition. Figure 1 shows power spectra for the remaini ng 80 rules. T he
numb er of sites used in the computations was 212 = 4096. The number of
t ime steps before a measurement was made varied from 15 to more than 100.
Each spectr um is an average of 18 runs . The fluctuations seen in the figure
are due to statistics. Only half of th e Fourier components are shown since
the other half are redundant (N real data points but N complex Fourier
components ). The spatial-temporal pat terns generated by the rules shown
in figure 1 are given for example in 171.

T he spectra in figure show quite a variety of shapes . Some are white
noise (constant spectrum), others Brownian noise (with l / w2 tails) . Many
of the spectra show discrete peaks. Some spectra follow cont inuous dis­
t r ibut ions which are not fit by any l / wn laws. In th is paper , I will show
that many of these spec t ra, particularly those with peaks, can be calculated
exactly.

A key concept used in the paper is that of a class of formal languages
known as regu lar languages. Following th e standard terminology, a formal
language is a set of st r ings satisfying certain properties. A st ring or a
word is a finit e sequence of symbols chosen from a finit e alphabet of let ters ,
numbers, etc. There are several ways to describe a regular language: (i) by
regular expressions, (ii) as th e language accepted by a finite au tomaton, and
(iii) by a regular grammar [31. Here we shall represent regular languages by
directed graphs , ca lled a regular language graphs (RLG) s having a fin ite
number of nodes and arcs (edges with arrows) . When a let ter is at tac hed
to each arc , any path in t his graph will generate a word of t he regu lar
language.

Before defining the "spectrum of a reg ular lan guage" , several comments
should be made:

:l:Thespatial spectrum of the two-cycle configuration at even time steps may differ from
that at odd steps [e.g. rule 1). But it is not a probl em for most of the rules.

3 Also called transition diagram of the finite automaton.
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Figure 1: The spatial power spectra for aUthe independent elementary
CA rules (except t he triv ial null rules) . The x-axi s is the frequ ency
v /N, y-axis is power jA(1I)12 N (see Appendix) . Analytical results for
the spectrum of rule 58 (indicated by an arr ow) will be given below.
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(1) Numbers will be used as the symbols. In the case of elementary CA
rules they are the numbers {u.I}.

(2) Transient parts in the graph will not be conside red here. (see F igure
2).

Figure 2: A regular language graph (RLG ) wit h non-stationary (tran ­
sient ) part . See Figure 8 for th e graph without a transient part .

(3) At each node the probabilit ies for maki ng transitions to other nodes
are given. Such "weighted" RLG were not considered in [31 and [81.

(4) On ly words of infinite length will be considered .

The regular language conside red above can be viewed as a station ary
Markov chain . In t h is con text , the limitations have th e following conse­
quences. (2) makes the process stationary. (3) allows a Markov t rans it ion
matrix to be defined. (4) makes fluctuat ions negligible. We will use the no­
tat ion Pn x n t where n is the number of arcs, to denote the symbol-to-symbol
(or arc-to-arc) transition probability matrix.

It is important to note that not every possible set of sequences can
be represented as a regular language, or for that matter, as any kin d of
stan dar d formal language. The finit eness of the description of t he words
in a regu lar language makes possible many computations , including the
calculat ions of spectra given here.

From the definition of a regular language. we can immed iately deduce
some of the properties of its spec t rum.

First of all , it is a "local langu age" which means any part of a word
cannot be correlated with other parts far away from it . This is because the
fin ite automaton which generates or recognizes the regu lar language has
no internal memory. From the point of v iew of stochastic processes, this
fact is reflected in the ex ponent ial decay of the au tocorre lat ion function
for a Markov process. (As discussed for example in [4J no eigenva lues of
a Markov matrix can be larger than one, so the powers of the eigenva lues
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decay exponentially). Now suppose the autocorrelat ion funct ion 4

11T (11T
) 'R{T) == lim - x{t)x{t + T)dt - lim - x(t)dt

T_oo T 0 T _ oo T 0

is a normalized exponential function with correlation length T,:

(1) IdRo{T) = - '-" .
2T,
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(Ll)

(1.2)

Then by the convolution theorem and the eveness of R(r) , the power spec­
trum 6

S{w) lim I-T1 1~ '-;'~'x(t)dt l' .T
T _ oo -00

= 1~ '-"~'{R{T) + const .jdr = 2 t " cOS{2"'WT)R {T)dT
- 00 10

(1.3)

(1.4)

takes on the "Lorenteian form":

S (w) _ (l / T; )'
o - (2".w)' + (ljT;)'

with a maximum at w = 0 and half-wid th equal to l /T; .
A second feature of regular languages is they ca n repeat subs t r ings

many t imes (as gaurantee d by the "pumping lemma") . This leads to loop
structures in t he RLG, an d gives peaks at nonzero frequencies in the power
spectra. T he simp le exponent ia l form used above does not show this phe­
nomenon. To see it , instead, some of the eigenvalu es of the Markov matrix
must be negat ive or comp lex. When this happens, t he autocorre lat ion func­
ti on acquires an oscillating exponential form. This modulation splits the
w = 0 peak into two peaks (the pe ak at negat ive frequency simp ly reflects
the eveness of the power spect rum). (See e.g. [17J:page 108)

The plan of this paper is as follows. Section 2 trea ts the relat ion be­
tween CA attractors and regular lan guages. Sect ion 3 gives t he detailed
procedu res for ca lculating power spectra of regular languages. Section 4
shows several examples, and section 5 gives some fur ther d iscuss ion and
conclusion.

"Some euehore dist.inguish the autocorrelation function from the autoccvariance func­
tion by whether it. is normalised; ot hers distinguish them by whether the -DC- component
is subtracted. To avoid confusion, the "autocorr elat ion fun ct ion- will be used exclusively
in t his paper.

Although notations such as T , t and r are used, the spectra to be disc ussed ar e mainly
spatial Fourier f.ransforms at fixed time.

sThe discreteness of CA makes the discrete Fourier t ransfonnat ion seem more app ro-­
priate. On t he other hand, t he discreteness int.roduces periodicity into the epecera which
makes some features difficult to discern. I will use the cont inuous Fourie r tra nsform as
an approximation of t he DFT to illustrate the features of the spectra and mention DFT
only when these two differ greatly. The equivalent DFT formulae are in t he Appendix.
Remember that. t.hey are the exact formulas for discre te processes like CA.
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2. Cellular automata attractors and regular languages

Several class of behaviour in cellular automata can be ident ified from com­
puter experiments .

1. The evolut ion leads from a typical random init ial configuration to a
time- invariant configuration (perhaps after a simple spat ial shift). The ele­
mentary CA rules f of thi s kind are (where C denotes the CA configuration,
and. a sh ift to the right):

Rul e 4 , 12, 13, 36, 44 , 72, 76, 77, 78, 104 , 132 , 140 , 164, 172, 200,
204,232 with ftC) = C.

Rul e 2, 10, 34, 42, 46, 58,130,138,162,170 with ftC) = .-I(C) .

Rule 24, 56, 152 with ftC) = .(C).

Ru le 57 and rule 184 can satisfy either f (C) = s(C) or f(C) = . -I(C),
depending on initia l conditions. The reason for this is that there exist
some particle-like sub strings (also ca lled gliders) which move either
to the right or left . Pairs of such gliders annihilate when they collide .
But due to the finite size of simulations, which direction of glider
survives depends on which predominates in the initial condit ion.

2 . Some rules lead to temporally periodic cycles with period equal to
two. They are:

Rule 1, 5, 19, 23, 28, 29, 33, 37, 50, 51, 108, 156, 178 with f'(C) = C.

Rule 3, 7, 25, 27, 35 with f'(Cl = .(C).

Rul e 6 , 38, 74, 134 with f'(Cl = . - '(C) .

Rule 9, 11, 14, 15 with f' (C) = s'(C).

Rule 142 with eit her f'(C) = .'(C) or f tC) = . - l (C) depending on
initial conditions.

3. Some rules evolve to cycles with longer periods .
4. Some rules do not ever enter cycles in the infinite lattice size limit.
The att ractors of the first two kinds of CA rules can be characterized

by simple regular langu ages; those of the third kind by more complicated
regular languages. The chaotic attractors of the fourth class mayor may
not be descr ibed by regular languages.

The way to write down the RGL corresponding to the attractor for
a particular CA is very simple (see [8)). Take the fixed point case, for
example. Imagine a "window" with length equal to two sites, which is
moved from the left side of the configuration to the right. Each such two­
site window will be a node in the RLG. Now suppose this window is moved
by one site. It then covers a three-site region which will become an arc in
the graph. For the elementary CA rules, each block of three sites at time t
wiH yield the value of a single site at time t + 1, and we attach this value to
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the corresponding arc in the RLG . On ly some of the arcs will not violate
t he invariance cond ition (e.g. for ftC) = C rules , th e middle site value of
the three-site block at t mu st be equal to the single site value at t + 1); other
arcs must be deleted. The remaining graph is th en the RLG for the fixed
point attractor {see F igure 3 [e] for a RLG of a fixed point attractor which
characterizes one row in the spatial-tempora l pattern in Figure 3 (b)).

o

Figure 3: (a) Th e RLG for a fixed-point attractor of elementary CA
rule 42. (b) Spat ial-temporal pattern of rule 42.

For two-cy cles or k-cycles (k > 2) , only t rivial extensions are needed.
Instead of using a two-s ite window, one uses four -site window, or in general
a 2k-site windows . The maximum nu mber of nodes and arcs are, respec­
ti vely, 16 and 32 for two-cycles, ZU an d 2u +! for k-cycles (see Figure 4 (a)
for a RL G of a 2-cycle attract or which charaterizes one row in t he spatia l­
temporal pattern shown in Figu re 4 (b) [l 0J) . In fact, the actual numb er
of nodes and arcs is st r ict ly smaller t han this upper bound; otherw ise the
graph is equivalent to the simplest "white noise" graph (see F igure 5), cor­
respondin g to the trivial regu lar language in whic h all possible sequences
ca n occur .

Generally simplifications may be ca rried out by combining equivalent
nodes. T he distinction between deterministic finite automata (DFA) (at
every node all the sy mbols attached to the out going arcs are different) and
non-deterministic finite au tomata (NDFA) is not imp ortant for our pur­
poses. The conversion from NDFA to DFA is desirab le only if the resulting
graph has fewer arcs, but in pract ice even the minimum DFA ca n have
mor e arcs than the equivalent NDFA. 6

T he spatial spectra of CA attractors are related to t he autocorre lation
funct ions for the configurations they contain. Hav ing shown above t hat
at leas t some such attractors can be cha racterized by regular languages ,
or, equ ivalently, by Markov cha ins , we can borrow techniques used in the
t heory of stochastic processes to calculate the necessar y autocorrelat ion
funct ions an d thus th e power spect ra.

6Unlike DFA, th ere is no th eorem about t.he uniqueness of minimal NDFA, and no
st and ard algor ithm to simplify a NDFA.
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Figure 4: (a) The RLG for a 2-cycle attractor of elementary CA ru le
37. (b) The spatial-temporal pattern of ru le 37.

3. Calcu lat ing the power sp ect ru m of a r egular la ngua ge

T he pro cedure for calculat ing power spectra of reg ular lan gu ages is as fol­
lows.
1. Write down the arc-to-arc tmnsition matrix Pnxn. T he sum of elements
in each row is equal to one since it is the total probability for any let ter
to follow the letter corresponding to that row. No such meaning can be
given to the sum of elements in the same column. The usual node-to-node
transition matrix, or "weighted adjacency matrix» , is not the one we are
using here, although the two share common elements, and some common
eigenvalues.
2. Calculate the T-th power of the matrix P . The elements in P" are the
r-step transition probabilit ies from one arc to another. Since it is the main
part of the computation, I will write the steps in more det ail (see ISJ, [4J):

Let Ah A2" " An be the eigenvalues of the matrix Pn x n , r ; be any nonzero
right eigenvector (j = 1" " n) and Ii be any nonzero left eigenvector (i =
1, ·" n) (r; is a column vector and Ii is a row vector).

Put all the r; together to define a "r ight" matrix

R = {T;; } '" (r " r"", r n )

and do the same for Ii to define a "left" matrix

If all the Ai'S are distinct 7, then the matrix

C",LR

(3 .1)

(3.2)

(3.3)

7lf there are degeneracies among the Ai , t he matrix may not be dlagonlaable. But if it
can be dia gonized, t hen with a little care in choosing th e r / s and ii' s, the C will stilI be
diagonal with nonzero diagonal elements.
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is diagonal for any non-zero r;'s and ii'S with all c, ;j;. O. We may write

119

We also define

Then

C = diag (c" c, ... c.).

A '" diag(A" A, '" A.) .

(3.4)

(3.5)

(3.6)

(3.8)

Note that although we could simply calculate R - 1 instead of left eigen­
vectors, the latter is somewhat eas ier to han dle, especially for a large ma­
trix.
3. Calculate the autocorrelation function R(T). If the alphabet set is {0,1},
th en by eqn . (A.3)

• • •
R(T) = (EE b,(r),;",,,;) - (E bi ,,;) ,

; =1 i=l 1= 1

= E b.,(r);.;. - ( E b,,)' (3.7)
i'j' ( ~;,= l ,J;jl = l) 1'(%;.=1 )

where {bi } is the equilibrium probability distribution for each arc; the {Xi}
are the va lues attached to the arcs i. Obviously only non zero arc values
enter the exp ression.

In the present calculations, the transitions probabili t ies {Pij} from which
the {b,} are determined are taken as given. Although to my knowledge there
is no way to predict these parameters from the first principles, one can use
a mean-field theoretic scheme (e.g. Ill]) to calculate the limit ing density
and possib ly also the {p,;} .

In the case where all the eigenvalues are real (With .xpi pos it ive and Ani

negat ive) ,

The coefficients Oot and bi have a simple relation with the elements of the
eigenvectors. Since all powers of 1 or 0 are still ! or 0 , the trivial eigenvalues
(A = 0,1) can contribute only a constant term to R(T).
4. The power spectrum S(w). For the simp lest case with all Ai rea l, th e
spectrum is:

() "\' [ 2/Tpi ( l/T. , ( )) ]
S w = 7 a, (2"w)' + (l /Tpi)' + bi (2w + 1)',,' + (l /T. ;)' + w ---> -w

(3.9)
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where Tp' = log(l/Api ) and Tn. = log(l / IAn.1l
In genera l when t he eigenvalues are complex, the pos it ion of th e peak

is no longer at w = 1/2 as given by the above formula, but at the posit ions
determined by the angles of the eigenvalues in the complex p lane. In a
case where the RLG is very complicated, t he nu mb er of eigenvalues of the
matrix is very large, and we expe ct the shape of the spectrum will a lso be
complicated.

4 . E xamples

In this section several examples of the spectra of regul a r langu ages are
given to illust rate the method presented in the last sect ion. Example 1 is a
simple random process which generates "wh ite no ise". Example 2 contains
a two-loop in th e graph which produces a peak at w = 1/2. Example 3
illus t r ates the relationsh ip between the cycle structure of the RLG and the
eigenvalues of the corresponding transition matrix. Example 4 has both a
two-loop and a three-loop in the graph , and with continuous changes in the
transition probability the peak can move between w = 1/3 and w = 1/2.
Example 5 gives a simple model for "Brown ian noise" in terms of a regu lar
language.

Figure 5: RLG for a biased random sequence. This regular languages
characterizes the initial CA configurat ion used (with p = 0.5) and th e
at t ractors for some chao tic rules .

Example 1 (see Figure 5): The graph is a simple represent at ion of a
coin-toss ing sequence with bias p. It becomes purely random when p = 1/2.
T he arc-to-arc tr ansition matr ix is (i = 1 is arc 0; i = 2 is arc 1):

P'x' = ( : 1- P) (4.1)1-p

det(P - AI) = (A - l )A (4.2)

The eigenvalues are
..\1 = 1, A, = a

and

R =(
1 1- P) L =(P 1- P)

c =e 1 ) (4.3)1 -p' 1 - 1 '

P' = R (
l' a ), L = {

P T#O
(4.4)a 0' I T=O
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Defin ing bi as the stationary prob ab ility for arc 1, and x t he average va lue
for t he sequence, one may write bi = 1 - P = x, and t he autocorrelat ion
function becomes:

The power spectrum defined by (A.2) then assumes a constant va lue

1 p(1 - p)
S (v) = NR (O ) = N = cons t.

(4.5)

(4.6)

o

p
q=1-p

o

Figure 6: (a) RLG for the attractor of rule 56. (b) Spatial-temporal
pattern for rule 56.

Example 2 (Figu re 6): T his regular language characterizes many one­
dimens ional CA att ract ors (e.g. rule 56)

Ass igning arc AB = 1 to i = 1; BA = 0 t o i = 2; AA = 0 to i = 3, the
t ran sition matrix becomes (define q = 1 - p for simplici ty):

T he eigenvalues are:

det(P - >.1) = - (A - 1)A(A + q)

(4.7)

(4.8)

A, = r q

0 p
~q ) . C 1

pj q )
R = 0 L = o 1 -1

- q - q 1 - 1jq - 1jq

C = ( (l+ q)jq

q 1 + q )

(4.9)

(4.10)
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T he average value x is given by x = ql (1 + q), and

(

X 0 0 )
P' =ROO 0 L

o 0 (-q)'1(1+ q)

(

X + (-q)'1(1+ q) x - (-q)' Iq(1+ q)
= x + (_ q)'+l1(1 + q) x - (_q)'+l Iq(1 + q)

x + (_ q)'+l1(1 + q) x - (_q) '+l Iq(1 + q)

Wentian Li

(4.11)

plq(x + (-q)'1(1 + q)) )
pl q(x + (-q)' /(1 + q))
plq(x + (-q)'1(1+ q))

(4.12)

(4.13) .

It is easy to show that b:ui, the equilibrium probab ility for arc AB 1 is equal
to x since it is the only arc with symbol 1, so that

R (T) = b:<B(P' )l1 -X' = ( q )'(-q)'
1+q

The spectru m according to (1.3) is then given by

1
~ q

S(w) = 2 cOS(27fWT) ( ), q' cos(7fT)dT
o 1 +q

= log(!) ( q )' [ ( ')' \ '( ) + (w - -W)] (4.14)q 1 + q W - , 47f + log q

(COS(1rT) is used here as the continuous analog of (- 1)'" . It will not cause
any problem in this example. Also see (A.S).)

The spectrum (4.14) has a max imum at W = 1/2. The existence of this
peak can be understood directly in terms of the structure of the RLG in
figure 6(a). T he loop on the right-h and side of the graph has length two,
yie lding a period two component in the spatia l configurations. and thus a
peak at w = 1/ 2 in the power spectrum. The existence of this peak can also
be un derstood from th e eigenvalues (4 .9) . It is th e presence of a negat ive
real eigenvalue which yields a peak at exac tly w = 1/2. (The existe nce of
negat ive eigenvalue ca n corresponding ly thus be see n as a consequence of
the RLG structure. ) Eqn. (4.14) also shows that the ha lf width log(1/q) of
the peak decreases as q increases, as expected from the fact that the period
two part of figure 6(a) is t hen entered more often.

Examp le 3 (Figure 7): The graph shows a pure loop structure with
lengt h equal to n (see [13]:chapter 2). The transition matr-ix 8 is:

0 1
0 1

Pn x n = (4.15)

0 1
1 0

n xn

8In fad it is a adjacency matrix with all the elements equal to either 1 or O. The
relation between a graph and the characterist ic polynomial of its adjacency matrix is well
studied. For more details see [131.
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R = (f
p 1

;.)
L =(t

1 l /q P/ q)
0 ~. 1 o - 1

(4.19)0 ~, ~ , IP . ~./q p/q• •-q ~. ~. 1/~. ~./q p/q

c = ( {2+
q
)/q q

(3q +2p~.) /q )

(4.20)(3q + 2p~.)/q

o
o

q/ {3q + 2p~.)

o

0) (qJ(2 +
q)

0o 0 l / q
o 0 0
~; 0 0

(

1 0 0

pr=R O O O
o 0 ~;

o 0 0

o )o L

lJ / {3q~ 2p~. )
(4.21)

We define the probabili ties of I '. as I>;u, = q/{2 + q), bcA = 1/ {2 + q),
while the average z = I>;u, + bcA= (I + q)/(2 + q).

If 4p - 3 > 0 or q < ~, the autocorrelation function and the power
spectrum by (1.3) are:

R{r) = I>;u,{P" + p,.) + bcA(P;, + p;.) -:;;'
c,{-c.)' + c, (- c. )' (4.22)

c, log(l /c.) c, log(l / c. )S (w) = + + (w _ -w)
{2w + I)'.. ' + log' c. (2w + I)'.. ' + log' c.

(4.23)

with c,.' = -~3.' and c,., = (pc. - q{2q+ 1)) /((2 + q)'( I - 4q» .

If 4p - 3 < 0 or q > h the results are:

R{r)

S (w)

= d,cr cos{r 8) - d,c rsin (r8)

= d, log{l /c) - d,{ 21TW + 8) + (w _ -w)
(2..w + 8)' + log' r

(4.24)

(4.25)

with ceil = ~. , where r = ..;q, 8 = tan- '{ -y'4q=T) + .. and d, =
(1 + q)/( 2 + q)' , d, = p/«2 + q)'y'4q=T).

Notice there is a "critical" probability Pc = 3/4 such that when p > Pc
the two-loop dominat es and the peak stays at w = 1/ 2, but when p < p,
the position of the peak is determ ined by f)/ 21r I as a compromise between a
two-loop and a three-loop . At p = p, the matrix is not diagon alizable, the
above procedure may not give a correct result; in this case, one may use the
Jordan canonical form to calculate pro Eqn. (4.25) is no t always a good
approximation to the DFT and gives negative results at some parameter
values. Figure 9 shows the spectrum obtai ned in this case using the exact
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B

Figure 9: The spatial power spectrum obtained from eqn. (A.7) for
rul e 58 with p = 0.3. T his is to be compared wit h the result of
simu lat ions shown in figure 1.
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DFT formula (A.7) . T he similarity with the simulation (rule 58 in figure
1) is clear.

Example 5 (F igure 10): This regul ar language specifies the attractor
for rule 200, which is a typical one with a "Brownian spectrum" I hav ing a
1/w2 tail. The feature distinguishing t hese regu lar languages from others
is that the "one-loop" labeled with symbol 1 has a large probability . This
is sim ilar to the situation of a random walk (or Brownian motion) where
the inc rem ent is random. T he difference is that in Brownian motion the
increment is in state space while in rule 200 the state is limited to {O, I},
so the incr ement is in the width of domains in wh ich all sites have value 1.

:]
".j
,mj
.,•.~,~, ,,::-.--,:", . ,~"~=~,---;;:;;---:,

Figure 10: R LG for the attractor of rule 200, which has a Brown ian
spectrum .

Not ice that the simp le spectrum (1.4) has a 1/w' tail when the first
term in the denom inato r (211'W)2 overwhelms the second term (1/rj)2; in
or der to keep the peak at w = 0 all the eigenvalues must in addition be
positive real numbers . In our example, the trans ition matrix is

P' x' = (~ 1 ~ P ~
o 0 0
P 1- P 0

o 0]o 0
1 - q q
1 - q q

o 0

(4.26)

wit h (A A , AB , BC, CC, CAl as the i = 1,2,3,4,5. The characteristic poly-
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nomial is

det (P - >.1) = - (,\ - 1)'\ ' ('\ ' + (q - p)'\ + (1 - p)q).

The resulting eigenvalues

Wentian Li

(4.27)

(p - q) ± J(p + q + 2yq)(p + q - 2yq)
,\1 = 1 '\" = 0 '\" = C'-._ .:.:...._!....:.'-----'---;:---'.-"-"-_'---_ '-..:..:., , - 2

a re positive and real when

(4.28)

p > q and

This condition is sat isfied when eithe r q is small enough or p is big enough,
or both. The configuration so generated will have dist inct regions of 1's
and D's where the length of the " j -region" is controlled by parameter 1 - q,
wh ile the length of the "G-region" is controlled by p .

5. Extensions and Conclusions

The method for calculating the spectra of regular languages described in
this paper is applicable mainly to simp le cellular automat on rul es. The
spectra of some more complicated chaot ic rules can a lso potentially be re­
lated to regular languages. This is the case particul arl y when the spectrum
is fiat (white noise), or has sharp peaks.

Rules 30 and 90 are two exam ples of chaotic rul es which evolve to max­
imum entropy, so that all possible configura tions occur with equal proba­
bility, and white noise power spectra ar e obtained. Rules 54 and 110 show
complicated behaviour, but yield comparatively simple power spectra with
definite peaks. The configurations produced by these rules can be viewed
as consisting of "gliders" showing complicated motion, on a rather simp le
periodic background. At large times, the gliders tend to annihilate, so that
the background "crystalline" form dominates. The transient time required
for this to occur is very long; these rules have Lyapunov exp onents (defined
by the rate of spatial expans ion of per turbations) which are smaller t han
for most chaotic rul es. As a result, power spectra obtained after just a
few time steps may not reflect the true "attractor" results. The peaks for
these rules shown in Figure 1 become progressively sharper at later times.
Although it is hard to predict the complete language which characterizes
the attractor, it is conceivable it is heavily weighted on some subsets on
which it is a simple regu lar language.

The method used here to calculate spatial spectra in cellular automata
can also be used to calculate spectra in other dynamical systems. One­
dimensional mappings of the interval provide an example. These are deter­
ministic processes, but when they have positive Lyapunov exponents, and
when initial conditions are coarse grained, their coarse-grained dynamics
may be ind istinguishable from a genuinely stochastic or random process.
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The probabilities for one coarse-grained subinterval to be mapped to others
can then be used to form the elements of a Markov transition matrix, and
the formalism discussed above may then be applied.

When the dynamics is t he same with or without such "Markov parti­
t ion" coarse graining, the temporal spectra computed by t hese are exact.
This is t he case for piecewise linear mappings (even though the mapping
as a whole is ext remely non-linear in this case) [15]. In othe r cases, the
calculat ions required may be much than for simp le CA, since the number
of intervals (and thus the number of arcs in the RLG) needed to obtain
a good approximat ion may be very large. Nevertheless, we expec t that
th e bifurcat ion in the simple logistic map, (i.e. th e accumulat ion of peaks
with higher order sub-harmonics and the onset of broad-band noise) can
be related to some qualitat ive changes in the eigenvalues of the Markov
transit ion matrix. (For a different way of approximating such spectra see
[161) .

This paper has concent rated on systems which can be described by reg­
ular languages. One may also consider systems descr ibed by more compli­
cated formal languages. In particular, one may imagine using context-free
languages (the next level in the Chomsky hierarchy) to exp lain for example
the spatial spectra of some CA (e.g. rule 126).

Context free lang uages can be obtained from der ivation t rees f3J, at
each step of which some branches grow leaves, which then in turn grow
fur ther branches. One famous example of a context-free language is the
F ibonacc i sequence . This can be generated by any fixed numbe r of steps of
th e generative grammar: A --+ B, B --+ B A, A --+ a, B --+ b where A and B
ar e "non-terminals" (int ermediate states) and a , b are terminals (symbols
appearing in the word s at the end of the derivation).

Not ice that (i) Context-free languages contain regular languages but the
impression that a context-free language is always more complicated th an a
regular language is not correct. The Heav iside step funct ion 0" 1", for ex­
ample, is very simple, yet it is a context-free lang uage which is not regular .
(ii) Sometimes a context-free lang uage does generate interesting non-trivial
sequences such as self-simi lar sequences. In fact , this self-simi larity is in­
herited in the context-free language itself since the same grammar governs
branches at all stages and thus all "sizes" in the derivat ion tree.

The self-similarity aspect of context-free languages may make them rel­
evant to the study of 1/f noise 9. One schoo l in 1/ f theory uses a large
number of Lorentzian spectra (1.4) with correlation lengths {T;} following
a log-normal distribution 1191. This approach ensures t hat there will be no
int rinsic t ime scale (or length scale if we cons ider spatial spectra), which
is one of the most important features of 1/f noise. Since Lorentzi an spec­
tra are typical for regular languages, the above approach is equivalent to
having a regul ar language with very large number of arcs and a cer tain

01/f noise appears in many different natural phemomena and there is st ill no satisfac­
tory t heory to explain all of t hem . For 1/ f in condensed matter phys ics see the recent
review ar t icle [18]
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distrib ution for its eigenvalues. In order to have a 1/ f spectrum we may
either construct a complicated regular lan guage with this constraint, or
perhaps use a simple context-free language as an approximation to it. The
lat t er stores t he long ran ge correlat ion in the operat ion of the grammar,
while the former build up t his correlat ion by a large assembly of "local"
components.

In concl usion, the study of the spectra of reg ular lang uages is not on ly
useful in expla ining numerical results from cellular automata hut it also pro­
vides a framework unifying many different types of spectra. Many features
of the spectra can be found by examining the eigenvalues of the weighted
arc -to-arc t ransition matrix and the structure of the RLG, without detail
calculations of coefficients . This is similar to the situation in chemist ry
where th e energy levels of a molecule can be related to its topological con­
figurat ion of atoms. (One difference here is that our graphs are weighted
and directed.)
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App endix A. D iscrete Fourier Transfo rm formulas

The definit ion of the autocorrelation function from a finit e number of data
points x(t )(t = 0,1,,,, N - 1) is meaningful only if an ap propriate boundary
condition is specified. Generally t he periodic boundary condition x( t) =
x(t - N) (t ::': N) is used, so that the DF T spectrum of these data is both
discrete (since the function is pe riodic) and periodic (since the function is
discret e).

If the DFT is defined as

(A.1)(v = O,l, : .. N - 1)
1 N- l

A(v) = - L e-;'·(v/N)'x(t )
N 1=0

its power spectrum S(v) '" [A (v )I' will be related to the autocorrelation
function as follows (remember that periodic boundary conditions are im­
posed):

1 N- l . R(O) 2 N/ ' V
S(v) = - L e- ·' ·( v/N)'R(r) '" - + - L cos(21r-r )R (r ) (A.2 )

N ,=0 N N ,=1 N
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where the autocorrelation function is defined as:

[1N-' ] [1N-l ] '
R (r) = N ~ x(t) x(t + r ) - N ~ x(t )
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(A.3)

The three relevant formulas after neglecting higher order terms are
(R( r ) ..... NS(v)):

(A.S)

(A.4)(
e'cos(21fvjN) - 1 )..... 1 + 2 e" - 2e'cos(21fv jN) + 1

(
e'cos (21fvjN) + 1 )..... 1 - 2 e" + 2e'cos(21fvjN) + 1

(
e'cos (21fvjN + 0)-1 )

..... 1 + + (v -> - v )e" - 2e' cos(21fvjN + 0) + 1
(A.6)

The spect rum for Exampl e 4 when 4p - 3 > 0 by (A.2) is:

d, e- M cos(rO) - d, e- " sin(rO ) .....

d
d,(e'cos(21fvjN + 0) -1) - d,(e'sin(21fvjN + 0)) ( )

1+ + v --+ -ve" - e'cos(21fv jN - 0) + 1
(A.7)
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