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Abstract. Landau theories can describe charac teristic featu res of
shape memory alloys associated with their thermoe lastic martensitic
phase transformation. Such theories, based on a continuously variable
free energy function F(e,T), explain global behaviour satisfactor ily
but neg lect microscopic aspects of the lattice change where t he order
parameter e can only switch between a few fixed values . In a corre­
sponding ceJ1ular type theory, we re p lace the cont inuo us F(e, T ) by a
discrete set of functions F;, each depending on contin uous global vari­
ab les such as temperature T and stress X. The processing algorithm
mi nimi zes for each cell the sum of F; and the in terfac e energies with
its neighbours. At a fixed (T, Xl-condition, this process is equivalent
to a cellular automaton transition rule. The simple case of a 3-state,
one-dimensional martensite model is discussed in detail ; chan ges for
two-dimens ional extensions are outlined.

1 . Introduction

T he purpose of this paper is to present a new way of t reat ing solid-solid
phase transformations filling a gap between phenomenologica l, or Landau­
type, and m icroscopic (based on lattice dynamics) theoretical descriptions.
In our cellular automaton (CA) approach, the smallest elemen t con sidered
may contain a few hundred atoms and thus have essentially the propert ies
of the bulk matter; all cells are identi cal , except that the presence of lat t ice
defects may alter a few of them in such a way that they tend to cha nge
phase more eas ily t han average ce lls. In fact , the int ro ducti on of germ cells
is one of the essential features of cellular phase transit ion mode ls, ena bling
detailed studies and simulations of nucleation processes.

The thermoelastic martensitic transformation of shape memory alloys,
such as Cu- Zn - Al, is a particularly interesting candidate for CA models,
because the origin of the characteristic surface patterns and their cha nges
as a function of experimental conditions have been extensive ly studied by
optica l and electron microscopy 11]. The crystal st ructures of both the
high-temperature "mother" (austenite or beta). and the low-temperature
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Figure 1: Photomicrographs of a Cu-Zn-Al sample taken at vari ous
instan ts in a cooling period, showing the evolution of surface patterns
from a few thin parallel platelets (a, at l~C.< 1%. of martensite)
to the typical criss-cross of martensite variants (d, at SoC,> 9O%m).
Reproduced from [41.

"product" (martensite) phase are well known ; the nucleation mechanism
is still, however , a matter of disucssion amo ng experts [2,3]. Transition
dynamics, investigated recently by simultaneous observa tio n of acoustic
emission and changes in surface patterns [4,51, suggests an impor tant role
of submicroscopic nuclei whose stability depends on germ configurations
and thermal cycling. The photomicrographs reproduced in figure 1 (from
14]) show typical patterns obtained at very low and at high martensite con­
centrations; t he few thin parallel plate lets in figure 1a could be represented
by a two-state, one-dimensional cell model while t he criss-cross of Figure 1d
requires a two-dimensional mode l where each cell can assume several states
representing either the aus tenite ph ase, or one of four self-accommoda t ing
martensite variants (called A,B,C,D in IIIl.

Physically, the martensite var iants are dist inguishe d by the different
orientations of the transformation stra in tensor. This suggests a CA model
in wh ich the isotropic (or austensite) phase is rep resented by the zero cell
state, and the different variants by cells in symmetr ic state pairs . Ideally,
the CA simulation should produce out put resembling directly th e physical
patterns seen und er the microscope; figure 2 gives a hypothetical example
showing the different or ientations of interfaces in all martensite twins (AB,
AC, etc.) as well as between the four martensite variants and austenite,
following reference IIJ.

Figure 2 corresponds to an inte rmediate temperature; the CA must per­
form the t ransitions to "all austenite" or "a ll martensite" states at high and
low temperatures, respectively. The particular pattern depends on the dis­
tribut ion of "germ" cells, an d must approximately reproduce in successive
thermal cycles. Furthermore , t he model should respond to nonzero external
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CO::::::::::: : AA::: : : : : : :: : :
CCO::::::::: : AABO::: ::::::: :
CCCO: : : : : : : : AABBOO: : : : : : : : : :
: CCCO::::: :AABB: :00:::::::: :
: :CCCO:: : :AABBAC:: 00:: : ::: ::
:: : CCCO: :AABBAACC: :00:::::::
:: ::CCCO:ABBAAACCC::OO: : : : ::
:: : : : CCCOBBAAAACCCC: :OO: : : : :
::::::CCCCACOOOBBBB:: :00::::
::: ::: :CCC: :COOBBB: : : : :00:: :
: : : : : : : : CCC : : COBB: : : : : : : 00 : :
:::::::: : CCC: :CB: : ::: ::: :00 :
: : :: : :::: : CCC: :C ::::: :: :: :00

Figure 2: Evolution of a one-dimensional cellu lar automaton model
for a shape memory alloy.: represe nts cells of atoms in t he high­
temperature austenite phase; A, B etc. represent fou r variants of the
low-temperature martensitic phase. The evolution starts at the top
of t he figure, with "germs" of the marteositic phase, and follows dy­
namics appropriate for an intermediate temperature.
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stress components by changing the equilibrium between A, B I C, D cells.
To expla in how the CA rules for su ch mo de ls are constructed, it is suffi­

cient to chose a simp lified example using only three cell states, say (A, O,B).
In this paper, the case of a one- dimensional lat t ice is full y discussed , in
close analogy with a phenomenological descr ipt ion; extensions to the two­
dime ns ional case will be outlined, but details are left to a forthcoming pape r
[61·

2. Phenom enological Theories

Falk [7) briefly reviews applications of Landau-type t heories and shows
that even a one-dimensional model of this kind expla ins global behaviour
of martensites quite satisfactorily, although microscopic aspects (phase
boundaries) are neglected. The so-called order parameter denoted e is
an internal variable of the system wh ich characterizes the progress of the
transition. It is not necessarily re lated with ordering phenomena; in the
case of martensitic t ransformations, it is a mechanical strain which varies
between zero (in the high-temperature, or austenitic phase) and either of
two finite va lues ±el in t he martensitic phase.

The thermodynamics of the system is fully determined by a free energy
density funct ion f which depends only on e and t he temperature T . Under
the influence of an ex te rnal st ress u, th e total free ene rgy den si ty becom es

Fa (e,T ) = f( e,T) - ue. (2.1)

In thermal and mechanical equilibrium, e will adjust its elf so that Fa (e,T )
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is minimized while the internal stress response

u(e,T) = al(e ,T) /ae

Daniel G. Maeder

(2.2)

balances the external stress. Landau expanded f(e,T) into a power series
in e which he cut off after the fourth power; for symmetry reasons, in the
martensitic transition, odd powers are absent so that f(e ,T) can be written
as

l(e,T) = 10 + Ae' + Be' (2.3)

where f a, A and B are analytic functions of the temperature T . In order to
obtain for l(e,T) a single minimum (located at e = 0) at high temperature,
and two symmetric minima for T < To, the simplest possibility is to assume
B to be a positive constant and to let A change sign at To by putting
A = (T - To). For the purpose of studying the evolution of e at any fixed
temperature, we may drop the "constant" term fo- Furthermore, we can
simplify later formulas by using an ad hoc temperature sca le (in which
To :;;: 0), as well as suitable order parameter and stress units so that the
free energy expression becomes

(2.4)

Setting its dervative equal to zero produces a cubic equat ion for determi ning
equ ilibrium values for e

e(2Be' + T) = (1/2. (2.5)

From the solutions of (2.5) , it is evident that , for a vanishing external st ress
field, t he Landau ansatz describes a second-order temperature-induced phase
transit ion at T = 0 which has no hys te res is. On the other hand , at nega­
ti ve t emperatures, external stress can induce a first-order phase transition
associated with hysteresis.

By adding a sixth power te rm to the free energy expression, one obtains:

(2.6)

The added complexity leads to the existence of a critical point given by

e,=VB/5C , u, =16Ce,' (2.7)

above which there are no phase transitions. Below U ta there is a first-order
temperature-induced phase transition with hysteresis; the stress-induced
phase transitions are also of the first order. Equilibrium values of e derived
from (2.6), plotted in Figure 3 as a function of temperature, show the
thermal hysteresis. Similar plots as a function of external stress for different
temperatures in Figure 4 demonstrate the shape memory effect.
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e

Figure 3: Thermal hysteresis: equilibrium order parameter (Devon­
shire theory) as a function of temperature for different values of ex­
t ernal stress (after Falk [7J).

Austenite

Figure 4: Mechanical hys teresis: equilibrium order parameter (Devo n­
shire theory) as a function of external stress for different tem perature
values. Rearranged from Falk {7J .
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3. Basic notations for a one-dimensional cellular model

3 .1 Cell states

Phenomenological theories use a single order parameter which may evolve
continuously, except for partial jumps over a certain range , from near zero
at high temperature to la rge positive a nd negative values at low tempera­
t ure. In contrast, cells are assumed to exist only in a few distinct states,
associated with we ll-defined strains via a numerical state variable S:

A---+S -l --+e = -el
o 0

B 1 +<,

State values of individual cells are denoted Sj, with index j = I .. .Ctot >> 1.
Except for interface regions (which could in a more elaborate model be
represen ted by intermediate states, a, b, with reduced strain), most of the
cells have strains not very different from the nominal values, °or ±el.
Assuming linear strain superposition along the array of cells, the sum

C l a l S·
<=<lL-'

i=l Ctot
(3.1)

would be t he direct analog of the phenomenological order parameter. How­
ever , it is evident that t he cell system can be complete ly martensit ic and
still have e ~ 0, contrary to phenomenological models which neglect the
poss ibility of strain cance llation in actual domain patterns (Figure 1) .

3.2 System state variables

As expression (I ) does not necessarily te ll to wh ich degree the system is
transformed , at least one more system var iable is required in the equation
for the free energy. The simp lest choice is the martensitic fraction

m -- ~ IS; I __ (SumA+SUIDB).,
L..- O~m~l.
;=1 Cma z c.;

(3.2)

The e parameter is ret ained, but simplified by putting er := 1 and rewriting
it in the form

(SumB - SumA)
e = ; -1::; e ~ 1c;

which suggests obv ious extensions to 2D-models (see 3.3).

(3.3)

3.3 Driving forces

External variab les used in the free energy ansatz (6) are the stress, (1 and the
temperature, T. Since e will now be rep laced by Si = O,±I, the remaining
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terms (B, C) are simply multiplied by IS;I, just like the temperature; they
can therefore be omitted if the temperature scale is sh ifted by a suitable
constant. Thus, the free energy becomes the sum of two driv ing t erms, the
first of which acts on th e sign of e (u < 0 favors t rans itions to the A state)
wh ile th e second one acts on m (T < 0 tends to increase t he number of
both A and B states) .

On the other han d, the elastic reaction of progressing martensitic do­
mains upon the remaining material will set up internal forces, one opposing
o and one opposing T. First, imagine that the sample is clamped, so that
A and B states should form in equal amounts in orde r to maintain constant
sample length; if their numbers differ, this will set up internal st ress e- U ,
wit h an unbalance factor U related to the mater ial's elastic constants and
clamping condit ions. By adding this internal bias to a , we define

X =o + e - U, U ~ 0 (3.4)

an effective st ress to be used in comput ing the free energy. A two-dimensiona l
model is subject to more complex elastic react ions , involving at least three
martensitic variants ; in the most general case a and e have three compo­
nents each, acting on the B / A, and D / C, and the CD/ AB variant rat io
respectively.

Second ly, A and B states may, in addition, have a common strain which
cannot cancel out, except by creating other vari ants like C an d D that
would not fit into our simplified model. Thus, an increasing total of marten­
sitic cells sets up another intern al st ress component, opposing any fur ther
t ra nsit ions just as if a temperature higher than the true physical t emp era­
ture had been inser ted into F (S; ). We therefore define a temperature shift
m · W, where W reminds one of some relat ion to the width of the transfor­
mation range (M, is mar tensite start, M, is martensite finish). From now
on

T = physical temperature + m · W, W ~ 0 (3.5)

denotes an effective temperature to be used in the free energy expression

F(S;) = -X S; + T IS;I. (3.6)

F(Sj) thus represents the free energy of one cell in state Sj, subject to an
effect ive stress X and an effective temperature T but assumed to be isolated
agai nst direct interact ions with its neighbors. Neighbo rhood configuration
energy values must be added to F(Sj) in order to const ruct CA rules that
will minimize the to tal free eMrgy (see section 4). X and T are the same for
all cells but depend crucially on t he tot al numbers of cells in the different
states, for example, equilibrium temperatures for m ~ 0 and m ~ 1 (st art
and end of the transofmration) would differ by the value of W if W was a
constant (see section 5 for a better-fitting assumption).

3. 4 Int erface parameters

The elastic energy of a pair of adjacent cells in various states is assumed
to be independent of X, T and symmetric und er A, B interchange. For
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code Config. 8 --1 8-0 8 - 1
4 A?A 2EA - 2 2Eo - 6 2EB - 2

- 3 -1 A?: EA + Eo = 2 Eo = 3 EB + EA = 4
- 2, 2 A?B EA + EB = 0 2Eo =6 EB + EA = 6

0 :7 : 2Eo =6 0 2Eo =6
1,3 B7: E B +Eo = 4 Eo= 3 EA +Eo = 2

4 8?B 2EB =2 2Eo =6 2EA = - 2

Table 1: Inte rface energies wit h typical nume rical values for cells.

simplicity, let us assume linearity so that t hey can be added for all neighbors
of a given cel l. Using the austenitic state as a free energy refe rence im p lies
Eo == 0 (for:: pa irs), and there are only three ot her kinds of pairs to
conside r for (possibly nonzero) inter face energ ies, namely, for example:

: A, : 8, A :, B : -+ E =
AB,BA
AA,BB

Eo =
EB
EA

3
1

- 1.

To assemble the interface energy of a ce ll in state S having two neighbors
in states L , R (left and right) into a lookup t able, we use as the main
argument a neighborhood code defined as code = L + 3 · R, and obtain the
resul ts in table 1.

3 .5 Germ cells

There must be at least one A or B germ so that slow growth of martensit ic
region s can be performed by this mod el; ot herwise th e system would have to
be supercooled until the condition for spontaneous nucleation was satisfied
simultaneously at all sites. Inversely there must be one : germ to avoid
superheat ing of a comp letely martensit ic array causing spo ntaneous back
tra nsform at ion everywhere . 2-D models may contain severa l germs of either
kind, allowing a great variety of reproducible patterns.

The simplest method to assure the presence of germs is to forbid their
processing once th ey have been initialized. Alternatively they may be
treated during each time step like any other cell, but must be "refreshed"
to their predefined state periodically.

4 . The C A transition rule

For cell i , process ing consists of evaluating F(8 ) + table[code(j) , 81 for
the three poss ibilities of S, using the code for the given neighbo rhood at
t hat site; the one producing the lowest sum is then adopted as the new 8j

value, excep t when this would change 8; by more than one uni t (t unneling
between A and B states is forbidden) . More exp licit ly, the two or th ree
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total free energy values to choose from can be written as:

i f old S; = -1,0 --+ E_ = X + T + table[S(j - 1) + 3· S(j + 1), - 1)
-1,0,1 --+ Eo = table[S(j - 1) + 3· S(j + 1),01

0,1 --+ E+ = X + T + table[S(j -1) + 3· S(j + 1),01

It is straightforward to verify that the minimizing transition is achieved
by the following Pascal-style program using the numerical t able values: BE­
GIN RULE:=OLD ; (NO CHANGE , except in the following CASES).

CASE COOE OF

-4 BEGIN
IF (OLD- O) AND (T<6+ABS(2-X» THEN RULE:=SGN(X-2) :
IF (OLD=-1) AND (T>B-X) THEN RULE :=O;
IF (OLD- 1) AND (T>4+X) THEN RULE: =0 END ;

- 3 ,-1 BEGIN
IF (OLD=O) AND (T<ABS(1-X» THEN RULE:- SGN(X-l ) ;
IF (OLD--l) AND (T>l -X) THEN RULE: =0 ;
IF (OLD= 1) AND (T>X+1) THEN RULE:=O END'

-2,2 BEGI N
IF (DLD=O) AND (T<6+ABS(X» THEN ROLE:-SGN(X) ;
IF (OLD= -1) AND (T>6-X) THEN ROLE:-O;
IF (OLD- 1) AND (T>6+X) THEN RULE: =0 END ;

0 BEGIN
IF (OLD- O) AND (T<ABS (X)-6) THEN RULE:=SGN(X) ;
IF (OLD=- l ) AND (T>-6 -X) THEN RULE:-O;
IF (OLD= 1) AND (T>-6+X) THEN RULE: =0 END ;

1,3 : BEGI N
IF (OLD =O) AND (T<ABS(l+X» THEN RULE:=SGN(X+l) ;
IF (OLD= - l ) AND (T>- l -X) THEN RULE:=O;
IF (OLD- 1) AND (T> l+X) THEN RULE : =0 END'

1,3 BEGI N
IF (OLD-O) AND (T<6+ABS(2 +X» THEN RULE :=SGN(X+2);
IF (OLD--1) AND (T> 4-X) THEN ROLE :=O;
IF (OLD= 1) AND (T> 8+X) THEN ROLE :=O END '

END; (of CODE cases)
END' (of RULE function)

For all practica l purposes, both X and T can be considered as slowly
varying parameters so that this rule becomes a fixed logical CA table; how­
everJ when any of the driving forces (including m or e) changes appreciably,
the CA table has to be recalculated.

5. Results

As specia l CA hardware was not available for the present work, numeri­
cal model testing was limited either to the one-dimensional case (with a
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number of cells arbitrarily fixed to Cmax = 201 using about two-thirds
of a PC graphics screen for displaying results), or to relatively small two­
dimensional arrays [e.g., 25 rows X 50 columns displayed in color text
mode). On the other hand, the necessity of implementing the rules by con­
ventional programming gave US full flexibility for deviations from an ortho­
dox CA concepti e.g. by introducing randomness into the process, or using
special conditions at boundaries, or d ifferent updating modes. The type of
CA rule adopted in this paper allows a certain temperature range where
an oscillatory regime would invade the whole system if the processing was
done in the ortho dox CA mode (all cells are updated quasi-simultaneously) .
While such a regime might be looked at as a crude model of soft -zone vi­
brati ons post ulated by some aut hors discussing the martensitic nucleat ion
mecha nism [2], its :A:A: A structure implies an un realist ic increase of free
energy. In the "even-odd mode" all even-numbered cells are updated in
one step leaving the odd cells unchan ged; in the following step, all odd­
numbered cells are updated, an d so forth. This updat ing mode has proved
fully efficient to eliminate unphysical checkerboard structures but is st ill
compatible with soft-zone vibration effects in the immediate neighborhood
of germ cells. The "random scanning mode" where cells are updated at
random and their new states immediately used for further processing of
neighbords produces generally similar resu lts except that periodicities dis­
appear. In simulating thermal and/or mechanical t ransofmration cycles,
the rule program. remained unchanged but the parameters T and X were
recalculated after each CA step.

Some propert ies of the mo del can be directly der ived from the rules, in
particular the conventional transition temperatures M" M

"
A" and the

hyst eresis expressed by the well-known experimental relations:

AI >M•. (5.1)

Normal growth or shrink ing of martensit ic reg ions is governed by the ru le
for th e transit ion A:: .--. AA :; at zero stress, there is an equilibr ium
temperature at

Trorward = T backward = -EA, - m · W. (5.2)

In particular, at m ~ a this gives M. = A, = -EA, (+1 in the numerical
example), and at m ~ 1 this gives M , = A. = -EA, - W. Unless an
ad ditional te rm is introduced, this simplified model has no hysteresis. The
evident solution of this problem is a friction term which leaves Trorward

unchanged but increases TbacJr.ward (e.g. by one temperature unit, which
corresponds about to A, - M.) . The much larger hysteresis at high m can
he exp la ined by assuming:

W =W,(l -k·m), W, > 0,0 < K:<:: 1 (5.3)

IT, for simplicity, we use k = 1, m'W is a maximum at m = 0.5 but drops to
a at m = 1. In that case the model pred icts a variable hyst eresis depending
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Figure 5: T her ma l hysteresis at zero app lied stress in the one­
dimen sional mode l wit h 201 cells (4000 time steps). To be compared
with figure 3.
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on the depth of th e transformation cycle; in the ext reme (when m reached
100%)

Mf = M. - Wo/4, A. = A f (5.4)

The thermal hyst eresis curve shown in figure 5 was obtained with W 0 = 25,
k = 0.8 and friction = 1. It resembles to some of the e curves in figure 3
although we did not plot the order pa ramete r (wh ich remained ~ a in the
absence of exte rna l stress, X = 0), but rather the martensite fraction m. In
addition to M" M j, A" Aj, a new transition temperature ca lled Gcoll (germ
collapse) is seen at about +7 temperature units. The germ cons isted in this
experiment of an A??B pair separated by two normal cells; it was processed
in an even-odd mode but would be restored before th e following time step
would start. In even steps, the dire ct neighbor of the A germ would not
be processed and t herefore could not disappear; the same is t rue in odd­
time steps for the neighbor of the B germ. Thus th e martensitic br idge
or iginat ing from this germ pair is somewhat fra gile but nevertheless more
stable than a single-variant region shrinking back from austenite accord ing
to [14] . IT there was no germ in th e whole array, t he only t rans itio n to
martensite would follow the rule ::: ~ : A:; at zero stress, this req uires
supercooling to ~pont.mart. = -2Eo or -6 units (may coincide with M I ).

Inversely, in the absence of any austenite germ, back transformatio n
could occur according to two processes , AAA ~ A: A or AAB ~ A : B de­
pending on the presence of a twin boundary; the latter can be broken up
by applying a sufficiently st rong external stress as seen by comparing the
respective temperatures

T .pont.au,t.

Ttwinbre~k

= 2(Eo - EA ) , or + 8 un its

= 2Eo - EA - EB - lXI, or < 6 un its. (5.5)

Whether twins were formed during the cooling depends on the germ config-
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Figu re 6: Mechanica l hysteresis at d ifferent temperatures ID one­
dimensional model with 201 cells . Upper row is obtained by strict
CA processing (in even-od d mod e) to avoid the formation of checker­
board regions, lower row by random scanning. To be compared wit h
Figure 4.

uration and the unbalance paramter U . Using U = 5, one A??B and one A?B
martensite germ, and austenite germs on either array end, stress cycling
produced the strain loops shown in Figu re 6 which are direct ly comparable
to those in Figure 4 (e plotted against stress in hoth cases ). With standard
CA processing the shape memory effect sets in T = -6 units . The peculiar
shape of t he loops (which depends on the particular choice an d position of
the two germ pairs) prom pted us to repeat the exper iment in the random
scanning mode. The smoothing effect of this processing mode is evident,
and th e shape memory works already at T = -4 units.

6 . Outlook

So far , the model has been tested for small arrays only, using conventional
programming on a small computer . The one-dimensional case has been
explored to some extent and revealed its particulari ties as far as the origin of
hysteresis and the role of germ pairs is concerned. The even-odd process ing
mode not only proved. useful in solving the checkerb oard problem in CA
but also provided a method for creat ing germ configurations with different
nucleation potential and stability against heat ing.
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Tentative studies on two-dimensional versions have shown that hystere­
sis increases with the number of neighbor interactions, without a necessity
for int roducing ad hoc terms as in the one-dimensional model. Still with
three states, three more parameters would be required since horizontal and
vertical pairs should have different interactions; on the other hand, a two­
dimensional model allows a very rich variety of martensite-like patterns to
be created. The rules are not essentially different from those presented
above, except for a larger number of parameters and more voluminous
lookup tables. Preliminary results are reported in a forthcoming paper [61 ·

As the algorithm which minimizes the local free energy can be expanded
into a deterministic lookup table of t he kind required by CAMs such as
TofI'oli's parallel processing CA machine [81, fast simulations of martensitic
transformations on a large two-dimensional array appear quite feasible. We
expect that in future work using a CAM, the gain in processing speed will
a llow us a finer adjustment of model parameters on the basis of observed
transformation patterns. Ultimately th is should lead to a valid four -variant
martensite model which might be close to the physical reality.
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