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Abstract. Landau theories can describe characteristic features of
shape memory alloys associated with their thermoelastic martensitic
phase transformation. Such theories, based on a continuously variable
free energy function F(e,T), explain global behaviour satisfactorily
but neglect microscopic aspects of the lattice change where the order
parameter e can only switch between a few fixed values. In a corre-
sponding cellular type theory, we replace the continuous F(e,T) by a
discrete set of functions Fj, each depending on continuous global vari-
ables such as temperature T' and stress X. The processing algorithm
minimizes for each cell the sum of F; and the interface energies with
its neighbours. At a fixed (T, X)-condition, this process is equivalent
to a cellular automaton transition rule. The simple case of a 3-state,
one-dimensional martensite model is discussed in detail; changes for
two-dimensional extensions are outlined.

1. Introduction

The purpose of this paper is to present a new way of treating solid-solid
phase transformations filling a gap between phenomenological, or Landau-
type, and microscopic (based on lattice dynamics) theoretical descriptions.
In our cellular automaton (CA) approach, the smallest element considered
may contain a few hundred atoms and thus have essentially the properties
of the bulk matter; all cells are identical, except that the presence of lattice
defects may alter a few of them in such a way that they tend to change
phase more easily than average cells. In fact, the introduction of germ cells
is one of the essential features of cellular phase transition models, enabling
detailed studies and simulations of nucleation processes.

The thermoelastic martensitic transformation of shape memory alloys,
such as Cu— Zn— Al, is a particularly interesting candidate for CA models,
because the origin of the characteristic surface patterns and their changes
as a function of experimental conditions have been extensively studied by
optical and electron microscopy [1]. The crystal structures of both the
high-temperature “mother” (austenite or beta) and the low-temperature
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Figure 1: Photomicrographs of a Cu— Zn— Al sample taken at various
instants in a cooling period, showing the evolution of surface patterns
from a few thin parallel platelets (a, at 17°C,< 1%. of martensite)
to the typical criss-cross of martensite variants (d, at 8°C,> 90%m).
Reproduced from [4].

“product” (martensite) phase are well known; the nucleation mechanism
is still, however, a matter of disucssion among experts [2,3]. Transition
dynamics, investigated recently by simultaneous observation of acoustic
emission and changes in surface patterns [4,5], suggests an important role
of submicroscopic nuclei whose stability depends on germ configurations
and thermal cycling. The photomicrographs reproduced in figure 1 (from
[4]) show typical patterns obtained at very low and at high martensite con-
centrations; the few thin parallel platelets in figure 1a could be represented
by a two-state, one-dimensional cell model while the criss-cross of Figure 1d
requires a two-dimensional model where each cell can assume several states
representing either the austenite phase, or one of four self-accommodating
martensite variants (called A, B,C, D in [1]).

Physically, the martensite variants are distinguished by the different
orientations of the transformation strain tensor. This suggests a CA model
in which the isotropic (or austensite) phase is represented by the zero cell
state, and the different variants by cells in symmetric state pairs. Ideally,
the CA simulation should produce output resembling directly the physical
patterns seen under the microscope; figure 2 gives a hypothetical example
showing the different orientations of interfaces in all martensite twins (AB,
AC, etc.) as well as between the four martensite variants and austenite,
following reference [1].

Figure 2 corresponds to an intermediate temperature; the CA must per-
form the transitions to “all austenite” or “all martensite” states at high and
low temperatures, respectively. The particular pattern depends on the dis-
tribution of “germ” cells, and must approximately reproduce in successive
thermal cycles. Furthermore, the model should respond to nonzero external
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Figure 2: Evolution of a one-dimensional cellular automaton model
for a shape memory alloy. :  represents cells of atoms in the high-
temperature austenite phase; A, B etc. represent four variants of the
low-temperature martensitic phase. The evolution starts at the top
of the figure, with “germs” of the martensitic phase, and follows dy-
namics appropriate for an intermediate temperature.

stress components by changing the equilibrium between A, B,C, D cells.

To explain how the CA rules for such models are constructed, it is suffi-
cient to chose a simplified example using only three cell states, say (A,0,B).
In this paper, the case of a one-dimensional lattice is fully discussed, in
close analogy with a phenomenological description; extensions to the two-
dimensional case will be outlined, but details are left to a forthcoming paper
[6].

2. Phenomenological Theories

Falk [7] briefly reviews applications of Landau-type theories and shows
that even a one-dimensional model of this kind explains global behaviour
of martensites quite satisfactorily, although microscopic aspects (phase
boundaries) are neglected. The so-called order parameter denoted e is
an internal variable of the system which characterizes the progress of the
transition. It is not necessarily related with ordering phenomena; in the
case of martensitic transformations, it is a mechanical strain which varies
between zero (in the high-temperature, or austenitic phase) and either of
two finite values =e; in the martensitic phase.

The thermodynamics of the system is fully determined by a free energy
density function f which depends only on e and the temperature T. Under
the influence of an external stress o, the total free energy density becomes

F,(e,T) = f(e,T) — ae. (2.1)

In thermal and mechanical equilibrium, e will adjust itself so that F,(e, T)
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is minimized while the internal stress response
o(e,T) = 3f(e,T) /e (2.2)

balances the external stress. Landau expanded f(e,T) into a power series
in e which he cut off after the fourth power; for symmetry reasons, in the
martensitic transition, odd powers are absent so that f(e,T') can be written
as

f(e,T) = fo + Ae* + Be* (2.3)

where f;, A and B are analytic functions of the temperature T. In order to
obtain for f(e,T) a single minimum (located at e = 0) at high temperature,
and two symmetric minima for T < Ty, the simplest possibility is to assume
B to be a positive constant and to let A change sign at T, by putting
A = (T — Ty). For the purpose of studying the evolution of e at any fixed
temperature, we may drop the “constant” term f;. Furthermore, we can
simplify later formulas by using an ad hoc temperature scale (in which
Ty, = 0), as well as suitable order parameter and stress units so that the
free energy expression becomes

FLandan = —oe+ Tez + Be‘. (2.4)

Setting its dervative equal to zero produces a cubic equation for determining
equilibrium values for e

e(2Be* +T) = 0/2. (2.5)

From the solutions of (2.5), it is evident that, for a vanishing external stress
field, the Landau ansatz describes a second-order temperature-induced phase
transition at T' = 0 which has no hysteresis. On the other hand, at nega-
tive temperatures, external stress can induce a first-order phase transition
associated with hysteresis.

By adding a sixth power term to the free energy expression, one obtains:

Fpevonshire = o€ + Te? — Be* + Ce®. (2-6)

The added complexity leads to the existence of a critical point given by
T.=15Cec', e.=+/B/5C, o,=16C¢} (2.7)

above which there are no phase transitions. Below o,, there is a first-order
temperature-induced phase transition with hysteresis; the stress-induced
phase transitions are also of the first order. Equilibrium values of e derived
from (2.6), plotted in Figure 3 as a function of temperature, show the
thermal hysteresis. Similar plots as a function of external stress for different
temperatures in Figure 4 demonstrate the shape memory effect.
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Figure 3: Thermal hysteresis: equilibrium order parameter (Devon-
shire theory) as a function of temperature for different values of ex-
ternal stress (after Falk [7]).
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Figure 4: Mechanical hysteresis: equilibrium order parameter (Devon-
shire theory) as a function of external stress for different temperature
values. Rearranged from Falk [7].
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3. Basic notations for a one-dimensional cellular model

3.1 Cell states

Phenomenological theories use a single order parameter which may evolve
continuously, except for partial jumps over a certain range, from near zero
at high temperature to large positive and negative values at low tempera-
ture. In contrast, cells are assumed to exist only in a few distinct states,
associated with well-defined strains via a numerical state variable S:

A—=S —-1oe= —e
: 0 0
B 1 +eq

State values of individual cells are denoted S;, with index j = 1...Cyot >> 1.
Except for interface regions (which could in a more elaborate model be
represented by intermediate states, a, b, with reduced strain), most of the
cells have strains not very different from the nominal values, 0 or Ze;.
Assuming linear strain superposition along the array of cells, the sum

(3.1)

would be the direct analog of the phenomenological order parameter. How-
ever, it is evident that the cell system can be completely martensitic and
still have e ~ 0, contrary to phenomenological models which neglect the
possibility of strain cancellation in actual domain patterns (Figure 1).

3.2 System state variables

As expression (1) does not necessarily tell to which degree the system is
transformed, at least one more system variable is required in the equation
for the free energy. The simplest choice is the martensitic fraction

S |8;] _ (Sumy + Sump)
"= Z maz Cto!

; 0<m<1 (3.2)

The e parameter is retained, but simplified by putting e; = 1 and rewriting

it in the form
_ (Sump — Sum,)

Ctnt :
which suggests obvious extensions to 2D-models (see 3.3).

~1<e<1 (3.3)

3.3 Driving forces

External variables used in the free energy ansatz (6) are the stress, o and the
temperature, T. Since e will now be replaced by S; = 0,+1, the remaining
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terms (B, C) are simply multiplied by |S;|, just like the temperature; they
can therefore be omitted if the temperature scale is shifted by a suitable
constant. Thus, the free energy becomes the sum of two driving terms, the
first of which acts on the sign of e (o < 0 favors transitions to the A state)
while the second one acts on m (T < 0 tends to increase the number of
both A and B states).

On the other hand, the elastic reaction of progressing martensitic do-
mains upon the remaining material will set up internal forces, one opposing
o and one opposing T. First, imagine that the sample is clamped, so that
A and B states should form in equal amounts in order to maintain constant
sample length; if their numbers differ, this will set up internal stress e- U,
with an unbalance factor U related to the material’s elastic constants and
clamping conditions. By adding this internal bias to o, we define

X=o+e-U, U>0 (3.4)

an effective stress to be used in computing the free energy. A two-dimensional
model is subject to more complex elastic reactions, involving at least three
martensitic variants; in the most general case o and e have three compo-
nents each, acting on the B/A, and D/C, and the CD/AB variant ratio
respectively.

Secondly, A and B states may, in addition, have a common strain which
cannot cancel out, except by creating other variants like C and D that
would not fit into our simplified model. Thus, an increasing total of marten-
sitic cells sets up another internal stress component, opposing any further
transitions just as if a temperature higher than the true physical tempera-
ture had been inserted into F(S;). We therefore define a temperature shift
m W, where W reminds one of some relation to the width of the transfor-
mation range (M, is martensite start, M; is martensite finish). From now
on

T = physical temperature + m -W, W >0 (3.5)
denotes an effective temperature to be used in the free energy expression
F(S,} =-X Sj +T ]S,I (3.6)

F(57) thus represents the free energy of one cell in state Sj, subject to an
effective stress X and an effective temperature T but assumed to be isolated
against direct interactions with its neighbors. Neighborhood configuration
energy values must be added to F(Sj) in order to construct CA rules that
will minimize the total free energy (see section 4). X and T are the same for
all cells but depend crucially on the total numbers of cells in the different
states, for example, equilibrium temperatures for m =~ 0 and m =~ 1 (start
and end of the transofmration) would differ by the value of W if W was a
constant (see section 5 for a better-fitting assumption).

3.4 Interface parameters

The elastic energy of a pair of adjacent cells in various states is assumed
to be independent of X,T and symmetric under A,B interchange. For
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code Config. S=-1 S=0 S=1

—4 A7A 2B, =-2 2E,=6 2Fp =2
-3=1 A?: E,+Ey=2 Ey=3 Egp+E4=4
—2,2 A?B Es+Eg=0 2E,=6 Eg+E,=86

0 P2 2B, =6 0 2E;, =6
1,3 BTz EB+E0=4 E0;3 EA+E0=2
4 B?B 2EB =32 2Eo =g 2EA = -2

Table 1: Interface energies with typical numerical values for cells.

simplicity, let us assume linearity so that they can be added for all neighbors
of a given cell. Using the austenitic state as a free energy reference implies
Eo = 0 (for :: pairs), and there are only three other kinds of pairs to
consider for (possibly nonzero) interface energies, namely, for example:

:A:BAB: = E= Ey= 3
AB, BA Eg 1
AA,BB E, —1.

To assemble the interface energy of a cell in state S having two neighbors
in states L, R (left and right) into a lookup table, we use as the main
argument a neighborhood code defined as code = L + 3 - R, and obtain the
results in table 1.

3.5 Germ cells

There must be at least one A or B germ so that slow growth of martensitic
regions can be performed by this model; otherwise the system would have to
be supercooled until the condition for spontaneous nucleation was satisfied
simultaneously at all sites. Inversely there must be one : germ to avoid
superheating of a completely martensitic array causing spontaneous back
transformation everywhere. 2-D models may contain several germs of either
kind, allowing a great variety of reproducible patterns.

The simplest method to assure the presence of germs is to forbid their
processing once they have been initialized. Alternatively they may be
treated during each time step like any other cell, but must be “refreshed”
to their predefined state periodically.

4. The CA transition rule

For cell j, processing consists of evaluating F(S) + table[code(s), S] for
the three possibilities of S, using the code for the given neighborhood at
that site; the one producing the lowest sum is then adopted as the new S;
value, except when this would change S; by more than one unit (tunneling
between A and B states is forbidden). More explicitly, the two or three
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total free energy values to choose from can be written as:
if old §5= —-1,0—-E_= X4 T+table[S(j—1)+3-S(7j+1),-1]
—-1,0,1 — Ey = table[S(j —1)+3-S(5 +1),0]
0,1 E;= X+T+table[S(j —1)+3-5(;+1),0]
It is straightforward to verify that the minimizing transition is achieved

by the following Pascal-style program using the numerical table values: BE-
GIN RULE:=0LD; (NO CHANGE, except in the following CASES).

CASE CODE OF

-4 : BEGIN

IF (OLD=0) AND (T<6+ABS(2-X)) THEN RULE:=SGN(X-2);

IF (OLD=-1) AND (T>8-X) THEN RULE:=0;

IF (OLD= 1) AND (T>4+4X) THEN RULE:=0 END;
-3,-1 : BEGIN

IF (OLD=0) AND (T<ABS(1-X)) THEN RULE:=SGN(X-1);

IF (OLD=-1) AND (T>1-X) THEN RULE:=0;

IF (OLD= 1) AND (T>X+1) THEN RULE:=0 END;
-2,2 : BECGIN

IF (OLD=0) AND (T<6+ABS(X)) THEN RULE:=SGN(X);

IF (OLD=-1) AND (T>6-X) THEN RULE:=0;

IF (OLD= 1) AND (T>6+X) THEN RULE:=0 END;
0 : BEGIN

IF (OLD=0) AND (T<ABS(X)-6) THEN RULE:=SGN(X);

IF (OLD=-1) AND (T>-6-X) THEN RULE:=0;

IF (0LD= 1) AND (T>-6+X) THEN RULE:=0 END;
1,3 :  BEGIN

IF (OLD=0) AND (T<ABS(1+X)) THEN RULE:=SGN(X+1);

IF (OLD=-1) AND (T>-1-X) THEN RULE:=0;

IF (OLD= 1) AND (T> 1+X) THEN RULE:=0 END;
1,3 : BEGIN

IF (OLD=0) AND (T<6+ABS(2+X)) THEN RULE:=SGN(X+2);

IF (OLD=-1) AND (T> 4-X) THEN RULE:=0;

IF (OLD= 1) AND (T> 8+X) THEN RULE:=0 END;

END; (of CODE cases)
END; (of RULE function)

For all practical purposes, both X and T can be considered as slowly
varying parameters so that this rule becomes a fixed logical CA table; how-
ever, when any of the driving forces (including m or €) changes appreciably,
the CA table has to be recalculated.

5. Results

As special CA hardware was not available for the present work, numeri-
cal model testing was limited either to the one-dimensional case (with a
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number of cells arbitrarily fixed to C,,az = 201 using about two-thirds
of a PC graphics screen for displaying results), or to relatively small two-
dimensional arrays (e.g., 25 rows X 50 columns displayed in color text
mode). On the other hand, the necessity of implementing the rules by con-
ventional programming gave us full flexibility for deviations from an ortho-
dox CA concept; e.g. by introducing randomness into the process, or using
special conditions at boundaries, or different updating modes. The type of
CA rule adopted in this paper allows a certain temperature range where
an oscillatory regime would invade the whole system if the processing was
done in the orthodox CA mode (all cells are updated quasi-simultaneously).
While such a regime might be looked at as a crude model of soft-zone vi-
brations postulated by some authors discussing the martensitic nucleation
mechanism [2], its :A:A:A structure implies an unrealistic increase of free
energy. In the “even-odd mode” all even-numbered cells are updated in
one step leaving the odd cells unchanged; in the following step, all odd-
numbered cells are updated, and so forth. This updating mode has proved
fully efficient to eliminate unphysical checkerboard structures but is still
compatible with soft-zone vibration effects in the immediate neighborhood
of germ cells. The “random scanning mode” where cells are updated at
random and their new states immediately used for further processing of
neighbords produces generally similar results except that periodicities dis-
appear. In simulating thermal and/or mechanical transofmration cycles,
the rule program remained unchanged but the parameters T and X were
recalculated after each CA step.

Some properties of the model can be directly derived from the rules, in
particular the conventional transition temperatures M,, M;, A;, and the
hysteresis expressed by the well-known experimental relations:

A, > My A > M, (5.1)

Normal growth or shrinking of martensitic regions is governed by the rule
for the transition A:: «— AA:; at zero stress, there is an equilibrium
temperature at

T'forward = Tbar.kward = _-E_A —m-W. (52)
In particular, at m = 0 this gives M, = Ay = —E, (+1 in the numerical
example), and at m = 1 this gives My = A, = —E4 — W. Unless an

additional term is introduced, this simplified model has no hysteresis. The
evident solution of this problem is a friction term which leaves Tiorwara
unchanged but increases Thackwara (€.8. by one temperature unit, which
corresponds about to Ay — M,). The much larger hysteresis at high m can
be explained by assuming:

W=W,(1-k-m), W,>00<K<1 (5.3)

If, for simplicity, we use k = 1, m-W is a maximum at m = 0.5 but drops to
0 at m = 1. In that case the model predicts a variable hysteresis depending
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Figure 5: Thermal hysteresis at zero applied stress in the one-
dimensional model with 201 cells (4000 time steps). To be compared
with figure 3.

on the depth of the transformation cycle; in the extreme (when m reached

100%)
M;=M,—Wo/4, A, = A; (5.4)

The thermal hysteresis curve shown in figure 5 was obtained with Wo = 25,
k = 0.8 and friction= 1. It resembles to some of the e curves in figure 3
although we did not plot the order parameter (which remained ~ 0 in the
absence of external stress, X = 0), but rather the martensite fraction m. In
addition to M,, My, A,, A;, a new transition temperature called G.on (germ
collapse) is seen at about +7 temperature units. The germ consisted in this
experiment of an A??B pair separated by two normal cells; it was processed
in an even-odd mode but would be restored before the following time step
would start. In even steps, the direct neighbor of the A germ would not
be processed and therefore could not disappear; the same is true in odd-
time steps for the neighbor of the B germ. Thus the martensitic bridge
originating from this germ pair is somewhat fragile but nevertheless more
stable than a single-variant region shrinking back from austenite according
to [14]. I there was no germ in the whole array, the only transition to
martensite would follow the rule ::: — : A :; at zero stress, this requires
supercooling t0 Typont.mart. = —2Fp or -6 units (may coincide with M;).

Inversely, in the absence of any austenite germ, back transformation
could occur according to two processes, AAA — A:A or AAB — A:B de-
pending on the presence of a twin boundary; the latter can be broken up
by applying a sufficiently strong external stress as seen by comparing the
respective temperatures

T‘spont.auat.. e 2(E0 - EA), or -+ 8 units
Tiwinbreak = 2Fg — E4 — Ep — | X|, or < 6 units. (5.5)

Whether twins were formed during the cooling depends on the germ config-
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Figure 6: Mechanical hysteresis at different temperatures in one-
dimensional model with 201 cells. Upper row is obtained by strict
CA processing (in even-odd mode) to avoid the formation of checker-
board regions, lower row by random scanning. To be compared with

Figure 4.

uration and the unbalance paramter U. Using U = 5, one A??B and one A?B
martensite germ, and austenite germs on either array end, stress cycling
produced the strain loops shown in Figure 6 which are directly comparable
to those in Figure 4 (e plotted against stress in both cases). With standard
CA processing the shape memory effect sets in T' = —6 units. The peculiar
shape of the loops (which depends on the particular choice and position of
the two germ pairs) prompted us to repeat the experiment in the random
scanning mode. The smoothing effect of this processing mode is evident,
and the shape memory works already at T' = —4 units.

6. Outlook

So far, the model has been tested for small arrays only, using conventional
programming on a small computer. The one-dimensional case has been
explored to some extent and revealed its particularities as far as the origin of
hysteresis and the role of germ pairs is concerned. The even-odd processing
mode not only proved useful in solving the checkerboard problem in CA
but also provided a method for creating germ configurations with different

nucleation potential and stability against heating.



The Free Energy Concept in Cellular Automata 143

Tentative studies on two-dimensional versions have shown that hystere-
sis increases with the number of neighbor interactions, without a necessity
for introducing ad hoc terms as in the one-dimensional model. Still with
three states, three more parameters would be required since horizontal and
vertical pairs should have different interactions; on the other hand, a two-
dimensional model allows a very rich variety of martensite-like patterns to
be created. The rules are not essentially different from those presented
above, except for a larger number of parameters and more voluminous
lookup tables. Preliminary results are reported in a forthcoming paper [6].

As the algorithm which minimizes the local free energy can be expanded
into a deterministic lookup table of the kind required by CAMs such as
Toffoli’s parallel processing CA machine [8], fast simulations of martensitic
transformations on a large two-dimensional array appear quite feasible. We
expect that in future work using a CAM, the gain in processing speed will
allow us a finer adjustment of model parameters on the basis of observed
transformation patterns. Ultimately this should lead to a valid four-variant
martensite model which might be close to the physical reality.
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