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Abstract. Two players play against each oth er in a game with pay­
offs given by a random n by n matrix with mean zero. If one player
adopts a un iform, purely random st rategy, th en his loss is limi ted by
the law of averages to a quantity proport ional to VIogn/vn. On th e
other hand, if he plays an opt imal strategy his losses will typically be
considerably less. Numerical evidence is presented for th e following
conjec ture: t he standard deviation of the value of the game is asymp­
to tically proportional to l i n. This smaller loss exhibi ts the advantage
of rationality over randomness. The rational player, moreover , te nds
as n __ 00 to employ a strategy vector that has ha lf its components
zero.

1. Introduction

The asymptotic properties of random two-person zero-sum gam es with a
large number of strategies have been considered in work of J. E . Cohen
and C. M. Newman II]. They were interested in the stabilizing effect of
strategy diversification in evolutionary biology. In the course of their work
they bounded th e value of the game, i.e., the exp ected payoff of one player
to the other if both adopt optimal strategies, in terms of th e expected payoff
obtaining if one of the players uses a uniform (purely random) strategy. In
part 3 of this paper we present numerical results giving evidence for th e
actual asymptot ic behavior of the value. We also repor t on the asymptotics
of the optimal strategies.

Random game theory is not yet a subject amenable to extended analyt ic
investigation. To a given game or game matrix, a variety of formul ae and
algorithms may be applied to yield the value , the opt imal strategies, etc.
But if the game matrix is random, these will be random variables. Their
distribu tion is not easy to determine analytically for any fixed matrix size,
still less their asymptotics as the matrix size tends to infinity. Part 2
contains such analytic results as we have .
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(1.1)

The games we consider are of the simplest kind, where there are two
players in strict competition. Each of the two players has a finite number
of choices . The consequence of a pair of choices is given by a payoff' matrix.
Each player makes a choice in secret. The two choices are then revealed,
and the matrix determines the payment from one player to the other. Since
the sum of the gains is zero, this type of game is known as a two-person
zero-sum game.

We usually interpret the payoff matrix as a matrix giving the payment
from the player who chooses the co lumns to the player who chooses the
rows. The column player thus prefers small payoffs, while the row player
prefers large payoffs. Thus in the game

A=U n
it is apparent that the row player will choose the second row. The column
player may yearn after the 0 entry in the (I , 2) position, but it does no
good; his only choice now is the first column. Thus the result of the game
is t hat the row player wins the amount 2 given in the (2, 1) entry.

The players are allowed to choose mixed strateg ies, tha t is , strategies
based on probabilit ies. In the game

A = 0n (1.2)

the column player may choose to employ the uniform strategy, that is, to
play the columns with equal probabiiities. Then the expected winning for
the row player is 3/2, no matter what choice he makes. One can also look
at the game from the point of view of the row player. He has a low stakes
choice (the first row) and a high stakes choice (the second row). If the
row player tries to play a uniform strategy employ ing the two rows with
equal probability, then the column player may play t he second column an d
limit his expected losses to 1. The opt imal strategy for the row player is
more complicated; he should play the first row with probability 3/4 an d
the second row with probability 1/4. Then the expected loss by the column
player is 3/2, no matter what choice he makes. Clearly if both players play
optimally the expected payment from the column player to the row player
is 3/2. The value of this game to the row player is thus 3/2.

The situation we are interested in is a situation in which the games
are generated by nature, so that the game matrix itse lf is random. The
conceptual experiment is conducted as follows . A number of game matrices
are independently generated. When a game matrix is generated, it is made
public. The two players each choose a (mixed) strategy for thi s ma t rix.
They then play this game , perhaps a number of times, so that the outcom e
of the game for the row player is considered to be the expected winnings
with these strategies.

We are actually interested in large matrices. Consider an m by n ma­
trix. As above , the payoff from the row player to the opposing column
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player is defined to be the (i , j)th matrix element if they choose the i th
and jth alternati ves resp ectively. The ent ries of the matrix are indepen­
dent, identic ally distributed random variables with a distribution that is
symmetric about zero. When m = n all probabili ties are symmetric be­
tween t he row player and the column player. In part 2 we non etheless show
that if one player adopts a uniform (th at is, completely random) strategy,
the other may adopt a strategy th at ens ures gains that are asymptotically
proportional to ,;Iog nj ,;n as n --> 00 .

Bu t accord ing to the numerical results of part 3, if the players use their
optimal strategies the ave rage ret urn to the players [e.e. the value of the
game) appears to have standard deviat ion asymptotically proportional to
l I n. These contrast ing asymptotics indicate t hat rational play, which takes
advantage of the structure of the par t icular matrix, produces a more even
outcome.

A striking featu re of rational play, as revealed by our invest igati ons , is
th e asymptotic behavior of the numb er of zero components of th e optimal
strategy vectors . The numerics suggest t hat the proportion of zero compo­
nents is asymptotically eq ual to 1/2, with the var iance of the propo rtion
tending to zero as lin. This is consis tent wit h a rigorous resu lt of part 2j
namely, that the probability of the extreme cases, i.e., of the optimal strat­
egy vect or having n - 1 zeroes or no zeroes , decays at least exponentially
in n.

2. Ana ly t ica l results

In the following we shall have occas ion to refer to an n-component vecto r
x as a probability vector if all its entries are greater than or equal to zero
and the sum of the ent ries is one. Thus we have

x 2: 0 LX =1. (2.1)

The probability vectors range over a simp lex of dimension n - 1. They
represent strategies for a player with n alte rnatives.

The game theo ry int erpretati on applies to an ar bit rary real matrix. Let
A be an m by n matrix. Player 1 (the row player) has m alternatives and
player 2 (the colum n player) has n alternatives. This matrix represents the
payoff from player 2 to player 1 corresponding to a choice of alternatives
by each of the players. The gain of playe r 1 is the loss of player 2. Thus
player 1 wants to maximize the payoff, and player 2 wants to minimize it .

Let x be an m-component column probability vector represen ting a
strategy for player 1, and let y be an n-component column probability
vector representing a strategy for player 2. Write x' for the m-component
row vector that is the transpose of x. Then if player 1 plays st rategy x,
the average payo ffs for each choice by player 2 are represented by the n­
component row vecto r x'A. The number min x'A is a lower bound on the
average gain of player 1 that is independent of the choice of the other player.
Similarly, if player 2 plays strategy y, the average payoffs for each choice
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by player 1 ar e represented by the m-c omp onent column vect or Ay. Again,
max Ay is an upper bound on the ave ra ge loss by player 2.

It is easy t o see that

minx'A ~ max Ay . (2.2)

In other words, the least gain to 1 due to a choice of st rategy by player 1
invo lves a smaller payoff from 2 to 1 than the greatest loss to 2 due to a
choice of st r ategy by player 2. In fact, we have

minx'A ~ x'Ay ~ maxAy, (2.3)

which says that the actual average payoff x'Ay due to choices by both
p laye rs is between the two extremes.

The minimax theorem of game theory states that there exists optimal
strategy vectors such that equality holds [4J. In this case the common value
v is the value of the game . For every pair of probab ility vectors x and y
we have t he bound

m in x'A ~ v ~ max Ay . (2.4)

In our case, the matrix A is random, and its valu e is a random vari able.
Since the optimal st ra teg y vectors depend on the matrix, they are also
random . In the following we assume that the ent ries of the ma trix are
indep endent and have the same d istr ibu tion , with mea n zero and standard
devia tion C7.

An alte rnat ive to the optimal strategy is the adoption of a uni form
strategy by one or the ot her of the players . We take x and y to be the
constant vectors 11m and l in. If bo th players adopt th is un iform strategy,
the average payoff is

1-EE A;;.
mn j ;

(2.5)

If the ent ries of the matrix are independ ent with mean zero and standard
deviation 0 2 , then the average payoff has mean zero and variance 0

2I~.

If m = n this is propor tional to l in. Thus th is rather dull and stupid play
by both players resul ts in a rather close outcome, by the law of ave rages.

If one of the players adopts the uniform stra tegy, the worst case analysis
gives a bound on the value of the game. The value v is bounded below and
above by t he m inimum column average and maximum row average of A :

. 1 1
mm- '" k · < v < max - '" A i s,. L- tJ - -. L- fJJm j tn t

(2.6)

The column and row averages ;; Ei Ai; and ~ E; A i j have mean zero and
st an dar d deviations C1 l ..;m and C1 l ,;n. What remains is t o t ake into acco unt
the effect of the maximum and minimum.

Take the case of the max imum loss by player 2 afte r his adoption of a
un iform strategy. Assume for simplicity that the distribut ions of the entries
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of the matrix is Gaussian. Then t he d ist ribut ion of the row averages is also
Gaussian.

The theory of maxima of independent, iden t ica lly d ist ribute d ran dom
variab les is well known [2J. If Z l l "" Zn are independent random var iabl es
with the same distribu t ion, and Urn = max(ZI, .. . , Zm), then

P[Um :S t] = P[ Z :S tim = (1 - P[Z > t])m. (2.7)

From this we see that the int eresti ng asymp to t ics are when P[Z > tml :::::::
11m . For the Gaussian distribution with mea n zero and standard deviation
o this is when t m ::::::: 0 ';2 log m . In fact, it is known that in th is circumstance

(2.8)

(2.9)P[l maxAy - aV2 log ml vnl < e]~ 1

as m --+ 00 .

In the game theory situation , th is says that for the unifo rm strategy y
we have

as m --+ 00, unifor mly in n. When m = n, this gives the rat io J log njn,
which may he regarded as roughly proport ional to 1/ Vii for mos t prac tical
pur poses.

We now turn to the case when the entries are not assumed to be Gaus­
sian. However the row and column averages will still be approx imately
Gauss ian , so we expect similar results. T he following result is obtained by
a refinement of t he method of Cohen and Newman II ].

Theorem 1 . Consider an m by n matrix A with independent , iden tically
distribute d entri es A jj , having mean zero an d standard deviation o , As­
sume th at the m oment generating function e[exp{tAi; )I exists for all real t
su fficiently n ear to zero . Let y be the strategy that is uniformly lin. Th en
for every 001 > 00 and e > 0,

(2.1O)

Lemma 1. Let 01 > a , Th en the row average will satisfy a probability
estima te of th e form

(2.11)

for sm all s > o.
Proof: By Chebyshev 's inequality , indepe ndence , an d Taylor's theorem

1 n02

P[;;:L Ai; 2: s] :S ejexp (tAi ; ) I" exp ]- nst ) :S exp(-ft' )exp ]- nst ),
(2.12)
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for small t . Take t = slu;.•
Proof of theorem: For every s we have

P[maxAy :;; .s] = IIP[(Ay), :;; s] = II(1 - P[(Ay), > sll · (2.13)

Now take the s of the lemma to be s = u,(y2[ogm + -)Iyn as in the
statement of the theorem. Then

P[maxAy :;; aJ ~ (1- 2.e- (·Y21og m+,' j' J)m.
m

(2.14)

This approaches 1 as m ---+ 00••

We have thus obtained a bound on the probability of a positive fluctu­
at ion of the valu e of th e random game . A very similar argument applied
to the column averages produces a bound on the probabili ty of a negat ive
fluctuation.

This argument proves tha t the value of the n by n game should decrease
at a rate p roport ional to y1OgTi"/..;n. Of course this is the bound obtained
by hav ing a player ado pt a uniform (completely ra ndom) strategy, and it
is plausible t hat there shou ld be room for a faster decrease, if each player
plays rat ionally.

Now we examine the st rategies. The number of zero components in
an n-component strategy vector may range from 0 to n - 1. The extreme
cases corre spond respectively to interior poin ts and corne rs of the simp lex
of probability vectors. In the game context, generically the optima l strategy
for each player will be a corn er when the game matrix has a saddle point.
(A sad dle po int is an entry that is max imal in its column and minimal in
its row.) A. J. Goldman [3] has shown that for independent matrix entries
wit h a common cont inuous distribut ion, the probability of a sadd le point
is m!n!/ (m + n - 1)1. When m = n this is asymptotically (ni)'1(2n -I) ! ~
2nJ1rti"4~ 'J, which decays exponentially as n ----. 00 .

The opposite extreme, that of a strategy vector lying in the interior of
the simplex, also has exponent ially decreasing probability as n ----. 00 . Our
result is given by t he following theorem.

T h eor em 2. Assume that the n by n matrix A has independent, identi­
cally distributed Gaussian random variables as matrix elements. Then the
probability that the optimal strategy is in the interior of the simplex is
bounded by 21- n .

Pro of: Denote by O± the union of the posit ive and negative orthants in
R n , viz. , {x E R n I Vix, > 0 or Vix, < O} . Then a standard result [4J
has it that an interior po int obtains only if the two events El and E2 given
respect ively by A-I1 E O± and A,- I1 E O±both occur. Here 1 denotes the
n-component vector with unit ent ries, and A' is the transpose of A . The
standard result assumes that the value of A is non-zero, but this occu rs
with probability one .
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Both El and E2 have probability 21- . . To verify this, note t hat the
probability measure on the space of matrices is invariant under right mul­
tiplication by every orthogonal matrix Q. The matrix Q may be taken
random, so long as it is taken independent of A. So,

PIEl ] Plri l E O±I
= PI(AQ)-'I E O±)

P[Q-I A-II E O±I
PIA-II E QO±). (2.15)

If the measure on the orthogonal matrices Q is taken to be Haar measure
(the group invariant measure), this is simply twice the probability of an n­
component vector lying in a random orthant , i.e., zl-n. A sim ilar argument
suffices for E2. The hound in the statement of the theorem is an immediate
consequence of this probability calculation.•

The conclusion of this discussion is that for large matrices neither ex­
treme, corner or inter ior , is likely to occur. The optimal st rategy vec tor will
not be concentrated on one component, but it will still have some zeros.

3. Numerical results

Th e meth od used for our numerical results is st andard, and we give only the
briefest descript ion. Let A be the game matrix, and let y be a probability
vector representing the strategy of player 2. Assume that A is a constant
such that the vector Ay 5 A. (Thus player 2 can be sure that his losses are
limited by),.) Since the value v :": max Ay :": ),, the minimum value of), is
obtained when y is an opt imal strategy vector and v = A.

Thus t he problem of finding the value v of the game is the problem of
finding the min imum value of ), subject to

y;:: o (3.1)

Now assume that the value of the game v > o. (This may always
be arranged by adding a constant to th e matrix A.) Make the change of
variables z = y / A. Then the problem is to find the maximum value of
1/), = l: z subject to

Az :,,: 1 z ;:: o. (3.2)

This is thus the linear programming problem of finding the maximum of a
linear function on a convex polyhedron. 'Phis maximum is to be assumed
at a vertex. In the present context the simplex method is to start at the
known vertex z = O. and move at each step to an adjacent vertex with a
larger value of 1/ A = E z . After a finite number of steps the maximum is
achieved.

This algorithm has been implemented in Fortran and run on a mini­
supercomputer manufactured by Scient ific Comput ing Systems, consuming
about 200 hours of computer time . We present our results in Tables 1 and
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n Plz = n -11 plz =ol d sll/J n ns,
2 0.67 0.33 -0.085 0.3337 1.248
3 0.30 0 .099 -0.048 0.3457 1.359
4 0.11 0.028 -0.0 33 0.3482 1.425
5 0.041 0 .0076 -0 .021 0.3514 1.457
6 0.013 0.0022 -0.015 0.3521 1.483
7 0.0042 0.00045 -0.011 0.3527 1.494
8 0.0013 0.00014 -0.009 0.3530 1.511
9 0 .00041 0.00001 -0 .000 0.3522 1.516

10 0 .00012 0.00002 -0 .005 0.3537 1.521
11 0 .00002 -0 .008 0.3529 1.529
12 0.000 0.3537 1.533
13 0.002 0.3525 1.541
14 0.003 0.3532 1.536
15 -0.002 0.3536 1.540
16 0.002 0.3531 1.549

30 0.002 0.3542 1.557
31 0.007 0.3538 1.561

Table 1: Statistics for Gaussian entries

2, which correspond to the two cases of Gaussian and uniformly distributed
Ai j _ In the former case Ai; = Zi; (O, 1), a Gaussian with mean zero and unit
variance. In the latt er the Ai; have the same mean and variance, but are
uniformly distributed over 1-v'3,v'3]. In both cas es we gener ated 100 ,000
n-square pseudo-random game matrices A for each value of n between 2
and 16, as well as for 30 and 31, and computed v for each A. The number
of zero components of the optimum strategy vector was determined as well.

If z is the random variable equal to the numb er of zero components
of this vectorJ Goldman's formula gives in both cases the exact expression
Plz = n - I ] = (n!l' j (2n - 1)1. Our program counted strategy vect ors with
n - 1 or no zeroes, and we present in the tables their frequencies to two
significant figur es as est ima tes of Plz = n - I ] and Plz = 0]. The former
affords a check on the adequacy of our data run. Notice that the frequencies
of n - 1 zeros in the two tables are very close to each other: in fact they
are also very close to the exact probabilities, which decay exponentially in
n. The frequencies of no zeros also appear to decay exponentially with n.
The falloff is much more rapid, however, than that present in the rigorous
upper bound Plz = 0] :0; 21- n of Theorem 2. For n ~ 12 we have no data
on Plz = n - 1) or Plz = 0]. as none of our 100,000 matrices had z = n -1
or z = O.

The distribution of the number of zeros z is reminiscent of but not
identical to a binomi al distribution with p = 1/ 2. The numerics suggest
a mean E izi '" n j 2 - 0 .25 and a stan dard deviation (1. '" 0.35n 1/'. The
evidence for this is presented in the tables. The deviat ions d = z - nJ2-0.25
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n F lz = n- 1) Plz = 01 d s./..;n ns.
2 0.67 0.33 -0.082 0.3329 1.433
3 0.30 0.097 -0.048 0.3441 1.604
4 0.11 0.028 -0.031 0.3482 1.661
5 0.040 0.0076 -0.016 0.3512 1.685
6 0.012 0.0020 -0.013 0.3531 1.678
7 0.0039 0.00055 -0.002 0.352 5 1.667
8 0.0011 0.00020 -0 .000 0.3539 1.662
9 0.00031 0.00005 -0.003 0.3554 1.649

10 0.00013 0.00002 -0 .004 0.3547 1.636
11 0.00 004 0.008 0.3539 1.639
12 0.00 8 0.3550 1.619
13 0.008 0.3545 1.630
14 0.Ql 8 0.3541 1.621
15 0.019 0.3546 1.618
16 0.008 0.3531 1.610

30 0.029 0.3536 1.598
31 0.018 0.3 535 1.586

Table 2: Statist ics for uniform entries

in the number of zeros were computed. The sample mean estimates d =
z - n/2 - 0.25 for E[d) = E[z) - n/2 - 0.25 and the normal ized sample
stand ard deviat ion est imates sz/Vii for Qz/vn are tabulated, the latter
to four signi ficant figures. The asymptotic independence of the choice of
distribut ion for Aii is striking .

The asymptotic behavior of the value v is apparently manifested less
rapidly as n --+ 00 than are the asy mptot ics of a . We use the usual sample
standard deviation est imate Btl of the standard deviat ion U II of v. O U f

normalized estimates nsu of nuv are given to four sign ificant figures . T hey
suggest that in both the Gaussian and uniform cases the stan dard deviation
of v displays leading behavior - 1.6n - 1

• Our data do not rule out the
possibility that the constant might differ between Tables 1 and 2, i.e.,
depend on more than the first two moments of the Ai;. But the evidence
for a l i n falloff of t he standard deviation is st rong. Rational play is superior
to random.
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