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Abstract. Two players play against each other in a game with pay-
offs given by a random n by n matrix with mean zero. If one player
adopts a uniform, purely random strategy, then his loss is limited by
the law of averages to a quantity proportional to /log n/y/n. On the
other hand, if he plays an optimal strategy his losses will typically be
considerably less. Numerical evidence is presented for the following
conjecture: the standard deviation of the value of the game is asymp-
totically proportional to 1/n. This smaller loss exhibits the advantage
of rationality over randomness. The rational player, moreover, tends
as n — oo to employ a strategy vector that has half its components
zero.

1. Introduction

The asymptotic properties of random two-person zero-sum games with a
large number of strategies have been considered in work of J. E. Cohen
and C. M. Newman [1]. They were interested in the stabilizing effect of
strategy diversification in evolutionary biology. In the course of their work
they bounded the value of the game, i.e., the expected payoff of one player
to the other if both adopt optimal strategies, in terms of the expected payoff
obtaining if one of the players uses a uniform (purely random) strategy. In
part 3 of this paper we present numerical results giving evidence for the
actual asymptotic behavior of the value. We also report on the asymptotics
of the optimal strategies.

Random game theory is not yet a subject amenable to extended analytic
investigation. To a given game or game matrix, a variety of formulae and
algorithms may be applied to yield the value, the optimal strategies, ete.
But if the game matrix is random, these will be random variables. Their
distribution is not easy to determine analytically for any fixed matrix size,
still less their asymptotics as the matrix size tends to infinity. Part 2
contains such analytic results as we have.
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The games we consider are of the simplest kind, where there are two
players in strict competition. Each of the two players has a finite number
of choices. The consequence of a pair of choices is given by a payoff matrix.
Each player makes a choice in secret. The two choices are then revealed,
and the matrix determines the payment from one player to the other. Since
the sum of the gains is zero, this type of game is known as a two-person
Zero-sum game.

We usually interpret the payoff matrix as a matrix giving the payment
from the player who chooses the columns to the player who chooses the
rows. The column player thus prefers small payoffs, while the row player
prefers large payoffs. Thus in the game

A:(; g) (L1)

it is apparent that the row player will choose the second row. The column
player may yearn after the 0 entry in the (1, 2) position, but it does no
good; his only choice now is the first column. Thus the result of the game
is that the row player wins the amount 2 given in the (2, 1) entry.

The players are allowed to choose mixed strategies, that is, strategies
based on probabilities. In the game

A=(; g) (1.2)

the column player may choose to employ the uniform strategy, that is, to
play the columns with equal probabilities. Then the expected winning for
the row player is 3/2, no matter what choice he makes. One can also look
at the game from the point of view of the row player. He has a low stakes
choice (the first row) and a high stakes choice (the second row). If the
row player tries to play a uniform strategy employing the two rows with
equal probability, then the column player may play the second column and
limit his expected losses to 1. The optimal strategy for the row player is
more complicated; he should play the first row with probability 3/4 and
the second row with probability 1/4. Then the expected loss by the column
player is 3/2, no matter what choice he makes. Clearly if both players play
optimally the expected payment from the column player to the row player
is 3/2. The value of this game to the row player is thus 3/2.

The situation we are interested in is a situation in which the games
are generated by nature, so that the game matrix itself is random. The
conceptual experiment is conducted as follows. A number of game matrices
are independently generated. When a game matrix is generated, it is made
public. The two players each choose a (mixed) strategy for this matrix.
They then play this game, perhaps a number of times, so that the outcome
of the game for the row player is considered to be the expected winnings
with these strategies.

We are actually interested in large matrices. Consider an m by n ma-
trix. As above, the payoff from the row player to the opposing column



The Value of a Random Game: The Advantage of Rationality 237

player is defined to be the (7, 7)th matrix element if they choose the :th
and jth alternatives respectively. The entries of the matrix are indepen-
dent, identically distributed random variables with a distribution that is
symmetric about zero. When m = n all probabilities are symmetric be-
tween the row player and the column player. In part 2 we nonetheless show
that if one player adopts a uniform (that is, completely random) strategy,
the other may adopt a strategy that ensures gains that are asymptotically
proportional to v/logn//n as n — oco.

But according to the numerical results of part 3, if the players use their
optimal strategies the average return to the players (i.e., the value of the
game) appears to have standard deviation asymptotically proportional to
1/n. These contrasting asymptotics indicate that rational play, which takes
advantage of the structure of the particular matrix, produces a more even
outcome.

A striking feature of rational play, as revealed by our investigations, is
the asymptotic behavior of the number of zero components of the optimal
strategy vectors. The numerics suggest that the proportion of zero compo-
nents is asymptotically equal to 1/2, with the variance of the proportion
tending to zero as 1/n. This is consistent with a rigorous result of part 2;
namely, that the probability of the extreme cases, i.e., of the optimal strat-
egy vector having n — 1 zeroes or no zeroes, decays at least exponentially
in n.

2. Analytical results

In the following we shall have occasion to refer to an n-component vector
z as a probability vector if all its entries are greater than or equal to zero
and the sum of the entries is one. Thus we have

x>0 Yx=lk (2.1)

The probability vectors range over a simplex of dimension n — 1. They
represent strategies for a player with n alternatives.

The game theory interpretation applies to an arbitrary real matrix. Let
A be an m by n matrix. Player 1 (the row player) has m alternatives and
player 2 (the column player) has n alternatives. This matrix represents the
payoff from player 2 to player 1 corresponding to a choice of alternatives
by each of the players. The gain of player 1 is the loss of player 2. Thus
player 1 wants to maximize the payoff, and player 2 wants to minimize it.

Let x be an m-component column probability vector representing a
strategy for player 1, and let y be an n-component column probability
vector representing a strategy for player 2. Write x' for the m-component
row vector that is the transpose of x. Then if player 1 plays strategy x,
the average payoffs for each choice by player 2 are represented by the n-
component row vector x'A. The number minx’'A is a lower bound on the
average gain of player 1 that is independent of the choice of the other player.
Similarly, if player 2 plays strategy y, the average payoffs for each choice
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by player 1 are represented by the m-component column vector Ay. Again,
max Ay is an upper bound on the average loss by player 2.
It is easy to see that

minx'A < max Ay. (2.2)

In other words, the least gain to 1 due to a choice of strategy by player 1
involves a smaller payoff from 2 to 1 than the greatest loss to 2 due to a
choice of strategy by player 2. In fact, we have

minx'4 < x' Ay < max Ay, (2.3)

which says that the actual average payoff x'Ay due to choices by both
players is between the two extremes.

The minimax theorem of game theory states that there exists optimal
strategy vectors such that equality holds [4]. In this case the common value
v is the value of the game. For every pair of probability vectors x and y
we have the bound

minx'A < v < max Ay. (2.4)

In our case, the matrix A is random, and its value is a random variable.
Since the optimal strategy vectors depend on the matrix, they are also
random. In the following we assume that the entries of the matrix are
independent and have the same distribution, with mean zero and standard
deviation o.

An alternative to the optimal strategy is the adoption of a uniform
strategy by one or the other of the players. We take x and y to be the
constant vectors 1/m and 1/n. If both players adopt this uniform strategy,

the average payoff is
1
ooy X’: ; A (2.5)

If the entries of the matrix are independent with mean zero and standard
deviation o?, then the average payoff has mean zero and variance o2/ /mn.
If m = n this is proportional to 1/n. Thus this rather dull and stupid play
by both players results in a rather close outcome, by the law of averages.
If one of the players adopts the uniform strategy, the worst case analysis
gives a bound on the value of the game. The value v is bounded below and
above by the minimum column average and maximum row average of A:

o | 1
n'.g_m ;;EI:A" <v S m’ax; %:A,'j. (26)

The column and row averages % i Ai; and %Ei A;; have mean zero and
standard deviations ¢/y/m and ¢//n. What remains is to take into account
the effect of the maximum and minimum.

Take the case of the maximim loss by player 2 after his adoption of a
uniform strategy. Assume for simplicity that the distributions of the entries
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of the matrix is Gaussian. Then the distribution of the row averages is also
Gaussian.

The theory of maxima of independent, identically distributed random
variables is well known [2]. If Z,..., Z, are independent random variables
with the same distribution, and U,,, = max(Zy,...,Z,), then

PlUn <t]=PlZ <t]"=(1—-P[Z > t]))™ (2.7)

From this we see that the interesting asymptotics are when P[Z > tn,]| =
1/m. ¥or the Gaussian distribution with mean zero and standard deviation
o this is when t,, = o+/2logm. In fact, it is known that in this circumstance

PllUn—oy/2logm| < e — 1 (2.8)
as m — oo,
In the game theory situation, this says that for the uniform strategy y

we have
P[|max Ay — ov/2logm/+/n| < ¢ — 1 (2.9)

as m — oo, uniformly in n. When m = n, this gives the ratio y/logn/n,
which may be regarded as roughly proportional to 1//n for most practical
purposes.

We now turn to the case when the entries are not assumed to be Gaus-
sian. However the row and column averages will still be approximately
Gaussian, so we expect similar results. The following result is obtained by
a refinement of the method of Cohen and Newman [1].

Theorem 1. Consider an m by n matrix A with independent, identically
distributed entries A;;, having mean zero and standard deviation o. As-
sume that the moment generating function & [exp(tA;;)] exists for all real t
sufficiently near to zero. Let y be the strategy that is uniformly 1/n. Then
for every oy > ¢ and € > 0,

Jim Plmax Ay <

ﬂ\/gﬁmw] =, (2.10)

Lemma 1. Let ¢; > o. Then the row average will satisfy a probability
estimate of the form

1’!.32

20%) (2.11)

P[% ZA.-; > s] < exp(—
2

for small s > 0.
Proof: By Chebyshev’s inequality, independence, and Taylor’s theorem

P[% ZA,-_,- > 5] < Elexp(tAy;)]" exp(—nst) < exp(n—gftz) exp(—nst)

: 2
(2.12)
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for small ¢. Take ¢t = s/o?. B
Proof of theorem: For every s we have

Plmax Ay < 5] = T P[(Av): < o] = T[(1 - Pldyy > ). (2.13)

%

Now take the s of the lemma to be s = 01(v/2logm + €)//n as in the
statement of the theorem. Then

Plmax Ay < a] > (1 — ,—L-e-(f Hopmieifaym, (2.14)
This approaches 1 as m — co. B

We have thus obtained a bound on the probability of a positive fluctu-
ation of the value of the random game. A very similar argument applied
to the column averages produces a bound on the probability of a negative
fluctuation.

This argument proves that the value of the » by n game should decrease
at a rate proportional to /logn/y/n. Of course this is the bound obtained
by having a player adopt a uniform (completely random) strategy, and it
is plausible that there should be room for a faster decrease, if each player
plays rationally.

Now we examine the strategies. The number of zero components in
an n-component strategy vector may range from 0 to n — 1. The extreme
cases correspond respectively to interior points and corners of the simplex
of probability vectors. In the game context, generically the optimal strategy
for each player will be a corner when the game matrix has a saddle point.
(A saddle point is an entry that is maximal in its column and minimal in
its row.) A. J. Goldman [3] has shown that for independent matrix entries
with a common continuous distribution, the probability of a saddle point
is m!n!/(m+n — 1)l. When m = n this is asymptotically (n!)*/(2n —1)! ~
2n+/mn4~", which decays exponentially as n — oo.

The opposite extreme, that of a strategy vector lying in the interior of
the simplex, also has exponentially decreasing probability as n — co. Our
result is given by the following theorem.

Theorem 2. Assume that the n by n matrix A has independent, identi-
cally distributed Gaussian random variables as matrix elements. Then the
probability that the optimal strategy is in the interior of the simplex is
bounded by 2'~".

Proof: Denote by O, the union of the positive and negative orthants in
R", viz., {x € R" | Vix; > Oor Vix; < 0}. Then a standard result [4]
has it that an interior point obtains only if the two events E1 and E2 given
respectively by A"11 € O: and A'"'1 € Oy both occur. Here 1 denotes the
n-component vector with unit entries, and A' is the transpose of A. The
standard result assumes that the value of A is non-zero, but this occurs
with probability one.
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Both E1 and E2 have probability 2!™". To verify this, note that the
probability measure on the space of matrices is invariant under right mul-
tiplication by every orthogonal matrix @. The matrix @ may be taken
random, so long as it is taken independent of A. So,

PIEL] = PlA~'1€ 04
P[(AQ)_II € 05:]
P[Q_IA_II (S Oi]

= PlA™1 € Q04 (2.15)

If the measure on the orthogonal matrices @ is taken to be Haar measure
(the group invariant measure), this is simply twice the probability of an n-
component vector lying in a random orthant, i.e., 21", A similar argument
suffices for E2. The bound in the statement of the theorem is an immediate
consequence of this probability calculation. l

The conclusion of this discussion is that for large matrices neither ex-
treme, corner or interior, is likely to occur. The optimal strategy vector will
not be concentrated on one component, but it will still have some zeros.

3. Numerical results

The method used for our numerical results is standard, and we give only the
briefest description. Let A be the game matrix, and let y be a probability
vector representing the strategy of player 2. Assume that A is a constant
such that the vector Ay < A. (Thus player 2 can be sure that his losses are
limited by A.) Since the value v < max Ay < A, the minimum value of ) is
obtained when y is an optimal strategy vector and v = A.

Thus the problem of finding the value v of the game is the problem of
finding the minimum value of A subject to

Ay<x y>0 >y=L (3.1)

Now assume that the value of the game v > 0. (This may always
be arranged by adding a constant to the matrix A.) Make the change of
variables z = y/A. Then the problem is to find the maximum value of
1/X = ¥ z subject to

Az<1 z>0. (3.2)

This is thus the linear programming problem of finding the maximum of a
linear function on a convex polyhedron. This maximum is to be assumed
at a vertex. In the present context the simplex method is to start at the
known vertex z = 0. and move at each step to an adjacent vertex with a
larger value of 1/A = ¥ z. After a finite number of steps the maximum is
achieved.

This algorithm has been implemented in Fortran and run on a mini-
supercomputer manufactured by Scientific Computing Systems, consuming
about 200 hours of computer time. We present our results in Tables 1 and
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n|Pz=n—1]|Plz=0]| d [s./yn]| ns,
2| 0.67 0.33 -0.085 | 0.3337 | 1.248
3 10.30 0.099 -0.048 | 0.3457 | 1.359
410.11 0.028 -0.033 | 0.3482 | 1.425
5| 0.041 0.0076 -0.021 | 0.3514 | 1.457
6 | 0.013 0.0022 -0.015 | 0.3521 | 1.483
7 | 0.0042 0.00045 | -0.011 | 0.3527 | 1.494
8 | 0.0013 0.00014 | -0.009 | 0.3530 | 1.511
9 | 0.00041 0.00001 | -0.000 | 0.3522 | 1.516
10 | 0.00012 0.00002 | -0.005 | 0.3537 | 1.521
11 | 0.00002 -0.008 | 0.3529 | 1.529
12 0.000 | 0.3537 | 1.533
13 0.002 | 0.3525 | 1.541
14 0.003 | 0.3532 | 1.536
15 -0.002 | 0.3536 | 1.540
16 0.002 | 0.3531 | 1.549
30 0.002 | 0.3542 | 1.557
31 0.007 | 0.3538 | 1.561

Table 1: Statistics for Gaussian entries

2, which correspond to the two cases of Gaussian and uniformly distributed
Ajij. In the former case A;; = Z;;(0,1), a Gaussian with mean zero and unit
variance. In the latter the A;; have the same mean and variance, but are
uniformly distributed over {——\/3_, \/‘3:] In both cases we generated 100,000
n-square pseudo-random game matrices A for each value of n between 2
and 16, as well as for 30 and 31, and computed v for each A. The number
of zero components of the optimum strategy vector was determined as well.

If z is the random variable equal to the number of zero components
of this vector, Goldman’s formula gives in both cases the exact expression
Plz =n—1] = (n!)?/(2n —1)!. Our program counted strategy vectors with
n — 1 or no zeroes, and we present in the tables their frequencies to two
significant figures as estimates of P[z = n — 1] and P[z = 0]. The former
affords a check on the adequacy of our data run. Notice that the frequencies
of n — 1 zeros in the two tables are very close to each other; in fact they
are also very close to the exact probabilities, which decay exponentially in
n. The frequencies of no zeros also appear to decay exponentially with n.
The falloff is much more rapid, however, than that present in the rigorous
upper bound P[z = 0] < 2'™" of Theorem 2. For n > 12 we have no data
on Pz =n—1] or P|z=0], as none of our 100,000 matrices had z=n -1
orz=0.

The distribution of the number of zeros z is reminiscent of but not
identical to a binomial distribution with p = 1/2. The numerics suggest
a mean E[z] ~ n/2 — 0.25 and a standard deviation o, ~ 0.35n'/%. The
evidence for this is presented in the tables. The deviations d = 2—n/2-0.25
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n|Plz=n-1]] Plz=0] d |s./v/n| ns,
2 | 0.67 0.33 -0.082 | 0.3329 | 1.433
3|0.30 0.097 -0.048 | 0.3441 | 1.604
4| 0.11 0.028 -0.031 | 0.3482 | 1.661
5| 0.040 0.0076 -0.016 | 0.3512 | 1.685
6 | 0.012 0.0020 -0.013 | 0.3531 | 1.678
7 | 0.0039 0.00055 |-0.002 | 0.3525 | 1.667
8 | 0.0011 0.00020 | -0.000 | 0.3539 | 1.662
9 | 0.00031 0.00005 | -0.003 | 0.3554 | 1.649
10 | 0.00013 0.00002 | -0.004 | 0.3547 | 1.636
11 | 0.00004 0.008 | 0.3539 | 1.639
12 0.008 | 0.3550 | 1.619
13 0.008 | 0.3545 | 1.630
14 0.018 | 0.3541 | 1.621
15 0.019 | 0.3546 | 1.618
16 0.008 | 0.3531 | 1.610
30 0.029 | 0.3536 | 1.598
31 0.018 | 0.3535 | 1.586

Table 2: Statistics for uniform entries

in the number of zeros were computed. The sample mean estimates d =
z—n/2 — 0.25 for E[d] = E[z] — n/2 — 0.25 and the normalized sample
standard deviation estimates s./\/n for 0./ /n are tabulated, the latter
to four significant figures. The asymptotic independence of the choice of
distribution for A;; is striking.

The asymptotic behavior of the value v is apparently manifested less
rapidly as n — oo than are the asymptotics of z. We use the usual sample
standard deviation estimate s, of the standard deviation o, of v. Our
normalized estimates ns, of no, are given to four significant figures. They
suggest that in both the Gaussian and uniform cases the standard deviation
of v displays leading behavior ~ 1.6n~!. Our data do not rule out the
possibility that the constant might differ between Tables 1 and 2, 1.e.,
depend on more than the first two moments of the A4;;. But the evidence
for a 1/n falloff of the standard deviation is strong. Rational play is superior
to random.
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