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Abstract. An inhomogeneous cellular automaton is considered con-

sisting of two two-dimensional planes, one of which contains the tran-

sition functions or programs and the other the evolving data. With

a two-level hierarchy, basic experiments are performed with quenched

and annealed XOR and AND functions. These functions were dis-

tributed both at random and with correlations produced by a Glauber

algorithm simulating a nearest-neighbor ferromagnet, anti-ferromagnet
and spin-glass.

1. Introduction

Invented in 1948 by John von Neumann and Stanislaw Ulam, cellular au-
tomata consists of regular arrays of cells with a discrete variable at each
cell. With an evolution law in discrete time, a cellular automaton is a
fully discrete dynamical system [1,2]. The law is local: the value assumed
by any one site at time ¢ + 1 is determined by the values taken at time
t by the neighboring sifes. These systems are homogeneous in the sense
that all sites evolve according to the same transition function. If the func-
tion varies from cell to cell we have an inhomogeneous cellular automaton
(INCA) [3]. The simplest case of an INCA consists in having two different
local transition functions. Each cell applies either one of them according to
some criterion. In this paper we consider two-dimensional inhomogeneous
automata in which the function is either XOR or AND.!

1For these transition functions the XOR or AND 4-input Boolean function is applied to
the nearest neighbors: north, south, east and west, in other words, to the von Neumann
neighborhood excluding the center. The motivation of using these functions stems from
the fact that they are simple and constitute a universal set.
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Figure 1: Two level hierarchy between control plane and data plane.

The plane on which the variables (1 or 0) evolve by the application of
XOR or AND, specified by the corresponding variables in the control plane, is
called the data plane. This structure establishes a simple hierarchy between
the two planes (see figure 1).

We study the behavior of the data plane under different evolution dy-
namics and thermodynamic conditions implemented in the control plane.
The evolution dynamics chosen were essentially dynamical Ising models,
whose properties (critical points, cluster distributions, etc.) are known.
We study the dynamics and structure observed in the data plane when it
is riding on top of the control plane.

Generally two species of functions were distributed at random. Interest-
ing behavior however arises if, instead, the functions are distributed with
some correlation, such as assigning the XOR function to an up spin and the
AND function to a down spin in an Ising model which is allowed to evolve
with Glauber dynamics. Then the Ising Hamiltonian

s ,BH = ,6 E J.'jﬂ'.'O’,' + hZa.- (11)
<ij> i
controls the distribution of functions on the control plane. The interactions
between the spins (functions) can be taken to be ferromagnetic (J;; = 1 for
all 7 and j) anti-ferromagnetic (J;; = —1 for all 7 and j) or a mixture such
as a spin-glass (the sign of J;; chosen at random).

In a previous paper (4] Vichniac et al mapped a probabilistic one-dimen-
sional cellular automaton model proposed by Domany and Kinzel [5] into
an inhomogeneous cellular automaton with the Boolean functions XOR and
AND as transition functions. Wolfram’s classification (in 2 phenomenologi-
cal sense) was recovered by varying the ratio of these two simple functions
and by quenching or annealing the inhomogeneity.

S. Wolfram has recently considered several one-dimensional quenched
inhomogeneous cellular automata as special cases of cellular automata engi-
neering [6].
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Figure 2: Quenched case (61% of u’s). Growing evolution, from a sin-
gle 1, of the XOR-AND dynamics. The 1’s on the data plane percolate
through the fractal formed by XOR-sites.

2. Description and interpretation of the experiments

The simulations were performed on a CAM-5%. Periodic boundary condi-
tions were chosen for the 256 x 256 planes.

For the data plane the XOR function was applied if the corresponding
control cell was in an up state (u), and AND if it was in a down state (d).
The initial conditions were a single 1 (seed) in a sea of 0’s.

For the control plane the state u was interpreted as spin up and d as
spin down. An identity function was applied for the quenched case, and
a Monte Carlo algorithm with an external random number generator (to
simulate temperature) was applied for the annealed case.

2.1 Quenched case, XOR-AND dynamics and percolation

The control plane is initialized with a random distribution of u’s and d’,
the concentration of u’s (called p) is kept fixed in time.

The distribution of u’s in this plane (XOR regions) form a fractal struc-
ture for the data plane. A single 1 on a background of 0’s is seeded in the
data plane and the simulation is run until the configuration of 1’s attains
its maximum size (see figure 2). For different values of p the 1’s percolate
on the XOR sites forming clusters of increasing size as p increases. We have
collected statistics which indicate there is a critical concentration p. ~ 0.61
at which the growth of the cluster of 1’s is very dendritic and may span the
whole system. These clusters are subsets of the standard site percolation

2CAM-5 is a dedicated hardware simulator developed by Tom Toffoli and Norman
Margolus [7].
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clusters which can be obtained by changing the XOR function to the OR
function®

At p, = 0.61 we measured the fractal dimension d; of the clusters as
defined by the sites available to the 1’s percolating on the XOR regions.
We found dy ~ 1.88. We interpret this to mean that the fractal dimension
is the same as for site percolation clusters, which is d; = 1.89 [8]. We
conclude that the fractal dimension of the XOR-AND clusters is the same
as site percolation. The threshold may be changed but our data is, at
present, insufficient to draw that conclusion. The difference between XOR-
AND percolation and OR-AND percolation (site-percolation) is basically due
to a “necking phenomena” which occurs in certain areas where the func-
tions define peculiar regions that behave as dynamical bottlenecks. The
1’s evolving in an XOR region try to pass through an articulation point
one cell thick surrounded by a sea of ANDs, but when they arrive with the
same phase relation a destructive interference occurs making impossible the
transit through the neck. A close look at those regions reveals that two or
three paths converge at the neck and the phase relation determines if the
neck will be crossed or not. For example, if for a given initial condition two
1’s arrive at the same time, the XOR function will always give 0 stopping
the propagation at that place. On the other hand, if one arrives first, the
XOR function will give 1 allowing the spreading of 1’s through the neck.

This model implements a simple and natural method to build random
nearest neighbor boolean nets (like those studied by Kauffman [9]). Their
size can be controlled by p.

2.2 Annealed case, ferromagnetic Ising-Glauber
and infection process

In the Glauber model the system evolves according to the following rule: at
every active lattice site the spin is flipped?®. If the energy of the system is
lowered the flip is accepted. If, however, the energy of the system is raised
by the spin flip the number

A = exp(—fBAE) (2.1)

is compared with a number between 0 and 1 generated with a random
number generator. Here AFE is the energy change generated by the spin fiip.
If A is less than the random number the flip is rejected. If, however, A is
greater than the random number the flip is accepted. It should be clear from
the above description that neither the energy or the magnetization (which
is the order parameter in this model) is conserved during this evolution.

3Formally the AND function should be changed too, in this case to a ZERO function
which always gives 0 as the next state. However in practice for p not close to 1 the AND
behaves effectively as a ZERO function.

4The two sublattices of the square lattice alternate in time as active lattices, then the
updating occurs in a checkerboard fashion to avoid undesired oscillations (see Vichniac’s

paper in [1]).
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Figure 3: Ferromagnetic Ising-Glauber. Trace of the XOR-AND dy-
namics on the data plane.

Conservation of the magnetization can be achieved using the Kawasaki
dynamics.

For this simulation the Ising-Glauber dynamics is implemented in the
control plane. The temperature is obtained from an external hardware-
implemented random number generator. A single 1 is seeded in the data
plane, then, as the simulation runs the 1’s spread over the Ising clusters
which become “islands” in where the XOR 1’s can percolate (for a review
on correlated percolation and Ising models see [10]).

The temperature of the model controls the degree of correlation of the
functions. At T = oo we recover the random model with uncorrelated
functions. For high temperatures the clusters are small and very frag-
mentary and the percolating 1’s remain localized or disappear completely.
At low temperatures the percolation of 1’s becomes an infection process
in which clusters “infected by 1’s” eventually make contact with other
clusters spreading the disease. Figure 3 shows a trace® of the growing
evolution, from a single one, of the XOR-AND dynamics being driven by
an Ising-Glauber ferromagnetic dynamics on the control plane (at a finite
temperature).

2.3 Annealed case, antiferromagnetic Ising-Glauber

This simulation is basically the same as the previous case, but now the
interaction is anti-ferromagnetic. In this case the dominant phases are
checkerboards of alternating spins up and down. This configuration makes
the percolation of XOR 1’s impossible at T' = 0 because in a checkerboard

5By trace we mean the set of sites which took the value 1 at least once in the past.
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Figure 4: Anti-ferromagnetic Ising-Glauber at high temperature.
Trace of the XOR-AND dynamics on the data plane.

all nearest neighbors for an XOR-site are AND-sites.

At high temperatures the checkerboard clusters are extremely fragmen-
tary and the 1’s manage to percolate and form an almost isotropic growing
cluster. The speed of growth can be controlled by the temperature. Figure
4 shows a trace of the growing evolution, from a single one, of the XOR-AND
dynamics being driven by an Ising-Glauber anti-ferromagnetic dynamics on
the control plane (at a finite temperature).

At low temperatures the “percolating” 1’s are mostly confined to the
domain borders between checkerboard phases, because in the interface the
checkerboard pattern is disrupted. The domain walls are followed by the
“surviving 1’s” in the data plane as they move and oscillate. Eventually
some domain borders merge and the 1’s travel and spread along the new
domain border. This process allows us to study the dynamics of domain
borders and keep track of the interactions between them. Figure 5 shows
the u’s checkerboard phases (very close to T = 0) and the 1’s on the data
plane percolating along the domain borders.

2.4 Interaction with random bonds (spin-glass)

Perhaps the richest of the models we discuss in this paper is the spin glass.
The two parameters of interest are the temperature and the density of
anti-ferromagnetic bonds. At T' = 0 there exists a critical density of anti-
ferromagnetic bonds at which the system develops an infinite number of
ground states. The cause of this unusual behavior is known to be the
so-called frustration generated by the mixture of bonds.

For example, the elemental plaquette in a square lattice has three ferro-
magnetic bonds and one anti-ferromagnetic bond. With this arrangement
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Figure 5: Anti-ferromagnetic Ising-Glauber at T = 0. Trace of XOR-
AND dynamics on data plane. The u’s on the control plane are also
shown.

of bonds there exists no configuration of the Ising spins with all the bonds
satisfied. A satisfied bond is one where the spins at each end of the bond
generate an energy of K as opposed to —K. The minimal energy possible
with the bond configuration of a frustrated plaquette is 2K. What is more
important is that this “ground state” is not unique. It is the frustration
which gives rise to the infinite number of ground states in the thermody-
namic limit.

There is some controversy about the nature of the phases at finite tem-
perature, however, the impact on the automata evolution of the frustration
caused by the mixture of the anti-ferromagnetic and ferromagnetic bonds
is substantial.

To allow the possibility of different J;; additional planes (J;; planes)
should be employed. These planes contain the information about the nature
of the interaction (i.e. an f would mean ferromagnetic and an a would mean
anti-ferromagnetic). In this way a third level in the hierarchy is introduced;
the spins on the control plane look to the J;; planes to evaluate the Ji; in the
calculation of ¥ J;jo:0;. The J;; planes are initialized with some random
distribution of f’s and a’s, and kept fixed.

With this model we can, of course, reproduce the ferromagnetic and
anti-ferromagnetic simulations already described, but we can also interpo-
late between them by selecting a concentration of bonds between the two
extremes.

At high temperatures the growth of a single seed in the data plane
resembles the growth observed in the case of ferromagnet but now it is
more dendritic, caused presumably by the additional disorder introduced
by the random bonds, and proceeds at a faster rate. Figure 6 shows a
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Figure 6: Spin-glass at high temperature. Trace of the XOR-AND
dynamics on the data plane.

trace of the growing evolution, from a single one, of the XOR-AND dynamics
being driven by an Ising-Glauber Spin-glass dynamics (random bonds, 30%
ferromagnetic) on the control plane (at a finite temperature).

Although the most interesting case is T = 0; starting with 50% of spins
up and 50% of spins down on the control plane, we run the simulation for
2000 steps to let the system relax to local energy minimum states. Then
we performed two sets of experiments.

In the first case the spin plane is “frozen” (with an identity function)
and a single 1 is seeded in the data plane. Then the 1’s percolate over the
static mask of the spin clusters. The experiment is repeated for various
distributions of f’s and a’s.

In the second case the spin plane is “unfrozen” and the experiment
is performed as before. The difference is that flipping spins localized in
the border of clusters (frustrated spins) will eventually open new paths
facilitating the percolation of 1’s in the data plane. Figure 7 shows on the
left three local energy minimum states for spin glasess with 5%, 35%, and
50% of anti-ferromagnetic bonds. On the right the trace of the XOR-AND
evolution is shown, dark for the percolation over frozen spins (control plane
is inactive), light for the percolation over frustrated spins (control plane is
active).

3. Plans for future research

The study of INCA can be extended in several directions. In particular the
following topics deserve attention.

Kawasaki Dynamics. This algorithm proceeds essentially the same as
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Figure 7: Spin-glass local minimum states. In the left appear the
spins local energy minimum states and in the right the trace of XOR
dynamics: dark over frozen control plane and light over unfrozen con-
trol plane.
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previously mentioned, except that spins are not flipped by themselves but
are flipped in up-down pairs. That is, one exchanges two spins of opposite
sign. If, as before, the energy is lowered by the spin exchange then the move
is accepted. If, however, the energy is raised the same method as described
in the Glauber algorithm is employed to decide whether the exchange is
accepted or not. This algorithm conserves the order parameter but not the
energy. This can be done with the Creutz algorithm.

Creutz Dynamics. The Creutz algorithm [11] is similar to the Glauber
with one essential difference. Creutz defines a site demon which during the
spin flip process can receive or donate energy. The demons can carry energy
only up to a certain maximum amount (which is to some extent arbitrary)
and Creutz requires that the total energy of the system and the demons
be conserved. If the maximum demon’s energy is small compared to the
energy of the system, which is the condition in most simulations and is
rigorously true in the thermodynamic limit, the system energy is conserved
to a good approximation. The case with zero energy demons is equivalent
to a transformed version of the Q2R rule.

Time scales. This problem comes from the fact that there are two dynam-
ical phenomena occurring simultaneously. On the control plane the Ising
spins evolve with a characteristic time scale set by the dynamical model
employed. The data plane evolves according to the automata rules. The
free parameter we have at our disposal is the relation between these two
time scales. In the language appropriate to simulation we must decide how
many Monte Carlo time steps we will have on the control plane between
each update of the data plane. We can clearly specify two extremes. The
annealed case is the situation in which we update the data plane after each
Monte Carlo time step. The quenched case is where the control plane is al-
lowed to evolve to the desired degree and then frozen so that the data plane
then evolves on a fixed set of rules. Clearly one can interpolate between
these two extremes. This type of study will be particularly interesting in
the case where the control plane is not in equilibrium but is in either a
metastable or unstable state.

Staggered field. For the anti-ferromagnet it is also of interest to consider
the effect of the addition of a staggered field. Restricting our consideration
to the square lattice the Hamiltonian becomes

—-BH=K E cr.-a,—+hza.‘+zi;,-aj (3.1)
J

<ij> i

where h is the staggered field. This field points in the positive direction on
one of the two sublattices of the square lattice and in the negative direction
in the other. The staggered field in the anti-ferromagnet plays the role of
the applied field in the ferromagnet. The field h in the anti-ferromagnet
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can now be varied at zero staggered field. A line of critical points will re-
sult in the h, K plane. At a critical value of the field & the line of critical
points will terminate at a tri-critical point. The behavior at this point of
the automaton is of great interest since our understanding of the interplay
between the correlations on the control plane and the evolution of the data
plane is not well understood.

Spin-glasses. The major problem in cellular automata is how to program
(for general purpose) such automaton. With inhomogeneous cellular au-
tomata, the distribution of functions on the control plane is the program.
If one adds an Ising Hamiltonian we are studying the Statistical Mechanics
of programs. Ground states of Spin-glass have recently been used to model
the origin of life [12] and to solve combinatorial optimization problems
[13]. In particular the ground states of the two-dimensional +J Ising Spin-
glass has been shown to be equivalent to the Chinese Postman problem [14].
Therefore, we can if we choose some cost function use the spin-glass ground
states to optimize a program using techniques from Statistical Mechanics.
One such cost function is to interact the ones on the data plane with the
spins on the control plane using a Creutz-like dynamics.

Spin-glasses (for a review see [15]) are now being used to model neural
networks and content addressable memories [16,17|. Ground states can be
used to store patterns, with the INCA implementation that patterns can
play an active role as templates defining computation for the data plane.
In this way we carry out one step further the computational capabilities of
this models.

Cross coupled interaction between planes. We expect much more
complicated and interesting phenomena if we couple the planes in such a
way that the data plane can have an influence on the control plane. In
other words, the data plane can alter the program on the control plane.
There are many possibilities that can be explored with this scheme.
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