
Complex Systems 1 (1987) 245-256

Inhomogeneous Cellular Automata
and Statist ical Mechanics

Hyman Hartman
Bitter National Magnet Laboratory,

Massach use tts Insti t ute of Technology,
Cambridge, MA 02139 , USA

Pablo Tamayo
William Klein

Cen ter {or Polymer St udies and Department of Physics,
Boston Unive rsity,

Bosto n, MA 02215, USA

Abstract . An inhomogeneous cellular automaton is considered con­
sisting of two two-dimensional planes, one of which contains the t ran­
sition functions or programs and the other the evolving data. Wi th
a two-level hierarchy, basic experiments are performed with quenched
and a nnealed XOR and AND functions . These funct ions were dis­
t r ibuted both at random a nd with correla ti ons produced by a Glauber
algorithm simulating a nearest-neighbor ferr omagnet , an ti -ferromagne t
and spin-glass .

1 . I ntro d uction

Invented in 1948 by John von Neumann and Stanislaw Ulam, cellula r au­
tomata consists of regular arrays of cells with a discrete var iable at each
cell. With an evolut ion law in discrete time, a cellular automaton is a
fully discret e dynamical syst em [1,21 . T he law is local : the valu e assumed
by any one site at time t + 1 is determined by th e values taken at time
t by the neighb oring sites. These systems are homogeneous in the sense
that all sites evolve according to t he sa me transition function. If the func­
tion varies from cell to cell we have an inhomogeneous cellular automaton
(INCA) [31 . The simplest case of an INCA consists in hav ing two different
local transition functions. Each cell applies either one of them accord ing to
some criterion. In this paper we consider two-dimensional inhomogeneous
automata in which the function is either XOR or AND.l

"For t hese transition funct ions the XOR or AND 4-input Boolean function is applied to
th e nearest neighbors: north, sout h, east and west, in other words, to the von Neumann
neighborhood excluding t he center. Th e motivat ion of using these functions stems from
the fact that they are simple and constitute a universal set .
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DATA PLANE

CONT ROL PLANE

Figure 1: Two level hierarchy between control plane and data plane.

The plane on wh ich the variab les (lor 0) evolve by the application of
XOR or AND , specified by the corresponding variab les in the control plane, is
ca lled the data plane. This st ructure establishes a simple hierarchy between
the two planes (see figure 1).

We study t he behavior of the data plane under different evolution dy­
namics and thermodynamic conditions implemented in the control p lane.
The evolution dynamics chosen were essentially dynamical Ising models,
whose properties (critical points, clu st er distributions, etc.) are known.
We study the dynamics and structure observed in the data plane when i t
is riding on top of the control plane.

Generally two species of functions were distributed a t random. In terest­
ing behavior however arises if, instead, the functions are distributed with
some correlat ion, such as ass igning the XORfunction to an up spin and the
AND funct ion to a down spin in an Ising model which is allowed to evolve
with Glauber dynamics. T hen the Ising Hamiltonian

- (3H = (3 L J ,;(1;(1; + h L (1;
<ii>

(1.1)

controls the distribution of functions on the control plane. The interactions
between the spins (functions) can be taken to be ferromagnetic (J;i = 1 for
all 1· and j) anti-ferromagnetic (Jii = - 1 for all i and j) or a mixture such
as a spin-glass (the sign of Jii chosen at random).

In a previous paper 141 Vichn iac et al mapped a probabilistic one-dimen­
sional cellu lar automaton model proposed by Domany and Kinze l [5J into
an inhomogeneous ce llular automaton with the Boolean functions XOR and
AND as t ransition fun ctions . Wolfram's class ificat ion (in a phenomenologi­
ca l sense) was recovered by varying the ratio of these two simple fun cti ons
and by quenching or annealing the inhomogeneity.

S. Wolfram has recently cons idered several one-dimensional quenched
inhomogeneous cellu lar automata as special cases of cellu lar automata engi­
neering [61.
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Figure 2: Quenched case (61% of u's]. Growing evolution, from a sin­
gle I , of th e XOR-AND dynamics . The l 's on t he data plan e percolate
throu gh t he fract al formed by XOR-sites .

2. Description and interpretation of the experiments

The simulations were performed on a CAM-52
• Periodic boundary con di­

tions were chosen for the 256 x 256 planes.
For the data plane the XOR function was applied if the corresponding

control cell was in an up state (0), and AND if it was in a down st ate (d).
The in it ial conditions were a single 1 (seed) in a sea of a 's .

For the control p lane the state u was interpreted as spin up and d as
sp in down . An identity function was applied for the quenched case, and
a Monte Carlo algorithm with an external random number generator (to
simulat e temperature) was applied for the annea led case.

2.1 Quench ed case, XOR- AN D dynamics and percola tion

The control plane is initialized with a random distributi on of u's and d's ,
the concentration of u's (called p) is kept fixed in t ime.

The distribution of u's in this plane (XOR regions) form a fractal st ruc­
ture for the dat a plane. A single 1 on a background of a 's is seede d in the
data plan e and the simulat ion is run until the configurat ion of 1's attains
its maxi mum size (see figure 2). For different valu es of p the 1's percolate
on the XOR sites forming clusters of increasing size as p increases. We have
collected stat istics which indi cate there is a crit ical concentrat ion Pc ~ 0.61
at which t;he growth of the cluster of L's is very dendritic and may span the
whole system. These clusters are subsets of the standard site perc olation

2CAM·5 is a dedicated hardw are simulator developed by Tom Toff'oli and Norman
Margclue 171.
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clusters which ca n be obtained by changing the XOR function to the OR
funct iorr'

At Pc = 0.61 we measured the fractal dimension d, of the clusters as
defined by t he sit es ava ilable to the 1'5 percolating on the XOR regions.
We found d, ~ 1.88. We interpret this to mean that the fractal dimens ion
is the same as for site percolation clus ters , wh ich is df = 1.89 [8J. We
conclude that the fractal dimension of t he XOR-AND clusters is the same
as sit e perco lation. The threshold may be changed but our da ta is, at
pr esent, insufficient to draw that conclusion. The difference between XQR­

AND percolat ion and OR-AND percolation (site-percola tion) is basica lly due
to a "necking phenomena" which occurs in certain areas where the fun c­
tions define peculiar regions that behave as dynamical bottlenecks. The
l 's evolving in an XOR region try to pass through an articulation point
one cell thick surrounded by a sea of ANDs, but when they arrive wit h the
sam e ph ase relation a destructive interference occ urs making impossib le the
transit through the neck. A close look at t hose regions reveals that two or
three paths converge at the neck and the phase relati on determines if the
neck will be crossed or not. For example, if for a given initial condition two
l 's arrive at the sam e t ime, the XOR function will always give 0 stop ping
the propagat ion at that place. On the ot her hand, if one arrives first , the
XOR function will give I allowing t he spreading of l 's through the neck.

This model implements a simple and natural method to build random
nearest neighbor boolean nets (like those studied by Kauffman 19]). Their
size can be cont rolled by p.

2.2 Annealed case, ferromagnetic Ising-Glauber
and infection process

In the Glauber model the system evolves accord ing t o the following rule: a t
every active lattice site the spin is flipped" . If the energy of the sys tem is
lowered the flip is accepted. If, however, the energy of the syste m is raised
by the spin flip the number

Ll. = exp] -fJ Ll.E) (2.1)

is compared with a number between 0 and I generated with a random
number generator . Here tlE is the energy change generated by the spin flip.
H ~ is less than the random number the flip is rejected . H, however, tl is
greater than the random number the flip is accepted . It should be clear from
the above description that neither the energy or the magnetization (which
is the ord er parameter in this model) is conserved during this evolution.

' Formally t he AND fun ction should be changed too, in t his case to a ZERO function
which always gives 0 as the next st.ate. However in practice for p not close to 1 the AND
be haves effect ively as a ZER O function.

"The two sublat t.ices of the square lattice alternate in time as acti ve lattices, th en t he
updating occurs in a checkerboar d fashion to avoid un desired oscillations (see Vichniac's
paper in 11]).
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Figure 3: Ferromagnetic Ising-Glauber. Trace of the XQR-AND dy­
namics on the data plane.
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Conservation of the magnetization can be achieved using the Kawasaki
dynamics.

For this simulation the Ising-Glauber dynamics is imp lemented in the
control plane. The temperature is obtained from an external hardware­
implemented random number generator. A single 1 is seeded in the data
plane, then , as the simulation ru ns t he 1's spread over the Ising clusters
which become "islands" in where the XOR 1's can percolate (for a rev iew
on correlated percolation and Ising models see [10]).

The temperature of the model controls t he degree of correlation of the
functions. At T = 00 we recover the random model with uncorrelated
functions. For high temperatures the clusters are small and very frag­
mentary and the percolating L'a remain localized or disappear completely.
At low temperatures the percolation of L's becomes an infection process
in which clusters "infected by L's" eventually make contact with other
clusters spreading the disease. Figure 3 shows a trace! of the growing
evolution, from a single one , of the XOR-AND dynamics being dr iven by
an Ising-Glauber ferromagnetic dynamics on the control plane (at a finite
temperature) .

2.3 Annealed case, antiferromagnetic Ising-Glauber

This simulation is basically the same as the prev ious ease, but now the
interaction is ant i-ferromagnetic. In this case the dom inant phases are
checkerboards of alternat ing spins up and down. This configuration makes
the percolation of XOR L's impossible at T = 0 because in a checkerboard

5By trace we mean t he set of sites which took the value 1 at least once in the past.
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Figure 4: Anti-ferromagnetic Ising-Glauber at high temperature.
Trace of the X OR- AND dynamics on the data plane.

all nearest neighbors for an XOR-site ar e AND-sit~s.

At high temperatures the checkerboa rd clusters are ex t remely fragmen­
tary and the 1's manage to percolat e and form an almost isotropic growing
cluster. The speed of growth can he controlled by the temperature. F igure
4 shows a trace of the grow ing evolu t ion , from a single one, of the XOR-AND
dynamics being driv en by an Ising-Glauber anti-ferromagnet ic dynam ics on
the cont ro l plane (at a finite t emperature).

At low temperatures the "pe rcola t ing" 1'5 are mostly confined t o the
domain borders between checkerboard phases, because in the interface the
checkerboard pattern is disrupted. The domain walls are followed by the
"surviving 1'e" in the data plane as they move and oscillate. Eventually
some domain borders merge and the 1's travel and spread along the new
domain border. This process allows us to study the dynamics of domain
borders and keep track of the interactions between th em. Figure 5 shows
the u's checkerboard phases (very close to T = 0) and the 1's on the data
plane percolating along the domain borders .

2.4 Intera ction with r andom bonds (spin-glass)

Pe rhaps the richest of the models we discuss in t his paper is the spin glass .
The two parameters of interest are the temperature and th e density of
ant i-ferro magnetic bonds. At T = 0 there exists a critical density of anti­
ferromagnetic bonds at which the system develops an infinite number of
ground states. The cause of this unusual behavior is known to be the
so-called frustration genera ted by the mixture of bonds .

For example, the elemental plaquet te in a square lat tice has three ferro­
magnet ic bo nds and one anti-ferromagnet ic bond. With th is arra ngemen t
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Figure 5: Anti-ferromagnetic Ising-Glauber at T ~ o. Trace of XOR­
AND dynamics on data plane. The u's on the control plane are also
shown.
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of bonds there exists no configurat ion of the Ising sp ins with all the bonds
satisfied. A satisfied bond is one where the spins at each end of t he bond
generate an energy of K as opposed to - K. The minimal energy possible
with the bond configuration of a fru strated plaqu ette is 2K. Wh at is more
important is that this "ground state" is not unique. It is the frustra t ion
which gives rise to th e infinite number of ground states in th e th ermody­
namic limit.

There is some controversy about the nature of the ph ases at finit e t em­
pe rat ure, however , the imp act on the automata evolut ion of the fru st rat ion
caused by the m ixtu re of th e anti-ferrom agn etic an d ferromagnetic bonds
is substant ial.

To allow the poss ibility of different J;j add it ional planes (J; j plan es)
should be em ployed. These planes contain the information about the nature
of the interaction [i.e. an [ would mean ferromagn etic and an a would mea n
anti- ferromagnetic). In t his way a third level in the hierarchy is introduced ;
the sp ins on the control plane look to the Ji; planes to evaluate the J i; in the
calculat ion of E Ji;O jO; . The J i; planes are init ialized with some random
distr ibut ion of { 's and a's, and kept fixed.

With this model we can, of course, reproduce the ferromagnet ic and
ant i-ferromagnetic simulat ions already described, bu t we can also interpo­
late between them by select ing a concentration of bonds between the two
extremes.

At high temperatures the growth of a single seed in the data plane
resembles t he growth observed in the case of ferromagn et but now it is
more dendritic, cau sed presumably by the additional d isorder introduced
by the random bonds, and proceeds at a faster rate. Figure 6 shows a
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Figure 6: Spin-glass at high temperature . Trace of the XOR-AND
dynamics on the data plane.

trace of the growing evolut ion, from a single one , of th e XOR-AND dynamics
being driven by an Ising-G lauber Spin-glass dynamics (random bonds , 30%
ferromagnetic) on t he control plane (at a finite temperature).

Although the most interesting case is T = OJ starting with 50% of spins
up and 50% of spins down on the control plane, we run the simulation for
2000 steps to let the system relax to local energy minimum states . Then
we performed two sets of experiments.

In the first case the spin plane is "frozen" (with an identity function)
and a single 1 is seeded in t he data plane . Then the 1's percolate over the
static mask of the spin clusters. The expe riment is repeat ed for various
distribut ions of f's and a's.

In the second case t he spin plane is "unfrozen" and the experiment
is perfor med as before. The difference is that flipping spins localized in
the border of clust ers (frustrated spins) will event ually op en new paths
facilitating the perco lation of l's in the da ta plane. Figure 7 shows on the
left three local energy minimum states for spin glasess with 5%, 35%, and
50% of anti-ferromagnetic bonds. On the right the trace of the XOR-AND
evolution is shown, dark for the percol ation over frozen spins (control plane
is inactive) , light for the percolation over frustrated spins (control plane is
active) .

3 . Plans for future research

The study of INCA can be extended in several direct ions . In particular the
following topics deserve attention.

Kawasaki Dynamics. This algor ithm proceeds essentially th e same as
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5%

35%

50%

Figu re 7: Spin-glass local min imum states. In the left appear the
spins local ene rgy minimum states and in the right t he trace of XOR
dy namics: dark over frozen cont rol plane and light over unfrozen con­
trol plane.
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previously mentioned, except that sp ins are not flipped by themselves but
are flipped in up-down pairs. That is, one exchanges two sp ins of opposite
sign. If. as before, the energy is lowered by the spin exchange then the move
is accepted. H, however, the energy is raised the same method as described
in the Glauber algorithm is emp loyed to decide whether the exchange is
accepted or not. This algorithm conserves the order parameter but not the
energy. This can be done with the Creutz algorithm.

Creutz Dyn a m ics . T he Creutz algorithm 111] is similar to the Glauber
with one essentia l d ifference. Creutz defines a site demon wh ich du ring the
spin flip p rocess can receive or donate energy. T he demons can carry energy
only up to a certain maximum amount (which is t o some extent arbitrary)
and Creutz requi res t hat the total energy of th e system and the demons
be conserved. If the maximum demon's energy is small com pared to th e
energy of th e system, which is the condit ion in most simulat ions and is
rigorous ly true in the thermodynamic limit , the system energy is conserved
to a good approximati on . The case with zero energy demons is equivale nt
to a transformed version of the Q2R rule.

T im e scales. This problem comes from the fact that there are two dynam­
ical phenomena occurring simultaneously. On the control plane the Ising
spins evolve with a characteristic time scale set by the dynamical model
employed. The data plane evolves according to the automata rules. The
free parameter we have at our disposal is the relation between these two
time scales. In t he language appropriate to simulation we must decide how
many Monte Carlo time steps we will have on the control plane between
each update of the da ta plan e. We can clearly specify two extremes. T he
an nealed case is the situat ion in which we update the dat a plane after each
Monte Carlo time step . The quenched case is where th e cont rol plane is al­
lowed to evolve t o th e des ired degree and then frozen so that th e dat a plane
then evolves on a fixed set of rul es. Clearly one can int erp olate be tween
th ese two extremes. T his typ e of st udy will be particularl y interesti ng in
the case where the control plane is not in equilibriu m bu t is in either a
metastable or unstable state.

Staggered fie ld. For the anti-fer romagnet it is also of interest to consider
the effect of t he addition of a staggered field. Restricting our consideration
to the square lat t ice the Hamiltonian becomes

- pH = K L U;U; +hLu; + Lh;u;
<i; > i

(3.1)

where It. is the staggered field.This field points in t he pos itive direction on
one of the two sublat t ices of the square latt ice and in the negative direction
in the ot her. The staggered field in the anti-ferromagnet plays the role of
the applied field in the ferromag net. The field h in the anti-ferromagnet
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can now be var ied at zero staggered field. A line of crit ical points will re­
sult in the h, K plane. At a critical value of the field h the line of critical
points will terminate at a tri-critical point. The behavior at this point of
the automaton is of great interest since our understanding of the interplay
between the correlations on the control plane and the evolution of the data
plane is not well understood .

Spin-glasses. The major problem in cellular au tomata is how to program
(for genera l purpose) such automaton. Wit h inhomogeneous cellular au­
tomata, the distribution of funct ions on th e control plane is the program.
If one adds an Ising Hamiltonian we are study ing the Stat ist ical Mecha nics
of prog rams. Ground states of Spin-glass have recent ly been used to model
the origin of life [12J and to solve combinatorial opt imization problems
1131. In particular the ground states of the two-d imensional ±J Ising Sp in­
glass has been shown to be equivalent to the Chinese Postman problem 1141.
Therefore, we can if we choose some cost function use the spin-glass ground
states to optimize a program. using techniques from Statistical Mechanics.
One such cost function is to interact the ones on the data plane with the
sp ins on the control plane using a Creutz-like dynamics.

Spin-glasses (for a rev iew see 1151) are now being used to model neural
networks and content addressable memories [16,171. Ground states can be
used to store patterns, with the INCA implementation that patterns can
play an active role as templates defining computation for the data plane.
In this way we car ry out one step further the computational capabilities of
th is models.

Cross coup led interaction between planes . We expect much more
complicated and interesting phenomena if we couple the planes in such a
way that the data plane can have an influence on th e control plane. In
other words, the data plane can alter the program on the contro l plane.
There are many poss ibilities that can be explored with this scheme.
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