
Complex Systems 1 (1987) 257-271

Virtual St ate Machin es in C ellular Automata

Chr is Langt on •
Center for Nonlinear Studies

Los Alamos Nat ional Laboratory
Los Alamos, NM 87545, USA

Abstract. One of the most important properties of cellular auto­
mata is their capacity to support propagating structures. Propagating
structures are employed as signals in many CA models of computa­
tion. Treating propagating structures as automata elevates the notion
of a signal to something that is a computational entity in its own right .
These propagating signal-automat a are embedded in th e very "tape"
upon which they compute, and are constituted of the very symbols
t hat they write on the tape in the course of their computation. Thus,
signal-aut omata are both process and data at the same time. They
can create, modify, or erase other such automata, and can support dis­
tributed computations wherein the operators also serve as operands.
As their existence is rather ephemeral when compared to t hat of th e
"physical" cells of the lattice that get caught up in their propagat ion,
we refer to signal-automata as "vir tual" automata, or virt ual state
macb ines (VSM's). In this paper, we look at some examples of VSM
sys tems, exp lore a programming methodology based on the process of
protein syn thes is, and discuss the implicat ions for "virtual structure"
in the physical world.

1. Introduction .

Cellular automata can be viewed either as computers themselves or as logi­
cal universes within which computers may be embedded. On the first view,
an initial configuration constitutes the data that the physical computer is
working on, and the transition function implements the algorithm that is
to be applied to the data. This is the approach taken in most current
applications of cellular automata, such as image processing.

The second approach, however, is much more interesting from a theoret­
ical point of view. In th is case, the in itial configuration itself constitutes a
computer of some sort, and the t ransition fu nction is seen as the "p hysics"
obeyed by the par t s of t he computer. The algorithm being run and t he

"Computer address: cglOlanl. gov.

© 1987 Complex Systems Publications, Inc.

258 Chris Langton

d at a be ing manipu lated are funct ions of the precise state of the initia l con­
figuration of the embedded compu ter. In the most general case, the initial
configuration will constitute a un iversal computer.

As is the case for the ir physical counterparts, computers embedded in
CA depend on signals to commun icate informat ion between different parts
of the machine. Because of their local-conn ect ivity, CA provides new in­
sights into the nature of signals. We are led to ask : "What is a signal?
Does it merely carry infor mation between two distinct parts of a computer
or can it be something more7"

In the remainder of this paper we explore an approach to embedded
computation based on t he compositio n of signals that compute. T hese sig­
nals are based on propagating structures in CA that have the capacity to
make decision s, to effect changes in the medium through which they prop­
agate, and to inter act with other propagati ng structures in su ch a manner
t hat t he global effect of their dy namic interaction is a highly para llel, dis­
tributed computat ion . We end with a disc uss ion of what the existence of
such structures might imply about processes occurring in the natural world.

2. Signals as automata

In a physical computer, a signal is a wave-front of voltage-change that prop­
agates along a wire at approx imately the sp eed of light. Sometimes a signal
only carries information , but in many cases it carries both informat ion and
the power to cause something to happen , as when a line that controls a
gate is ra ised to logica l one. In computers embedded with in CA, signals
are a lso typically implemented as waves of state-change propagating a long
a pathway that acts as a wire . This propagating "wave" can be quite small,
typically on ly a cell or two in length . Since such a signal is propagating
through a logical universe, considerations of power or diss ipat ion are not
necessary: logic suffices.

One views a computer embe dded in a CA not so much as a device com­
posed of lots of active parts communicating via signals, but as a device
composed of pass ive parts being operated on by signals. A com puta t ion
is v iewed as the net effect of many signals working in parallel within the
structure of t he computer and altering its state: signals can be active com­
putat ional en t ities in their own right.

It is nat ural to generalize the notion of a signal from something that
is merely a passive bearer of info rmation to something that is a more ac­
t ive causal ent ity. This generalization is most effective ly made if we model
signal-waves in CA as automata propagating within an n-dimensional "t ape"
that is the structure of the computer.

Generalizing signals to automata provides a usefu l framework within
which to interpret the actions and po tentia lities of signals. In addition
to a capacity to carry information, automaton-signals have the capacity
to recognize and/or modify the various structures they encounter in the
course of their propagation. Most import antl y, since some of the struc-

Vir tual State Mach ines in Cellular Automata 259

tures encountered by automaton-signals may be other propagating signals.
automaton-signals have the capacity to recognize and modify each other
as well as to recognize and modify the more passive structures in their
environment.

Viewing signals as autom ata a lso forces us to reconsider our notions
of what kinds of structures constitute computers. On the ab ove view, the
very structure of the computer is it self data, subject to manipulation by
the processes wh ich are "running" within it . Indeed, we can dispense al­
together with any particular passive configuration within which sign als are
constrained to propagate, and computations that consist solely of signals
interacting with one another can be emb edd ed in CA. In this case , the only
role left to the physical "hardware" is to provide a medium within which
signals can propagate: an ~ther.

3. Virtual state machines

Propagating structures in CA are typically small, periodic configurations
that constantly disp lace themselves with respect to the fixed cellu lar back­
ground. Although they have often been employed as mere carriers of infor­
mation, they are also capable of performing arbitrary computational tasks.

The simplest computat ional ent it ies formally recognized in computer
science are finit e state machines. A finite state machine (FSM) consists of
a finit e set of states E, a finite input alphabet a , and a trans ition function
!'> th at maps a (state,input) pair to the next state: !'> : (E x c] -+ E . An
FSM may also produce an output symbol, selected from a finite output al­
phabet, at every state transition. An FSM "receives" a single input stream
consisting of a sequence of symbols from its input alphabet. An FSM can­
not review its own inp ut or output, thus its "memory" is limited to its set
of st ates.

The most powerful formally recognized computational ent it ies are Tur­
ing machines. A Tur ing machine (TM) extends the concept of an FSM by
incorporating an indefinitely extensible tape that it can read from , write
on, and move over in either direction. Thus, a TM can review both its
input and its output, and its "memory" is in principle unb ounded.

We will regard any configurat ion in a CA that can function as an FSM
to be an automaton . How simple can such a configurat ion be? As simple as
a single cell. By definition, each cell in a CA cont ains a finite state machine.
Let us call these fixed base-machines "zero-order" or physical automata.

In contrast , any configuration that can function as a TM must consist
of more than one cell, since each cell has only a finite number of states.
We will call locally periodic configurations that occupy more th an one cell
in space or time "higher-order" or virtual automat a. Virtual au tomata
are supported "on the shoulders" , so to speak, of the lattice of zero-ord er 1

physical auto mat a that const itute the cellular array. Propagating st ruc­
tures, such as sign als, are pr ime examples of virtual automata.

If a propagating structure can ever encounte r physic al cells that it has

260 Chris Langton

traversed before, then it is potentially a virtual Turing machine, if not,
then it is a virtual finite automaton. This distinction is complicated by
the fact t hat it is possible t hat the output of a virtual automaton may
i tself propagate through the array, in which case a virtual automaton may
encounter some of it s own previous ou tput even if it never retraces its
absolute physical path.

There are a number of observations that follow when we v iew propagat­
ing structures as virtual automata. In ord er to have a convenient name, we
will refer to virtual automata as virtual state machines (VSM's), whether
they are functioning as finite-state machines or as Turing machines.

• VSM's are embedded in the very tape upon which they are operating.
Both machine and data are represented as states of the same medium:
an ar ray of cells. Thus, VSM's are both processes and data at the
same time.

• Since VSM 's are both processes and data at the same t ime, writjng
on the 't ape' of the environment is equivalent to construction.

• YSM's can erase as well as construct.

• VSM 's can be self-erasing, which is the ultimate form of halting.

• Since const ructed configurat ions can also be viewed as either da ta or
processes, VSM's can construct other VSM's. Likewise, VSM's can
erase other YSM's.

• Because they are both processes and da ta, VSM's can treat oth er
VSM's as 'data ' and read or modify their structure.

• Because configu rations can occur on all scales, VSM's can be embed­
ded in other VSM's. T hus YSM's can be h ierarchically composed of
smaller YSM's.

Thus, the rigid ly-fixed , homogeneous lattice of physical au tomata that
constitutes the cellu lar array can support a heterogeneous population of
virt ual automat a t hat are relatively free to migra te around (like an ts) in
the lattice. Furthermore, this population of vir tual auto mata can vary
in size and composition with time as YSM' s are created, modified, and
destroyed by other YSM's and proc esses occurring in the arr ay.

4 . Examples of VSM's

The glider of Conway's cellular automaton game of "Life" [11 is an example
of a YSM. T he glider is a configuration that propagates with respect to the
background of fixed physical automata, cycling through four "states" over
and over again, as shown in figure 1.

Virt ual State Machines in Cellular Automata 261

••···0 • •••• 0
•• •··0 •••··0

••••@

Figure 1: A Glider propagating with respect to a fixed cell (0) .

The glider is just one example of a genera l class of structures that
propagate with respect to the background of fixed physical cells. T hey
are solitary, particle-like waves of state-c hange, rippling across the cellular
background.

F igure 2 shows more examples of VSM's. Figure 2a shows t he simplest
propagating structure that can be imp lemented in a rotation-symmetric,
two-dimens ional cellular automaton. It will propagate to the r ight. Figure
2b shows a simp le automaton travelin g to t he r ight , writ ing an alternating
pattern as it propagates. Figure 2c shows a simple automaton traveling to
the left , making an inverse copy of a row of ce lls as it does so. Figure 2d
shows a VSM propagat ing to the right that produces a regular "string" of
VSM's that propagate upward.

Propagating structures have been use d as signa ls in the construction of
embedded computers. Both von Neumann and Codd used signals propa­
gat ing along "wires" in their designs for universal constructing machines
embedded in cellular automata [2,31. Conway 14] used the glider both as
the carrier of a bit of information and as a specialized operator in con­
structing the proof that the "Life" t ransit ion rule can support un iversal
computation. Margolus [5] has implemented Fredkin's Billiard Ball Model
of Computation (BBMC) [6] in a cellu lar automaton. In the BBMC, hard
spheres (billiard balls) collide elastically with each ot her and with mirrors­
reflective walls-to implement computations. Any location where two balls
might collide constitutes a Fredkin gate where the potential collision is
taken as implementing a logical function-such as 'AND'-in a reversible
manner. In Margolus' implementation of the BBMC, the billiard balls are
modeled by propagating structures that interact as if they were involved in
elastic collisions.

In all of these models, propagating structures carry information and
interact with other propagating structures or with static st ructu res in the
array. In all cases, the propagating structures are essentially autonomous,
are capable of making "decis ions" based on their local environments, and
can affect , or be affected by, the state of the physical cells through which
they ar e propagating. In short, they are functioning as automata.

5. VSM synthesis model

In the examples mentioned ab ove, a few specia lized automata interact in
rather restricted ways. We would like a programming methodology for

262 Chris Langton

e

-
c

d

Figure 2: Examples of virtual state machines (VSM's) . (a) A simple
VSM traveling to the right. (b) A simple VSM trave ling to t he right
and wr it ing a regular string. (e) A VSM propagat ing to the left ,
making an inverse copy of a string that it is t raversing. (d) A VSM
propagating to the right, prod ucing as ou tput a regular sequence of
VSM's t raveling upward.

Virtual S tate Machines in Cellular Automata 263

VSM's that allows the production of arbitrary automata when and where
needed in the course of parallel, distributed computation. We take the
process of protein synthesis in living cells as our model.

In living cells, descript ions for a great many different molecular automata­
enzymes- are encoded in the DNA. These descriptions are turned into func­
tioning mol ecular machines in the process of protein synthesis. This process
is initiated when a polymerase enzyme, propagating along the DNA, rec­
ognizes a particular base-sequence label. When it encounters the label it
is seeking, the enzyme triggers the transcription of the following stretch of
DNA into messenger RNA (mRNA). When the polymerase enzyme reaches
a special "stop" sequence on the DNA, transcription is terminated and the
mRNA is cut loose. At this point, various editing procedures can be invoked
on the mRNA strand, including the excision of several segments-introns­
which may go on to function as enzymes themselves [71. The edited mRNA
is then transferred to a ribosome in the cytoplasm where it is used as a
template for building a protein.

On this model, we can construct a "string" of cells in the array that
will function like DNA: as the repository for descriptions of automata.
Each description will be preceded by a label that can be recognized by an
enzyme-like automaton that is traversing the string. To simplify things, we
will have the result of the recognition of a label be the direct construction
of the automaton described, rather than go through the extra steps of
first transcrib ing the description and then transferring the transcription to
another site before constructing the automaton.

In the following example, we have constructed a simple Turing machine
by using the model described above. Figure 3 gives an overview of the
machine and the interpretation of the symbo ls used in the diagrams of the
mach ine's operation. There are two linear strings of cells in the array that
constitute "tapes". One tape holds the rules and the other holds the data .
A rule consists of four consecutive cells, which encode the rule as follows.
The first cell is a label that uniquely identifies the rule. The first cell after
the label indicates what to print at the "current-cell marker", which sits
directly above the current cell on the data-tape and reflects its state. The
second cell after the label indicates which direction to move the current-cell
marker. The third cell after the label ind icates what the next-sta te sho uld
be .

The machine is started with a sing le-cell VSM sitting next to the current­
cell marker on the data-tape (figure 4a). This VSM holds the starting state
of the machine. By sensing the state of the current-cell markerJ the VSM
holding the starting state can determine the current state and the cur­
rent tape-symbol. Thus, it can determine what rule to search for on the
rule-tape. The VSM moves to the rule-tape and starts to search for the
proper rule- label (figure 4b) , passing over rules with different labels. When
it encounters the proper label (figure 4c), it activates the rule following
the label. When activated, three VSM's are produced, in sequence, one
from each of the three cells following the label cell (figure 4d) . Each VSM

264 Chris Langton

Components of Mochine

Rul. 4 RuI,:3 Ruk 2 Ru" 1
,.....----, ,.....----, ,.....----, ,..---,

. 11 iii!i2Qij II ENOI'-' ! 1 19821Mi II EN d·! i II i i!!! III!!!! I I::: RultToapt

curnnt,C;~ ~;7:ri7R ! I I I I ' :::

, '--lIn EndofT••

Components of tI rul e

!
gJO
[fI

G.

!
IZI L

ISI R

Dolt!! T8pe
Symbols

!
~ o

nm

Ntxt H.... PrTit Ro.
St~t. 11m SlJlnbol L~.l

-'---

v 5 M' s

Nox. Hu d Prmt
Sbt" Hoyt Symbol S.,k :

~ 0 PIli L !] 0 •Rul, ,

IllI ~ R [i III Rul.2

II Rul.3

II Rul.4

Figure 3: Plan of VSM Turing machine and key to figure 4.

Virtual State Machines in Cellular A utoma ta

I I ! !111!'Q!: :1 I I Etspl..·j ! I IIi!!21H. '! I j ENd. ! j I ! I I ! I ! I ! I I ! ! I I I : ::

'8'8t"i%M&'&N&i. !.i ..! mim!m"mi . im~ I I ! I I I ! j I ! I • I ! : ::

e

Initiol-stote VSM (El) sits next to current cell morker.

:: .: .::::.:.:.:.::.: .: .:.::::.:.: .:.:::~ :::::::: ::::::~: ~
b

Rule-I seeking VSM (.) moves to rule tope .

==:::.:.:=.:.:.:.:~ B:::::::::::~ ::~~~
c

RUle-I seeking VSM motches ru le -I lebal.

:.:.:.::::::.:.:.: :.:.:.:.::::.:3iB:::::::::::::: : :~
d

The three ru le VSM's ere genereted end move to dete tepe,

Figure 4: VSM Turing Machine operation. (a-d) Determination of
rule to seek and triggering of VSM Js .

265

266 Chris Langton

I ! i iii!VQI::' ! ! E3Sp 1." j ! I III1i2ld. 'j I I ENd .! I I I ! I I I ! I j I I ! I ! I ! :::

!.!.i .ii!J8W&&&:mPfMmi..i ..i.!x!ml.im~ I I I I I I I I I ! I • I I:::
e

Rule VSM's propeget e to cur rent-cell rnerker.

I I I 1Ii1@!::1 ! I EtSPI.·-j I I III1Q1d. :, I I ENd .' ! I ! I I ! I I I j I I I I ! ! ':::

i.i"i .imi.i""@&M&M@0i&'~I I ! I I! ! I I ! I • I ! :: :

r
Pr int-sy mbol VSM has wri tten e I et current ce ll.

I I I 1Ii1!2Q1: :1 I j EtSp I...j I I III1!21d. " I I ENd .! I I I I I I j I ! I I I I I ! I I:::

!8IXo<imi"i"imix'mliffiiixlximl"imi"i&>< i"i"U18' 11 ! I ! j I I I I ! I • I I : : :

g

Move VSMhes moved current-cell marker to the right.

:::::.:.:.:.::.::::.:,:::::~ :::::::::::::~ ~ ~
h

Next-stete VSMhes determined next rule to seek.

Figure 4: (e-h) Application of VSM's, determination of next rule to
seek, and iteration of cycle.

Virtual State Machines in Cellu lar Automata 267

moves to the data tape and propagates along it to the current-cell marker,
where it performs its action (figure 4e). The first VSM alters the stat e of
the current-cell marker to th e state dictated as the print symbol by the
ru le (figure 4f). The current-cell, sit t ing directly beneath the current-cell
marker I changes itse lf accordingly. The second VSM moves the current-cell
marker to the right or to the left one cell, where it assumes th e state of the
new current-cell beneath it (figure 4g). Finally, the third VSM carries the
next-state informat ion necessary to iterate the cycle: when it encounters
the current-cell marker it determines the proper rule to apply next and
moves to the rule-tape in order to search for the proper lab el (figure 4h).
And so the process cont inues.

Halting is eas ily implemented by not including a descript ion for the
next-state in some rule. Then, when the rule for halting is act ivated, the
rule will produce only two VSM's-one for printing the new symbol at the
current-cell marker and one for moving the current-cell marker. No next­
state VSM will be produced and hence no new rule will be sought and the
process comes to a halt .

Note tha t it does not matter in what order the rules are stored on the
rule tape, and that there is no necessary connection between a label and
the specific rule that follows it. The association between rules and labels
is arbitrary. Any combination of print-symbol, current-cell marker move ,
and next-state can follow any label. Thus any Turing machine can be "pro­
grammed" on the rule-tape, within the limits of the rule code (maximum
number of states, finite input and print alphabets, and etc). If the rules are
thos e of a universal Turing machine , then any Turing machine at all may
be simulated. One portion of the data-tape will then encode the rules for
the specific Turing machine to be simulated.

The basic form of this simple Turing machine may easily be extended in
a number of ways to implement a more general , but still centrally- located,
control structure. For instance, the "data-tape" could be extended to in­
clude the who le of the n-dimensional array in which the rule-tap e is em­
bedded. Then there could be many VSM "heads" acting in parallel, sens­
ing various currently-active sites distributed throughout the n-dimensional
space, determining the rules to apply, and propagating to the rule-tape to
search for the proper labels .

There could also be multiple rule-tapes, some of which could contain
duplicate labels. The rules associated with identical labels on different
rule-tapes might or might not be identic al-allowing multiple rule "alleles"
or paralJeles. Furthermore, the rule-tapes themselves could be acted upon
as if they were data-tapes, either by direct modification of rules or labels ,
or by modificat ion in such a way that rules could be made unavailable for
further activation until subsequently remodified.

Finally, the rules themse lves could be distributed over the n-dimensional
array like the data, either statically or as VSM's . In the former case the
rules would be soug ht out locally, wh ile in the latt er case the rules them­
selves would actively seek out the situations to which they applied .

268 Chris Lang ton

Note that there might also be other processes going on in the array.
The VSM's produced by the rule tapes may be sensing the current status
of these other processes. The other processes might also produce VSM's
themselves, which would either act on the rule tapes directly or trigger
rules to be activated. These other processes may themselves be direc ted
by rule tapes, giving the effect of multiple "cells" communicating with
one another. In this manner, higher-order control structures can be built .
Alternat ively, the other processes might be considered to be "outside" the
rule-tape system, and thus constitute elements of the "environment" . Such
a model might prove very effective in understanding the cellular processes
that support life [8].

6 . Social automata: computation in colonies of
co- opera t in g automata

Life, intelligenc e, and even computation, are behavioral phenomen a that
emerge from the interaction of many inan imate, unintelligent, and even
illogical parts. There is much to be gained, therefore, from the study of
the spectrum of global behaviors that can emerge from the aggregation
together of many separate entities, each with its own behavioral repertoire.
In some cases, the global activity will be just the sum of the activities of
the individuals. In other cases, however , the global activity is much more
complex than the behavior of isolated individuals would lead us to expect.

Cellular automata provide us with several hierarchical levels of "indi­
viduals" out of which aggregates may be composed . The first level consists
of the individual cells, each of which is occupied by the same finite automa­
to n. What makes CA so interesting is that the global behavior supported
by a lattice of such automata is much mor e complex and varied than the
sum of the behaviors of the individual automata. Propagating structures­
VSM's---<:onstitute another level of individuals. Although they are directly
supported by the rigidly fixed, homogeneous cells of the lattice, VSM's are
free to migrate around in the lattice, constantly changing th eir set of neigh­
boring virtual automata . Furthermore, a homogeneous lattice of automata
can support a heterogeneous population of VSM's, and this population can
vary in size and composition with time, as VSM's are created, modified,
and destroyed by processes occurring in the lattice. Thus, a rigidly-fixed,
uniform population can support a polymorphic society of relatively free­
ranging individuals. Higher levels in the hierarchy of individuals are due to
the interaction of t he processes that are constituted of individuals of lower
levels, in much the manner of the biological hierarchy of molecules: cells ,
tiss ues, organs, organisms, societies, and so forth.

The individual automata belonging to these societies can interact in
sever al different ways. As finite-state or Turing machines, these automata
are computing some function on the tape of their environment . Each in­
dividual automaton can be thought of as both recognizing a language and
writ ing a language, as it is both being affected by and affecting its envi-

Virtual State Machines in Cellular Automata 269

ronment. Since it is a shared environment, individual automata can be
affected by the computations of others either indirectly via their effects on
the environment, or by operating on each other directly.

To the extent that automata recognize portions of each other's output,
we can say that a channel of communicaton exists between the automata.
Furthermore, the "string" being produced as a result of a VSM's computa­
tion can itself turn into one or more VSM's. Thus, VSM's can be seen as
implementing a meta-grammar, where the "strings" produced may turn into
machines that implement yet other grammars. These, in turn, may spawn
other such machines, and so forth. The analysis of such meta-grammars is
problematic, since machines at all levels of the grammatical hierarchy can
interact with one another. It is even possible to have "autocatalytic cycles"
of VSM's, where machine A produces machine 8, which produces machine
C, which produces.... ., which produces machine)./, which closes the cycle
by producing machine A.

The important point to be made about these hierarchies of individuals
is that VSM-like structures can occur at any level of the hierarchy: systems
of YSM's can support higher-order YSM's. This suggests that we, as in­
teracting individuals immersed in a social aggregate, may often get caught
up in the propagation of YSM-like social processes sweeping through our
local neighborhood of the society, without really being aware of the VSM
itself, only of the particular task it induces us to undertake. There is much
to be learned about the ebb and flow of such social processes. Systems of
VSM 's in CA could give us a new way to investigate social dynamics .

7. Virtual structure

Physics has primarily concerned itself with the analysis of matter. Physi­
cists analyze matter by taking it apart and finding its subparts, and then
iterating the process on the subparts. Synthesis is a process directly op­
posed to analysis. It consists in putting together parts to form superparts.
Just as we can discover the way in which matter decomposes into subparts,
we can explore the way in which matter can be composed into superparts.
Thus, just as there are such things as sub-particles that constitute material
things, there are such things as super-particles that material things can
constitute.

What propagating VSM's in CA demonstrate clearly is that there are
really two classes of "things" that sub-parts can be composed into: physical
things and virtual things. The physical things are those which exist on
the same time scale as their constituent parts. The virtual things are
those which persist over longer time scales than their constituent parts. In
general, analysis has not dealt with virtual things very well for two reasons:
(1) virtual things are harder to identify than physical things, and (2) by
the time you get hold of a virtual thing to take it apart, you have only
got the parts that constitute the virtual thing and not the virtual thing
itself. IT you "fix" a virtual thing for study you have lost it, because its

270 Chris Langton

very existence dep ends on its dynamic st ructure.
Virtual th ings depend on the flux of their constituent parts. They are

open systems , continuously exchanging matter with the environment. Thus,
virtual things must have th e cap ac ity to create the conditions for their own
t ransfer-t hey pave the ir own way. IT a virtual structure is to pers ist in
t ime, it must have the capacity to impose its st ructure on an ever-changing
set of const ituent subparts.

It is not such a great step from this to replicat ion. All t hat is required
is that the pattern hang onto its cons tituent parts for a while afte r it has
imposed it s structure on a new set of parts, rathe r than relinquish ing the
old parts in the process. Thus, it is conceivab le that propagation may be
the ancestor of replication : propagat ing virtual structures in the pre-bio t ic
soup may have b een the precursers of t emplating nucleotides.

Note that to identify something as virtual is not t o remove its causal
efficacy. Virtual things inte ract with physical th ings all the time, they ar e
patterns of organization t ha t overtake physical things and sweep them up in
a local hurrican e of organ izat ion, eventua lly discarding them as they move
on to overtake other physical things and recruit them into their physical
bas is of support . Thus, super-part icles can be vir tual and yet still have
physical, causal efficacy: they cons ti tu te the "force" behind the dynamic
organizat ion of material t hings. There is nothing vitalist ic in such a state­
ment, it merely acknowledges that structure can be dynamic as well as
static.

8 . Summary

We have discussed a view of comput ation in CA that generalizes th e no­
tion of a signal to the notion of a propagating automaton. On thi s view, a
computation is th e global result of the local interactions of a set of signal­
automata, working within and altering th e structure of the comput er . In
the extreme case, the structure of the computer can consist solely of such
automata, propaga ting within the logical lEther provided by the lat t ice of
physical cells. "P rograms" in such spaces must consist of spat ially dis­
t ributed structures. A programming model based on th e process of protein
synthesis was proposed that involves enzyme-like, propagating auto mat a
th at translate passive descriptions of auto mata into functional automata,
whose effects may res ult in the translation of yet other au to mata. Such par­
allel sets of propagat ing automata may be viewed as colonies or "societies"
of automata. Such a viewpoint should facilita te both the understanding
of social dynamics and t he app lication of useful pr inciples of social or­
ganization to the task of comput ation. Furthermore, the comb ination of
ep hemeral existence an d physically causal efficacy exh ibite d by virtua l aut o­
mata in CA sugges ts that simil ar processes may be resp onsibl e for much
of the dynamic nature of the world around us. The study of th e behav ior
possible in syst ems of vir tual state machi nes in cellular au tomata should
provide us with unique insights int o the nature of virtual st ructure in the

Virtual State M achines in Cellular Autom ata

physical world.

References

271

[I] Martin Gardner, "The Fantastic Combinations of John Conway's New Soli­
taire Game 'Life'" , Scientific American, 223 (October 1970) 120-123.

[21 John von Neumann, Theory ofSelf-Reprod ucing Au tomata, edited and com­
pleted by Arthur W. Burks (University of Illinois Press, 1966) .

[31 E.F. Codd, Cellular Automata, (Academic Press, 1968).

[4] Elwyn R. Berlekemp, John H. Conway, and Richard K. Guy , Winning Ways
for your Mathematical Plays Volume 2, (Academic P ress, 1982) .

[51 Norman Margo lus, "Physics-Like Models of Computation", Physica D, 10
(1984) 81-95.

[6] Edward Fredk in and Thommaso Toffoli , "Conservative Logic", International
Jou rnal of Theoretical Physics , 21 (1982) 219-253.

[7] Thomas R. Cech, "RNA as an Enzyme" I Scientific American, 255 (Novem­
ber 1986) 64-75 .

18] Christopher G. Langton) "Study ing Artificial Life with Cellular Automata" 1

Physica D, 22 (1986) 120-149.

