
Complex Systems 1 (1987) 273-347

Efficient A lgorithms with Neural Network B ehavior

Step hen M. Omohundro
Department of Computer Science and
Center for Complex Systems Research,

University of Illinois at Urbene-Cbempeign,
508 South Sixth Street, Champaign , IL 61820, USA.

Abstract. Neural network models are current ly being considered for
a wide variety of important computational tasks, particularly those
involving imprecise inputs. Th is paper suggests alte rnative algorithms
for many of th ese tasks which appear to have much better average per­
formance than standard neural network mo de ls. For example, these
algorithms cou ld provide a billionfold speed increase in a n implemen­
tation of an assoc iative memory with roughly human capacity. They
a re based on hierarch ical data structures from computational geome­
try and use a more direct re presentation of in format ion t han neural
networks. As in man y neural network mode ls, the mo dules proposed
he re "learn" and can adapt t hemse lves t o different statist ical d iet r i­
bution of inputs. T hey can be ap plied to problems involving classifi­
cation, clustering , dimension reduction and t he learning of nonlinear
mappings. They can be implemented efficiently on both serial an d
parallel computers, and can po tent ia lly be used in practical applica­
ti ona ranging from speech and optica l character recogni ti on, to robot
manipulator contro l, data predict ion, and document retreivat.'

1. Introduction: Why not make computers more like brains?

One of the greatest scientific challenges facing mankind today is to under­
stand the mech anisms of inte lligence. Success in meeting t his cha llenge will
lead not only to a greater understanding of biological systems but to techno­
logical advances with a dramatic impact on the quality of human life. The
current effort to understand intelligence is integrating ideas and techniques
from neurophysiology, psycho logy and computer science. Despite a large
effort to deve lop artificial intelligence over the last twenty-five years, the
only unquestionably intelligent exis t ing sys tems are the nervous systems of
certain bio logica l organisms. Wh ile there have been some successes, typical
engineered systems behave remarkably rigidly when compared with biolog­
ical ones. Their ability to recognize objects or speech , to manipulate the

© 1987 Complex Systems Publica.tions, Inc .

274 Stephen M. Omohundro

physical world and maneuver in natural terrain, to adapt gracefully to new
situations or environments, and to learn from experience is still far behind
the capabilities of even the simplest organisms.

Several authors have argued that this low level of achievement is due to
fundamental differences between the design of biological nervous systems
and present day computers [69,59,5J_ Brains appear to compute with a
large number of simple parallel units. Information appears to be stored in
a distributed fashion and many computations appear to proceed robustly
when units fail or die or even when sections of brain tissue are removed. The
computations performed in the brain appear to he less rigidly constrained
than those in typical computer programs and have heen variously termed
"heuristic" , "associative" , or "fuzzy". It has been argued that this fuzziness
might be due to the analog or stochastic nature of neurons. Memory in
brains does not appear to be separate from the computation elements.
Finally, brains are constructed so that they appear to learn naturally from
experience.

Because of these apparent differences, a new discipline is emerging which
attempts to understand brain-like computational systems. This discipline
lies on the common boundary of established disciplines and has been var­
iously termed: "computational neuroscience", "connectionism", "parallel
distributed processing", and "neural network modelling". Recent years
have seen a number of important advances in this area. Current research
is aimed both at achieving greater biological realism in the hopes of un­
derstanding real neural systems and at developing engineering criteria for
using these techniques in the design of useful systems.

Our goal in this paper is to investigate certain engineering aspects of
these new ideas. Several companies and research laboratories are invest­
ing heavily in projects based in some way on neural networks. There are
currently a variety of neural network software products being introduced
[88,89,90,109,125], there are attempts to develop integrated circuit versions
of neural networks [611, parallel computers based on network ideas are be­
ing built [49], and one company is even selling a "neuro-computer" [51].
Given this interest, it behooves us to understand the tradeoffs between
using network approaches and more traditional approaches.

An obvious question is whether the apparent differences described above
allow neural networks to perform different computations than traditional
computers. The widespread belief in the Church-Turing thesis (which states
that physical computational devices can be no more powerful Turing ma­
chines, see p. 108 of 183]) suggests that the answer is no. Analog systems
can be simulated to arbitrary precision on digital computers. Recent de­
velopments in the understanding of randomness in deterministic systems
11391 suggest that by using appropriate pseudo-random number generators,
stochastic systems may also be arbitrarily well modelled on deterministic
digital computers. The technique of time sharing allows a serial computer
to emulate an arbitrary parallel computer. The issues of performance degra­
dation under component failure are legitimately different in networks and

Efficient Algorithms with Neural Network Behavior 275

digital machines, but the tradeoff's and rates of failure are quite different for
biological and silicon components. Much current active research is aimed
at investigating the design of fau lt to lerant computers [1411.

Much of the recent interest in computational neuroscience focuses on
a class of computational models which simulate certain aspects of neural
networks. These models demonstrate interesting capabilities which suggest
that they might form useful components in intelligent systems. In this paper
we will examine algorithms for obtaining these behaviors efficiently using
digital computers. It appears that certain aspects of the network models
are needed only to make up for the poor engineering qualities of neural
components, which are slow, of fixed connectivity, unreliable in function
and prone to damage when compared with the digital components used in
modern computers. Many of the desirable computational abilities of net­
works can be implemented much more efficiently by using good algorithms
than by direct simulation.

2. Adaptive modules in brains and software

Current neural network models do not attempt to simulate entire brains.
They are perhaps best thought of as representing high-level modules from
which a brain might be constructed. In this section we classify the useful
functions performed by current networks into four categories. Later sections
will present algorithms and data structures for efficiently implementing
these functions on ordinary computers. Complete intelligent systems could
potentially be constructed by interconnecting high-level modules into a
much coarser network than a neural net.

Modules in brains. To get a sense of the required size, number and
interconnectivity of these modules for intelligent behavior, we begin by
examining biological systems. Modem neurophysiology is making rapid
progress in determining the anatomical and functional architecture of the
brain and nervous system 162]. While there is much left to understand, one
of the most fundamental features of the emerging picture is that the brain
is made up of a number of functionally different areas joined together by
ordered bundles of interconnecting fibers . A priori, one might have feared
that the brain would be hopelessly complicated and every neuron would
be randomly connected to other neurons throughout the system. In fact,
the cerebral cortex is quite structured and much progress has been made
in mapping its interconnection structure. In 1909 Brodmann decomposed
the cortex into 52 different areas based on subtle anatomical differences in
the size and density of cells, the layer structure, and the density ofaxons
innervating each region [20J. More recent work has shown that the partition
defined by Brodmann's areas corresponds well to partitions defined both by
distinct functional behavior and by the innervation of individual bundles of
interconnecting fibers. These more recent studies indicate a slightly finer
decomposition than Brodmann's but the total number of areas is estimated
to be at mos t about 200 [261.

276 Stephen M. Omohundro

Much progress is being made on mapping out the int erconnection pat­
tern of these areas. Aspects of this pattern give us a rough sense of what
might be needed in designed systems. For example, studies of the visual
system of the macaque monkey have identified twelve areas split into two
m ajor channels, one specialized for motion perception and one for form per­
ception [301. Each area roughly preserves t he spatial layout of the ret ina,
the interconnecti on graph of the areas has a hierarchical st ructure in which
the modules fit n aturally into six successive layers , and most areas have
inp uts and outputs to only one or two others. V2, the area with the larges t
number of outputs innervates five other areas and MT, the area with the
largest number of input s is innervated by four other areas. In [81J the New
World monkey is describ ed as having ten visual areas and the macaque as
having seven somatosens ory areas, and six auditory areas. These are as all
te nd to be topographically structured . The more complex systems appear
to have evolved by introducing more cortical areas. An early an imal like
the hedgehog exh ibits quite complex behavior but apparently has only two
visual and two somatosensory areas.

The type of comp utation t hat can be performed in a brain is severe ly
constrained by the limitations of neurons. The total t ime to perform an
interesting computat ion such as recognizing an object is about 0.5 seconds,
while an individual neuron is only cap able of firing in t ime intervals of
about 0.005 seconds. Therefore only about 100 layers of neurons from sen­
sory input to motor output can be involved in such a computation 1351.
This limit , together with physiological features describ ed above sugges ts
that intelligent computations can be performed in networks consisting of
less than 200 modules, each of which performs a function that can be ac­
complished within a few layers of neurons. There are probably at most 20
to 40 modules along any path from input to output. Each module, while
quite restricted in depth by the speed of neurons, may be quite wide and
can perform much of its computat ion in parallel. There are est imated to
be ab out lOll neurons in the human brain, though many of these likely
perform redundant tasks to make up for the poor behav ior of individual
neurons. We can hope to use these constraints on t he structure of brains
to est imate the comput at ion required to perform the desired t asks .

Software engineering. One of the engineering hopes for neural net­
work models is the development of a new kind of "extensional" computer
programming. The idea is to build a software system only partially by
pr ecise specificat ion, leaving most of the details to train ing by example.
Unfortunate ly, most current networks requ ire so much computation that
they do not prese nt a viable alternative to traditional programming. The
efficient module implementations described in t his paper suggest a poten­
tially practical implementation of this idea. T he high level modul e funct ions
would constitute the primitives of a network programming language. Build­
ing an adaptive system for a specific task would consis t of specifying the
typ es and interconnectivity of these high level modules. A simple compiler
or interpreter could const ruct t he appropriate data struct ures and system

Efficient A lgorithms with Neural Network Behavior 277

code to implement the network . The modules would then be t rai ned, either
individually or as a system, on the spec ific inpu ts of int erest . The resulting
system could be efficient , quick to build and modify, and robust to chang­
ing environments. Such a system could be the answer to t he challenge in
11381's to go beyond current programming ideas. Similar approaches to
general engineering questions are discussed in 11401.

2.1 The structure of a module

At t he coarsest level, a neural network module may be viewed as a black box
wit h an input channel an d an output channel. The output produced by the
module on each input defines t he function of the module. Let us denote by
I a space whose po ints represent all possible inp uts and by 0 a space whose
points represent all possible outputs. These spaces might be finite or infinite
collect ions of points and will sometimes be given extra structure such as a
topology or a coordinatizat ion by real numbers. The representation of these
possible inputs and outputs in terms of neuron activity or software data
structures will be an important issue for unders tanding how the mod ule
may be built out of real neurons in three-dimensions or implemented on a
computer. We will discuss representations throughout the paper, but for
now it is preferable consid er these spaces abstractly and to only imp ose as
much structure on them as is functionally necessary.

There are two aspects of th e inp ut and output spaces th at will b e critical
in all that follows. The first is that in most real situations not all inputs in I
are equally likely. We will assume that I is a measurable space and use p(x)
to denote the probab ility of the input x E I in the discrete case or a prob­
ability dens ity defined with respect to coordinates on I in the continuous
case . The second aspect is that points in these spaces will often represent
the specification of the value of several quantities simultaneously. In this
case th e spaces have a natural product structure and are best thought of
as multi-dimensional. We will introduce four classes of module which differ
according to how the functionali ty is specified and to whether the output
is continuous or discrete.

2.2 Directed and undirect ed learning

The desired mapping from I to 0 t hat a module implements may be spec­
ified in two basic ways. A trainer either specifies the mapping by direct
specification or by presenting examples, or it is determined in some way by
the set of inputs it receives. The first class corres ponds to dir ected learning,
th e second to undirected learning.

Directed learning. The simplest form of directed learn ing hardly
deserves to be called learning at all . It uses a direct specificat ion of the
mapping to descr ibe a module's structure. This specificat ion may take the
form of a table of output values for each input, or may be an algorithm for
converting an input to an output. T his method of specification is analogous
to the genetically specified portions of nervous systems. This pr obably

278 Stephen M. Omohundro

includes virtually the entire nervous system of lower animals and includes
at leas t the reflex loops in higher animals. This is the metho d by which
computer programs are specified to day .

Directed learning may also be based on presentation of examples. A
module obtains the greatest amount information when it is allowed to ask
for the output corresponding to an input which it specifies. More usually,
it is presented with a given sequence of inputs taken from I according to
the probability distribution p. In. this case, the greatest information results
if a teacher specifies the desired output in 0 corresponding to each of these
inputs. Alternatively, the teacher may only indicate how far and possibly
in what direction the current output differs from t he desired output, or
even merely whether the currently pro duced output is correct or incorrect.
Many of the interesting recent learning algorithms for neur al networks, such
as back propagati on 1113], are based on trained learning in which a teacher
presents the desired respo nse for a variety of inputs.

Undirected learning. Undirected learning produces a mapping whose
structure is determined by the set of inputs that a module receives. If the
inputs are randomly distributed according to the probability distribution
p and the exact order of the inp uts is not re levant, then the des ired struc­
ture of the mapping sho uld depend only on p. Such a module looks for
regularities and attempts to enhance them. Mode ls of "self-organization"
in network systems are often of this type.

2.3 The four basic typ es of m o dule behavior

Continuous vs. d iscrete . Whether the input space I an d the output
space 0 are d iscrete or cont inuous often has a big effect on t he function of
a module and on t he algorithms which impl ement it . Digital systems are
of course only able to represent a discret e set of values but there is often
st ill a no tion of "neighboring" values. A st rictly discret e space consists of
independent points which have no relationship to each other. An exa m­
ple of such a sp ace might consist of a set of exclusive categories without
a not ion of dist an ce between them. The points of a strictly continuous
space have neighborhood relationships which are locally well modelled by
Euclidean space. A typical example might be the space whose points con­
sists of configurations of a robot arm. Nearby points correspond to nearby
configurations. Such a space must be modelled on a machine using only a
finite number of points, but it is endowed with a metric which specifies the
distance between points. Most situations are intermediate between these
two extremes.

For completely specified mappings in which the exact input to output
correspondence is given, any relationship between points is funct ionally ir­
re levant. Even in this case, introducing an appropriate relationship will
sometimes enable us to compress the description the mapping. More gen­
erally, a neighborhood relat ionship on the input space I allows a module
to generalize beyond specified examples. We will int roduce mod ules which

EBicient A lgorit hms with Neural Network Behavior 279

categorize an arbitrary input with the nearest input that it has previously
seen. Inputs which are nearby are expected to have nearby causes and
should elicit nearby responses in the absence of information to the con­
trary.

Our systems need to be insensitive to small errors in their inputs and so
all of our modules will be assumed to have some kind of neighborhood rela­
tions defined on their input spaces. On the other hand, a module's behavior
is qu ite different depending on whether it produces a fixed set of outputs
or interpolates between stored outp uts. We will divide the behavior of the
modu les we wish to st udy into four categories according to whether their
outp uts are cont inuous or discrete and whether the ir fun ction is spec ified
by direc ted or und irected learning:

1. Directed learning modules with discrete output implement the func­
tions of associative memory and classificat ion.

2. Directed learning modules with continuous output implement the
evaluation of smooth nonlinear mappings.

3. Undirected learning modules with discrete output imp lement the tasks
of category formation and clustering of inputs.

4. Undirected learning modules with continuous output implement di­
mens ion redu ction , self-organization, and probability equalization.

These four types of behav ior are representative of the useful behaviors
observed in neural network models, as we shall d iscuss in the next few
sections.

2.4 E xam ple neural n etwork b ehaviors

A wide vari ety of network mode ls have been proposed and implemented .
Reference 1114J gives a common framework for describing many of these
models. This reference identifies eight aspects of a neural network model:
a set of processing units, a state of activat ion, an output function for each
unit, a pattern of connectivity among units, a propagation rule for propa­
gating activities throughout the network, an activation rule for combining
inputs acting on a given unit to produce its new level of activation, a
learning rule for changing the propagation ru le with experience, and an
environment within which the system operates. In this section we will ex­
amine a sampling of the proposed models in terms of the four behavio ral
categories int roduced above.

Adeline. One of the first neuron-like models was described in 11361
and falls into the directed continuous class. The output of an "Adaptive
Linear Element'" or Adeline, was a weighted sum of its inp uts. A set of
input / output pairs were repeatedly presented an d th e weight s were incre­
mentally modi fied to push t he actua l output closer to t he desi red output.
A network of such units implemented a linear mapping between the input

280 Stephen M. Omohundro

space and the ou tput space. When the specified inputs were linearly inde­
pendent, it was proven that the weights converged to val ues that produced
the desired outputs. These units were applied to the design of communica­
tion systems such as adaptive antennas. The function performed is to learn
a linear mapping from input to output given a set of input/output pairs.

Perceptron. T he perceptron described in 11121 is perhaps t he most
famous of the early models. It falls into the directed discrete class. It con­
sisted of a sensory layer of units whose outputs were combined in a fixed
way by units in an association layer and then linearly combined with vari­
ab le weights and fed to a layer of response elements which used a threshold
to give a binary response. T he perceptron had only a finite number of out­
puts and was trained to categorize each input into one of these categories.
When the desired input categories were separable by hyperplanes in the
input space, it was proven that the weights converged to correct values.
T he function performed is to learn to classify inputs into categories.

Learning matrix. An early system which exhibited undirected learn­
ing was the "learning matrix" 1124,1231. This system was meant to simulate
classical conditioning in an imals. It had two sets of input lines which were
int erconnected as a complete crossbar , with an adaptive element joining
each pair of lines. Initially the system was res t r icted to binary inp uts and
outputs and would be in the undirected discrete category. Correlations be­
tween the two signals joined by an adaptive element caused it to decrease
its res istance. If on ly one of the two inputs was presented, the system would
produce at its output the his torically most high ly correlated other input.
By allowing the inp uts and outputs to be continuous, we get a system in
the undirected continuous category which was studied in 1641. Many of
the more recent proposals for associative memory including the so-called
"ho lographic" memories are quite sim ilar to this [137].

Competitive learning. 11161 discusses a class of models which are of
the undirected discrete type. The basic idea of "competitive learning" is
that a set of M units each listen to the input. The unit which responds
most strongly to a given input inhibits all the others. Only this unit has its
weights changed to make it respond even more strongly the input. The re­
sultant network tends to distribute the response of the M units evenly over
the high-probability portion of the input space. The competitive aspect
keeps the units from clumping at the highest probability input. If there is
a h igh probability region that is not well represented by a unit, then every
time the network receives an input in that region, the nearest unit will be
pulled even nearer. If the input points are highly structured, then units'
responses tend to correspond to clusters in the set of input samples. The
function performed is to detect regularities in the input distribution and to
categorize further inputs according to them.

Self-organizing feature maps. A similar type of network can im­
plement interesting undirected continuous behavior . In chapter five of 1651
and the references therein, and more recently in {lI D], a model is studied
which learns to adapt its input/output mapping to the statistics of the in-

Efficient Algorithms with Neu ral Network Behavior 281

put distribution while preserving topography. T he so-called self-organizing
feature maps consist of a collection of units each of which is assigned a set
of neighboring units . An appropria te choice of neighbors imposes a topol­
ogy on the set of units. A common choice gives the units the neighborhood
relations of a two-dimensional grid. All units rece ive the same inputs and ,
as in competitive learning, the unit which responds most strongly to a given
input has its weights changed in a direction to even further increase its re­
sponse. The new ingredient in these models is that the strongest element's
neighbors also have their weights modified. As in competitive learning, the
units want to spread themselves out over the high probability regions of the
input space, but in these systems they also want to respond well to inputs
near those that their neighbors respond well to.

Simulations described in the references illustrate several useful behav­
iors . A convenient way to picture the network's response is to map each unit
to the input point to which it responds most strongly. When the units are
structured as a two-dimensional gr id and the inputs are drawn uniformly
from a two dimensional region such as a triangle, the image of the grid un­
der this mapping is distorted so as to uniformly represent the region. When
the input probability varies over the input space, the density of grid points
becomes proportional to the probability density. When the output space
has a lower dimension than the high probability region of the input space,
it maps into it in a convoluted way reminiscent of a Peano curve. When the
extra dimensions are small in extent, the output grid forms periodic stripes
which oscillate in the extra dimensions. In an experiment in which the in­
puts were clustered into thirty-two clumps in a five dimensional space and
the output grid was two-dimensional, the clumps were represented in the
two dimensional space in a way t hat preserved many of their neighborhoo d
relations [65]. Clumps joined by links in the five-dimensional Euclidean
minimal spanning tree (disc ussed in section 6) were represented by neig h­
boring units in the output grid. The functions performed are undirected
learning of nonlinear mappings t hat perform probability equalization when
the input and output spaces are the same dimension, and dimension reduc­
tion whil e preserving important neighborhood relations when the output
dimension is smaller than the input dimension.

Control problems. In 18] a computer system is described which learns
tv balance a po le on its end. Much as in the modules described in section
5, this system cuts the input space into distinct regions and learns the
appropriate control response in each region. The decomposition in this
system is fixed, however, and not determine d during the lear n ing procedure.
The behavior of these modules is t hat they learn to evaluate a nonlinear
mapping from an input describing the current state of the po le to an output
which desc ribes t he appropriate response. Reference [8J also makes an
argument for building network systems out of modules which are more
complex than typical neuron units.

Neocognitron. In [44] a neural network model is used to do pattern
recognition. An earlier version was undirected, but this reference describes

282 Stephen M. Omohundro

a system which is directed and discrete. There are 14,529 units organized
into 9 layers . Each uni t has a few hun dred synapses, so t he whole sys­
tem has a few million. Individual layers were given hand-tuned training
patterns to learn and the system appears to do a credible job of distin­
guishing handwritten versions of the ten arabic numerals. The behavior of
this system is that it can be trained to categorize patterns.

Optimization problems. References {60,59J describe a class of neural
networks with symmetric weights [i.e, the strength of the connection from
i to j equals that from j to i). They show that the state space of the
resulting dynamical system has a Lyapunov function (Le. one whose va lue
is nonincreasing in time) which they call an energy function. All orbits in
such systems must approach limit points and there cannot be any periodic
orbits. A computation is performed by presenting the inputs and waiting for
the system to settle down to a fixed point. To solve optimization prob lems
such as the travelling salesman problem, the authors construct the energy
function to have a global minimum at the optimal legal solution. The
system is started at a random state and it is hoped that it settles down to
a fixed point which is near the global minimum. To encode the travelling
sa lesman problem with n cities, n2 totally interconnected neurons are used .

Back propagation. In [85]. perceptrons were shown to be quite limited
in the functions that they could compute. These limitations stem from
the fact that perceptrons have only a single layer of modifiable weights.
Much of the recent resurgence of interest in networks has come from the
discovery of "back propagation," a weight modification rule that applies
to multi-layer networks 1113]. The setting is the same as for perceptrons
in that input/output pairs are presented and the network is supposed to
learn to produce the des ired output when presented with a given input.
When the system produces the wrong output, the learning ru le simply
changes each weight in the direction which makes the size of the error
decrease as quickly as possible. The components of this steepest descent
direction in weight space are computed by using the chain rule to compute
the partial derivatives of t he error function with respect to each weight.
The implementation of this weight change requires propagating an error
signal backward through the network, changing weights that had a large
effect on the output more than those that did not .

Reference [113] describes a two un it system with five weights which was
trained to learn the two-input "exclusive or" funct ion. It typically took
about 558 presentations of each of the four possible inputs but occasionally
got stuck in an incorrect local error minima after many (in one instance
6,587) presentations of each inpu t. Another two inp ut system had four
outputs and was supposed to have an output on t he line indicated in binary
on the input. A nine unit network with twenty-two weights took 5,226
presentations of each input pattern to learn the correct outputs. Networks
which learn using back-propagation are of the trained discrete category and
seem to be useful because they appear to genera lize in a natural way on
real world examples.

Efficient Algorithms with Neural Network Behavior 283

NETtalk. An important example of a back propagation system is
described in [1201. T his system learns to map strings of seven successive
characte rs in English text into the pho neme that should be pronounced at
the middle letter. The system has 309 units and 18,629 weights. It reached
ninety per cent accuracy on a sample of 1,024 words after about 30,000
word present at ions . A network wit h 10,000 weights took 0.5 seconds to
process each letter on a VAX 11/780 with a floating point accelerator .

2.5 T h e amount of computation required by n eural networks

In this section we discuss the amount of computation required to imple­
ment simulations of neural networks on current serial computers. Section
9 compares t hese performance estimates with the perfo rmance of the al­
gorithmic modules described in later sections, in both serial an d parallel
implement at ions.

Geometric analy sis. To underst and how the computat ion performed
by a neural ne twork might be done more efficiently, we will begin wit h a
geometric analysis of Boolean networks. Consider networks made up of
units which form a linear combination of their inputs and produce a one or
a zero dep ending on whether t he sum exceeds a threshold. A full network
is a collectio n of these units with k real-valued inputs and some number
of boolean outputs. Let us assume that the network has a layer of input
units which each receive some subset of the k input values and that to these
are connected a network of other units forming an acyclic graph [i.e. the
network is a purely feedforward system) .

Let us focus on a single output. The set of weights and the structure
of t he network leadi ng up to this output unit define a particular compu­
tation which assigns a one to some inputs and a zero to ot hers . With the
inputs taken to be real numbers in a sp ecified range, it is natural to form a
geometric picture of this computation. The k input valu es together define
a point in the k-dimensional input space I . The output space 0 has only
the two points one and zero. The network may be thought of as defining
the subset S of I which consists of those inputs which cause the unit under
consideration to produce an output of one. The function performed by the
network is to determine whether a given input is in S or not. The subset
S changes as we alter the values of the weights in th e network.

To un derst and the structure of the subset S , consider the comp utation
perfo rmed by a single unit . Letting Wi represent t he weight on the ith
inp ut and T represent the threshold, the set S consists of all points whose
coordinates Xi in t he input space satisfy:

l:W,x, > T. (2.1)

This inequality is satisfied by a reg ion of input space which is bounded by
the hyperplane:

l:W,x, =T. (2.2)

284 Stephen M. Omohundro

(A hyperplane in an N-dimensional vector space is a linear subset of di­
mension N - 1. Such a hyperplane divides the embedding space into two
distinct regions.) As we vary the weights W; and the threshold T, this
hyperplane moves about the input space.

Each of the units in the input layer of the network similarly defines such
a hyperplane in the input space. The entire netv....ork beyond the layer of
input units can only perform a Boolean computation on the outputs of the
input layer . It receives boolean values from the input layer and it produces
a single output which is either zero or one. While this Boolean function
may be quite intricate, all of the interesting geometric structure is defined
by the first layer of units. The collection of poss ible sets S consists of all
combinations of unions and intersections of the half spaces defined by the
input units. We may imagine the input space as being cleaved by the input
unit hyperplanes. After all cuts have been made, the resulting polyhedral
pieces are the components from which we make the set S . The different
Boolean functions that may be performed by later units correspond to
including and excluding different pieces in the set S. The network has the
representational capacity to distinguish inputs only up to the granularity
of the pieces defined by the hyperplane decomposition.

An important class of computations classifies inputs into one of several
categories. The different output units could represent membership in the
different categories. In a learning session, the hyperplanes would be moved
around so as to better represent the desired categories. We can now begin
to understand the inefficiency in performing this computation using a direct
network simulation. The input is processed by every input neuron in every
computation, which geometrically amounts to comparing the input point
with each hyperplane to determine on which side it lies. Once each com­
parison is made, the collection of answers is used to determine membership
in the set S.

Usually, many of these comparisons will be superfluous. For example,
consider the case where the input space is two-dimensional and there are
two vertical hyperplanes (which are just lines in two dimensions) . Knowing
that an input point lies to the left of the lefthand hyperplane immediately
implies that it is to the left of the righthand hyperplane and there is no
need to do a second comparison. In computer science, such situations as
this often yield to the technique of recursive decomposition. Every time
a piece of information is determined about the input, it is used to prune
away unnecessary further computations. The total amount of computa­
tion required for a given answer can be far less than that required by a
brute force approach which performs the same computation on every input
presentation.

Capacity of HopfieJd nets. Reference [581 presents a neural network
which stores associative memories by arranging the dynamics so that mem­
ories correspond to attractors. With N totally interconnected neurons, it
was found that O.15N memories could be stored before "error in recall is se­
vere." This storage capacity has been confirmed in studies which examined

Efficient A lgorithms with Neural Network Behavior 285

the asymptotic capacity as both N and the size of the network approach
infinity [41.

Capacity of lea rning matrices. Reference [771 analyses the number
of units needed in single layer learning matrices. If r associations are to be
stored, each with an average of m; of its input bits equal to one and rna of
its output bits equal to one, then the number of units must be greater than
or equal to 1.45rm,:mo o There must be at least 1.45mimo times as many
units as there are sto red memories. Any direct serial implementation of
this scheme will require an amount of storage and take a time to retrieve
a single memory which are both a substantial multiple of the number of
memories stored.

Computation time. To simulate a totally connected neural network
with n neurons, we must do n 2 multiplications and additions to form the lin­
ear combination of the inputs . These n sums must then be passed through
the nonlinearity. The an alyses in [77,58,41 and elsewhere suggest that at
least O(n) neurons are needed to store O(n) memories, yielding O(n') com­
putation time and storage space. In later sect ions, we present a variety of
algorithms which use O(n) space, have a search t ime of O(log, n), and yet
implement neural-like behaviors from each of the four categories defined
above.

Learning time. Reference [128] studies how the required number of
presentations scales with the total number of memories in networks which
learn by back-propagation. The study exam ines learning of a particular
function and so should provide a lower bound on the t ime to learn an
arbitrary set of memories. As discussed above, a network has a max imal
memory capacity beyond which the learning time is infinite. Before that
limit is reached, however, the number of presentations required for learning
appears to scale as the 4/3 power of the number of memories to be stored
over a wide range. It would be of great interest to study this kind of scaling
relat ionship for other types of networks and learning algorithms .

Million memory goal. It is of interest to est imate the memory capac­
ity needed to achieve human-like performance on tasks of interest. To get a
sense for the absolute upper bounds, we may consider the total amount of
information input to the nervous system during a lifetime. In thirty years
of life , there are roughly a billion seconds . There are roughly 101 afferent
fibers sending input to the brain. Each of these has a dat a bandwidth of
roughly 100 bits per second. The entire sensory input over the course of a
lifetime is therefore about 1018 bits . IT a person stores a memory every 10
seconds, then during waking hours there is only t ime for roughly fifty mil­
lion memories by adulthood. The tot al amount that a person could write,
if they wrote full t ime during their whole life is about a gigabyte (109) .

The most that they could read is about a terabyte (1012) and t he most that
they cou ld see in high resolution color video is about a pe tabyte (1015

) .

A number of indicators suggest that the actual number of entries that
must be stored for human-like performance on various tasks is of the order
of a million. There are about 350,000 words in large English dict ionaries,

286 Stephen M. Omohundro

but typical individuals know only about 50,000 of them and only about
10,000 are used in everyday speech and writing . The probability distribu­
tion of these words is very closely approximated by Zipf's law which fOT the
first 8,000 English words says that the nth most common word has prob­
ability approximately equal to D.I /n. The number of objects a person can
identify with a name or short phrase is therefore probably less than a mil­
lion. A good player in the game of "twenty-questions" can usually identify
an arbitrary object and an optimal set of questions can only distinguish
220 ~ 106 objects. It also appears reasonable to estimate that a person
learns less than an average of 100 new things per day during the 10,000
days into adulthood. Many of the parallel nerve bundles which communi­
cate information from one area of the brain to another, such as the optic
nerve, have on the order of a million fibers . These est imates suggest that
we should be considering modules with a storage capacity of approximate ly
one million items. Sect ion 9 makes performance comparisons based on this
million memory goal.

3. Tools for module construction and analysis

We will use a variety of powerful algorithmic tools to build efficient software
versions of the modules described in the last section. Much of the theo­
retical work in computer science has focused on obtaining good worst case
bounds in the asymptotic limit as the size of problems gets arbitrarily large.
Unfortunately, somewhat arcane data structures with large numbers of in­
tricate components are often required to deal with worst case situations.
These situations are often extremely rare in practice and the intricacy of
the data structures makes them difficult to implement and inefficient for
realistic problem sizes. We will be concerned with simple data structures
that have good average case performance with respect to the probability
distribution p on the input space .

The first part of this section presents data structures for represent­
ing one-dimensional data. The second part extends these to the multi­
dimensional sett ing. The third part presents some statistical ideas that are
useful in analyzing the average behavior of these structures and in adapt ing
structures to the underlying probability distribution. Finally, the last part
discusses algorithms for building and maintaining these structures.

The data structures we are concerned with will be used to store labelled
data in a way that allows it to be efficiently accessed by using various
properties of its label. In database literature the label is called a key. We
will denote the space of possible labels by I as above, and will also refer to
it as the embedding space or the key space. We will denote the size of this
space by III and will use N to denote the number of entries which are to be
stored . We will sometimes assume that the keys are selected according to
the probability distribution p defined on I. Throughout the study of data
structures, there is a basic tradeoff between building a structure by using
properties of the embedding space I or by using propert ies of the actual

Efficient A lgorithms with Neural Net work Behavior 287

data to be stored .
A key aspect of modern digit al computers is the memory system which

consists of a large number of storage locat ions that may be accessed by
a numerical lab el ca lled the address . An address decoder in the memory
converts the numer ical address into a signal at the corresponding storage
locat ion and the content of the memory at t hat location is placed onto a
data bus where it is accessible to the res t of the sys tem. This ope ration is a
very powerful one and is not dir ectly availab le in a neural network, though
several researchers are work ing to build networks with this functionality,

In modern software systems, a single conceptual entity is often rep­
resented by several adjacent memory locat ions . These locations ho ld the
different components of t he entity and the entity as a whole may be assigned
the address of its first component . Components may contain the numerical
address of ot her entities and in this way data struct ures composed of many
entities may be constructed . Such addresses are called poin ters. A common
way to allow an arbit rary number of ent it ies to be accessible from a single
address is to form t hem into a linked Jist. One component of each entity is
a point er to the next entity in the list and the pointer in the last ent ry in
the list contains a spec ial valu e called "null" (which is ofte n taken to be 0).

The enti ti es com posing all of the dat a structures we use here will repre­
sent subsets of the input space I. Different data st ru ctur es will decompose
I into subsets in different ways and will link these sub sets together into
different structures. The gene ral goa l will be to build structures that ad apt
themselves to the under lying probability distribution so as to support fast
access with small st ructures.

3.1 Arrays, hashing, tries, and t rees

Arrays. The high level abstraction of t he baslc capability of computer
memory to access addressed elements is the array data structure. Each
integer in a fixed range is associated with a piece of data. An JI I entry
array A requires III storage locations and allows access to an arb it rary
element in fixed time. The idea of the array data st ructure appears in the
very earliest works on computers [45J.

Let us begin by examining the problem of storing data elements whose
keys are dr awn from a one-dimens ional space I . We will assume that I
consists of the integer keys in the range [0.111). If the number of data items
N is equ al to the size of the key space III. and the data is labelled by the
N integers from 0 to N -1, then one could not hope for a better st ructure
than the array. To read or alter the data associated with the key i , we
dir ectly access array location i denoted by Alii in constant time.

T he need for more sophistica ted structures arises when the number of
actual dat a elements to be stored is much smaller than the number of
possible elements III. In th is case, using one memory locati on for each
possib le key is was teful of space . The basi c idea of the more sop histicated
data structures is to let different locations in the structure represent subse ts

288 Stephen M. Omohundro

I I I I I I I I 1 I I /1/1// [
(0)

11 11111 11 11 I I 1I I I

1/ 1 1/ 1/1
(b)

1/ 1/

F ~ I I ~ III , , , ,
IIH IIH IIH

(c)

~ I I , I

1/ / f-H (d) f-H

'/ 11/
I I11I1 111 11111 I II

~II/ H\\~UW~nU
f-H I I I I I I

(e) (f)

Figure 1: One-dimensional data structures: (a) array of buckets; (b)
two-level ar rey ; (e) 4-ary trie; (d) binary tri e; (e) binary tree; (e) bin
merging. Nodes in these structures correspond to nested subsets of
the interval.

Efficient A lgori thms with Ne ural Network B ehavior 289

of the key space I rather than individua l entries. Such locations will often
also store pointers to locations rep resenting smaller subsets. The search
procedure for a point traverses these pointers to access locations in the data
structure representing smaller and smaller subsets of I whose entries satisfy
a desired key property. When the reached subset of I is small enough, the
few data entries in that subset may be directly examined.

Arrays of buckets. As a first data structure of this type. we consider
arrays whose entries correspond to subintervals of I rather than points
(Figure 1a). For example, instead of letting j run from 0 to III - 1 and
using the array entry A[k] to rep resent the sing le key i, we let the array
index run from 0 to M - 1, and let the jth entry represent the subset of
keys in the range:

(3.1)

([.) means the interval including its left endpoint. but excluding its righ t ,
and r'"1means smallest integer larger than or equal to z.] Array locations
must now sometimes hold multiple elements, and so we will refer to them
as buckets or bins . The mult iple elements in a bucket are typically stored
as a linked list.

H the number of elements stored in each array location is small, we get
almost the same efficiency of access as in a complete array but potentially
with many fewer array locations. If we choose M = N, there are as many
buckets as data elements. The ideal situation would then occur if the
data elements were even ly spaced in I. T here would then be one element
per bucket. giving fast access, and yet only as many array locations as
data elements. In the worst sit uation, all elements wou ld end up in a
single bucket . If the elements are drawn from a uniform distribution, then
the behavior approximates the ideal situation on average. The number of
elements in a bu cket is descr ibed by the binomial probability dist ribution

N! . N'
P(j) = "(N _ .),1"(1- p) - ' ,

J . J .
(3.2)

where p = 11M is the probability of, a single entry falling into a given
bucket. On average. a bucket will contain N IM elements, which is 1 if
M =N.

More sophisticated structures may be thought of as attempts to achieve
this ideal average behavior even when the input distribution is non-uniform.
The problem with cutting I uniformly into bins is that bins in regions where
p is large will have too many data elements, while buckets in regions where
p is small will have too few.

Hashing. A classical method of handling this problem is hashing in
which a key is first sent through a randomizing hashing function (such
as i >-+ o.j mod M) before being assigned to a bucket. If the hashing
mapping is sufficiently mixing, it will take an arbitrary smooth probability
distribution into an approximately uniform one which has good binning

290 Stephen M. .Omohundro

behavior. Unfortunate ly, hashing works by destroying the neighborhood
relations of the space which will be of great importance to us. The subsets
of I corresponding to individual bins are ext remely fragmented sets with
pieces taken uniformly from the whole range of I.

Two-Iev el arrays. An approach which preserves the neighborhood
relat ions of the data partitions the space so that the bins are smaller in
regions where p is large and larger where p is small. Most standard prob­
abi lity dist ributions vary rather slowly and have only a few peaks in the
space 1. In this case, a two level binning process can be used to fit the
data well. As above , we split the space I evenly into M buckets, though
now M need on ly be large enough to capt ure the scale of large variation
of p (say ten buckets). We further uniform ly divide each bucket b into M.
intervals instead of putting the data elements directly into them. M. is
chosen so that buckets with a larger number of elements are subdivided
into more sub-buckets, while buckets wit h only a few elements may not be
subdivided at all (figure Ib). The first level buckets store the value M.
and a pointer to the array of its sub-bu ckets. To access an element, we use
the quotient of its key and 11I /M to determine which first level bucket it
lies in. The remainder, along with the stored value of Mil for that bucket,
determ ines the location of the second level bucket. The access time (two
steps) is almost as fast as for an array with a uniform distribution and for
smooth enough p we can keep the bucket occupancy at 1 on average while
using only about as many buckets as there are data elements .

Tries . To adapt the bucket structure to the input distribut ion even
more finely, we can consider st ructures with more than two levels. An m­
way tde is a structu re which decomposes each bucket into m pieces or not
at all depending on how many points there are in the bucket (figure Ie).
Densely populated regions may have several levels of splitt ing, whereas
sparse regions may not be split beyond th e first level. A bucket that is
further decomposed contains a point er to the array of buckets at the next
level. To search for a point, th e quotient of its key and 11IIm is used to
determine which bucket it lies in and the remainder is used for further
computations if any. If the bucket is not further decomposed, the desired
po int will be stored in it directly (typically in a linked list) . Ot herwise the
remainder is used to determine the bucket at the next level to look in, and
so on.

A particularly important structure is the 2-way or bjnary trie [39] (figure
Id] . Each node is sp lit into eit her two halves (accessed through left and
right po inters) or not at all. At the i th level , the choice whether to go left
or right is determined by the ith bit of the key exp ressed in binary. In
a trie all buckets at the ith level have the same size and the adaptation
to the distrib ution p occurs only in the choice as to whether a bucket is
further decomposed or not . One property of this structure is that the path
th rough the structure is determined only by the ad dress of a key and not
by which other elements are stored. A variant called the Patricia structure
replaces paths from the root which do not branch by single pointers and is

Efficient Algorithms with Neural Network Behavior 291

very effective for storing long strings [861.
Trees. If we further allow a region to be decomposed into different sized

regions, we get a data structure known as a tree (figure Ie) . Particularly
important is the binary tree, in which each region is decomposed into two
pieces or not at all. To specify the place at which a region is cut, we store
a discrimination value with each node. The top level of the tree is called
the root and represents the entire space I. To search for a piece of data, we
begin by comparing its key with the root's discr imination value to determine
whether to proceed to its left or right child. For a given number of nodes,
a tree can adapt itself more finely to an input distribution than can the
structures which use address computation . Regions are often decomposed
until there is only one entry in each leaf bucket. If at each stage we cut
a bucket so that half its entries are assigned to the left child and ha lf to
the right, then the depth of the tree will be [Jog, Nl. Such a tree is said
to be perfectly balanced. Research on data structures has discovered many
techniques for dynamically keeping a binary tree approximately balanced
under insertion and deletion. A review of these structures may be found in
[80]. With randomly chosen elements, ba lance is maintained automatically
on average.

Bin merging. Trees adapt well to the structure of the data, but be­
cause retrieval requires a sequence of comparisons along the path from the
root to the desired leaf, they are often slower to use than structures which
require only a computations on the key. In some situations the number of
buckets is fixed or we would like each bucket to contain at least some mini­
mum number of elements. This situation arises both in parallel computing
when a buckets are assigned to processors and in disk based systems when
buckets are assigned to disk blocks . A useful approach for this situation
which we call "bin merging" , uses a finely partitioned array to decompose
I for fast access, but allows many contiguous entries in the array to have
pointers to the same bucket (figure 1£). The subset corresponding to a
bucket may then be tuned to the resolution of the array, but the number
of buckets can be as small as desired. In this way we get some of the best
features of both trees and arrays. This structure is useful in the implemen­
tation of the grid file structures described in section 3.2. It is also the key
to "extendible hashing" [31], a dynamic storage scheme which guarantees
data retrieval in only two disk accesses and is therefore competitive with
B-trees, a balanced tree scheme which is the current standard.

We have discussed two basic approaches to forming the state space de­
composition given a collection of states. In the first approach, illustrated
by arrays, hashing, and tries, the structure of the pieces is determined by
properties of the state space and the data to be represented merely deter­
mines which pieces appear in the decomposition. In the other approach,
illustrated by trees, even the shape of the pieces which make up the de­
composition of state space is determined by the stored data. The first
approach often allows for very fast retrieval, more regular decompositions,
and simple dynamic behavior. The second approach is more adapted to

292 Stephen M. Omohundro

the data, leading to fewer nodes and better manipulation characteristics.
Traditionally, trees have been the preferred data structure, but [92J argues
that they may soon be overshadowed by the other class .

3.2 Multi-dimensional data structures

In this section we describe generalizations of these basic one-dimensional
structures to handle multi -dimensional data. Many of these generalizations
arose in the solution of problems in the field of computational geometry.
This young discipline seeks to design efficient algorithms for solving geo­
metric problems and has seen explosive growth in the last ten years 1105J.
One critical aspect of this growth has been the development of data struc­
tures and algorithms capable of dea ling efficiently with entities naturally
described in spaces with dimensions larger than one. To date, most of this
work has focused on algorithms with good worst case behavior. These tend
to be based on intricate data structures which typically only work well
on two-dimensional problems. Some progress has been made, however, on
higher dimensional structures with good average case behavior when the
inputs are reasonably distributed. These structures not only have excel­
lent average behavior , but are extremely simple and efficient to implement.
They will be used to implement the adaptive modules described in later
sections.

Grids. The most natural multi-dimensional generalization of the array
of buckets is a multi-dimensional array of buckets. IT I is a k-dimensional
space, we may store its points in a k-dimensional array which we shall call
a grid (figure 2a). We uniformly partition each dimension exactly as we
did in the one-dimensional case, except that different dimensions can be
cut into a different number of pieces. To access a point, we apply the one­
dimensional computation to each coordinate to determine the k indices of
the bucket that it falls into. The buckets in this case correspond to hyper­
rectangular regions in I of a uniform size and shape which are aligned with
the coordinate axes . As in the one-dimensional case, this structure is ideal
for uniformly distributed data. If there are N data points and N grid
buckets, there will be an average of one data point per grid bucket. In
this case the grid requires only as many storage locations as there are data
points and entries may be accessed in constant time (or time O(k) if one
allows the dimension to grow asymptotically) . As in the one-dimensional
case, the more sophisticated structures are needed to achieve this ideal
behavior for non-uniform probability distributions.

Adaptive grids. We will refer to the next class of structures as adap­
tive grids 193,50,1071 . As in ordinary grids, the data points are stored
in a k-dimensional array. Here, though , the sizes of the one-dimensional
buckets which partition each axis are chosen to produce a finer decompo­
sition in high-probability portions of the space (figure 2b). We may use
any of the structures described in the last part to decompose each coordi­
nate axis into buckets. The adaptive grid itself is a k-dimensional array, in

Efficient Algorithms with Neural Network Behavior 293

(a)

(e) +
+

(b)

(d) r--
r---

n-
(e)

i

r-

Figure 2: Multi-dimensional data structures: (a) grid ; (b) adaptive
grid; (e) quad t rie; (d) k-d trie; (e) k-d tree. Shown is the partition
of a two dimensional region by the lowest level buckets of each kind
of structure.

294 Stephen M. Omohundro

which each dimension has an index that runs from zero to one less t han the
number of final buckets in t he corresponding one-dimensional struct ure.
To access a point, each of its coor dinates is sent through the appropri­
ate one-dime nsional struct ure and is assigned the index of the fina l bucket
reached there. These k integer indices are used to access the array locat ion
representing the bucket wh ich contains the point. The buckets here are
hyp er-rectangular I but their shape and size varies over the input space I.
T he bin merging technique is useful here becaus e the number of final bu ck­
et s in the one-dimensiona l st ructures has a dramatic effect on the number
of bu ckets in the resulting adapt ive grid.

Adapt ive grids have fast access t imes, are easy to implement , are fairly
easy to alter dynamically, an d can adapt well to distributio ns that vary
gradually over the input space. Unfortunately, they can require many more
buckets than necessary when represen ting distributions with a complicated
local structure. T he basic problem is that part itioning one of the one­
dimensional buckets has a global effect on the grid, causing the parti t ioning
of all the buckets which intersect the hyperplane orthogonal to the par ti­
tioned dimension. This effect is especially bad when I is high dimensional.
Later st ru ctures will respond more locally and therefore more gracefully to
features in the probability distribution.

There is a very useful technique which we call partial s ummation which
is applicable to both adapt ive and ord inary grids and which is particularl y
effect ive in two and three dimensions. T his techn ique is similar to one
used for range counting in computationa l geometry (see page 37 of refer­
ence [105]) but it ap pears to be much more useful in the current context.
We often wish to make a mult i-scale study of the distribution of a quan­
t ity f which has a value in each grid bucket. The t echnique allows us to
obt ain th e total amount of f contained in an arbitrary hyper- rectangle in
constant time. It begins with a preprocessing pass through the grid along
each dimension in which th e partial sums of f are accumulated along each
dimension. For example, in two dimensions the horizontal pass forms the
array whose (i,j)th entry is

;
L f(i , k)
1:=0

and then t he ver tical pass forms the array P with (i , j) th entry

j i
P(i, j) = L L f (/,k).

1= 01: = 0

(3.3)

(3.4)

Regardless of how large the grid is, we may now find the sum of f taken over
an arbitrary hyper-rectangular collection of buckets in constant time. In
two dimensions , t he sum over th e rect angul ar region with diagonal corners
(i" j.) an d (i"j,) is

P(i"j,) - P(i"j,) + P(i"j.) - P(i"j,). (3.5)

Efficient Algotitbms with Neural Network Behavior 295

Because this takes only four additions, we may treat obtaining the total
amount of a quantity in an arbitrary rectangle as a primitive operation.
A similar idea is used in [95] to efficiently find scale-independent peaks in
histograms. We have used the technique successfully on images to provide
very fast scale-independent segmentation and analysis. In this capacity, the
technique forms the basis for a fast optical character reader [97].

Multi-level grids. There are two natural generalizations of the one­
dimensional trie structure. The first is a multi-level grid. The top level
grid coarsely partitions I into equal sized even ly spaced hyper-rectangles.
Those top-level buckets which contain a large amount of probability are
again uniformly partitioned by a grid. This partitioning continues until
each leaf bucket has few enough points. As in the one-dimensional case,
the most important of these decompositions simply splits each dimension
in half. In one dimension this provides each decomposed bucket with two
children and the structure was called a binary trie. In k-dimensions, each
split bucket will have 2k children. We may decompose an image or other
two-dimensional space by using a quad-tree [117,37] which is more properly
called a quad-trie (figure 2c). This is a tree whose internal nodes have four
children corresponding to the four quadrants of the square represented by
the parent. Similarly, three-dimensional space may be decomposed using
an oct-tree [33] . This is a tree whose internal nodes have eight nodes repre­
senting the eight octants of the cube represented by the parent. In higher
dimensions this kind of structure tends to use a large amount of memory
for a given accuracy of representation.

K-d tries. The other generalization of the one-dimensional trie is the
k-d trie [981. The most important case is the binary k-d trie (figure 2d) .
This is a multi-level structure which splits dimensions in half, but unlike
the multi-dimensional grids, a bucket is split along only one dimension
at a time. Along with a left and right pointer as in the t -d trie, each
node of a k-trie contains an integer between 1 and k called the dimension
number which specifies which dimension is split. Some authors require the
dimension number to cycle through the dimensions, so that all nodes at
level L are cut along dimension L mod k. By conceptually combining each
set of k successive levels, we see that such cyclic trees are almost the same
as multi-dimensional grids. The real representational power of a general k­
d trie arises from the ability to finely partition those dimensions in which a
large amount of variation occurs while only coarsely partitioning the other
dimensions.

As in the one-dimensional case, the fact that t he cut locations always
halve the buckets simplifies both searching and dynamic structure alteration
[981. Whether to go left or right at a given level is determined by the U+1)st
bit of the correct component of the input vector, where i is the number
of levels above which were split on the same dimension. As in the one­
dimensional case, k-d tries do not adapt themselves as precisely to the data
as the corresponding tree structure.

K-d trees. Perhaps the most important of the high-dimensional struc-

296 Stephen M. Omohundro

tuxes is the k-d tree [11,10J (figure 2e). As with a k-d trie, a k-d tree
corresponds to a decomposition of a k-dimensional Euclidean space into
hyper-rectangles. It is an ordinary binary t ree , but each internal node has
room for both a discrimination value and a dimension number. The root
of the t ree represents the entire space I. The dimension number associated
with the roo t specifies the first dimension along which the space is cleaved.
The discr imination value specifies the location of the cut along this dimen­
sion . IT the root's dimension number is i and its discrimination value is v,
t hen the decomposition of t he space is by the hyperplane defined by X i = v.
Its left child represents the half-space of all points satisfying Xi S v and its
right child the half-space of all points satisfying Xi > V . In general each
node of a k-d tree corresponds to a hyper-rect an gular piece of th e space in
which some of the d imensions may be infinite. The set of nodes at a given
level of the tree correspond to a set of hyper-rectangles which partition the
space. The leaves of t he tree correspond to hyper-rectangles forming the
finest partition of the space.

Searching a k-d t ree for the leaf bucket containing a query point is
easily accomplished in a single traversal of the tree from root to leaf. At
each node, we compare the value of the point's coordinate in the dimension
specified in the node with t he discriminat ion value stored in the node. The
traversal proceeds to the left or to the right depe ndin g on the outcome of
this comparison. A well-b uilt tree will have only log2n leve ls when there are
n hyper-rectangles in the leaf partition. The searc h time is then logar ithmic
in the number of stored entries.

There are several schemes to make k-d t rees that support insertions
an d deletio ns while preserving their useful properties. Such dynamic k-d
t rees may be implement ed by periodically rebuilding portions that violate
des ired constraints !101,102]. k-dimen sional vers ions of B-trees have also
been designed [118,1001. It has bee n suggested that in very high dimen­
sional spaces, better performance is obtained by combining key coordinates
together, effectively making the dimension of the tree smaller [281. We will
investi gat e modules which reduce dimension in section 7.2.

Hybrid structures. A wide variety of hybrid structures may be con­
st ructed by viewing the input space as a product of smaller spaces and using
different combinations of the above structures to decompose the smaller
spaces. For example, one might think of a 2n-dimensional sp ace as the
product of two n-dimensional spaces each with thei r own k-d t ree decom­
positions. The product sp ace is partitioned into regions consist ing of all
products of a leaf region from the first tree with a leaf region from t he sec­
ond tree. X-d trees can only represent a distribut ion well if they are based
on enough sample points. Forming a k-d t ree using only a subset of the
dimensions is the same as project ing the probability distribution defined
on the whole sp ace onto the smaller space coordinatized by the chosen di­
mensions. Even if the representation of original distribution is to o sparse
for an effect ive decomposit ion of the who le spac e, the representation of the
projected distribution may be qui te adequate.

Efficient Algorithms with Neural Network Behavior 297

Data and the input space. The fundamental idea of all of these
data str uctures is to connect input space properties with data properties.
An incoming query is described in terms of input space coordinates and
the data structure's job is to convert this to something in terms of stored
data. Each node represents both a set of data elements and a region of the
input space. The region of the input space is what we have been calling the
bucket defined by the node. In the mult i-level structures, the structure of
the bucket is determined as we proceed from the top of the structure down.
The stored data points corresponding to a node are obtained by starting
at the node and following all paths to levels below it . The spatial structure
is more access ible at the top and the elements are more access ible at the
bottom. The structures based on address computation do not have many
levels and closely assoc iate the data points with the bucket regions .

3.3 Probability d istributions and computation

The power of the algorithms described in this paper is that they create data
structures which adapt themselves to the distribution of the data that they
must store independently of the form of that distribution. The science
of making inferences from data described by an unknown distr ibution is
known as no nparametric statistics. There are two fundamental probability
distributions that arise in analyzing the behavior of points drawn from an
arbitrary distribution: the beta distribution and the Poisson distribution.
This section will describe these distributions and will use them to discuss
computational methods for estimating quant ities needed in building data
structures .

Binom ial dist ribution. Nodes in each of the data structures we have
discussed correspond to subsets of the input space I which we have called
bins or buckets. We must understand both how to choose the buckets and
how query points are likely to fall in them once they are chosen. If we
have a fixed bin Be l, and we draw N points from I according to P, we
may ask what the probability is that i points will be chosen from B. The
probability that a single po int will be dr awn from B is the t otal probability
dens ity conta ined in B :

P(B) = /" p(x)dx. (3.6)

The probability that i points fall in B is then described by the binomial
distribut ion:

(3.7)

B eta distribution. In tree structures, we must choose real partition­
ing parameters on the basis of observed data points to build buckets with
good properties. We therefore need to understand how the distribution
of conta ined points varies as we look at successively larger members of a

298 Stephen M. Omohundro

one-parameter family of regions. For simplicity, let us assume that the
probability distribution p does not vanish anywhere in the input space I,
hut is otherwise arbitrary. Let us consider an arbitrary one-parameter
family of nested subsets II.., of S. These sets are parameterized so that:

I1..,. C I1.." iff 'II ~ "1•• (3.8)

In this case . we may redefine the parameter "1 to be the total probability
contained in a subset (Le. the measure of the set):

"/ = IR, p(x)dx. (3.9)

We assume that flo = 0, the empty set, and that R1 = I , the entire set. For
example, the family II.., might be a set of nested spheres or hyper-rectangles
about a point x ES.

Let us now draw N points from I according to the distribution function
p. We use this set of sample points to choose the subset II.., which is
the smallest set in the family that still contains one of the sample points.
What is the distribution p,b) of the "/'s we get by applying this procedure
repeatedly? p,b)d,,/ is the probablility that I1..,+d, - II.., (the complement of
II.., in I1..,+d,) contains one point and all N -1 others lie in S - I1..,. By the
way in which we defined "1. the probability of a point lying in I1..,+d, - II.., is
d"1. There are N different points which can be chosen to lie in this interval.
The probability for a single point to lie in S - II.., is 1 - "t, implying that:

or equivalently:

(3.10)

(3.11)

In general we will be interested in Pnb) which we define as the prob­
ability that II.., is the smallest of the R's which contains exactly n sample
points. pb)d,,/ is the pro bability that one of the points lies in the shell
I1..,+d, - II.., , n -1 of the points lie inside II.., and N - n of the points lie out­
side of it in S - R,. Introducing the combinatorial factor which counts the
number of ways in which we may assign points to these tasks, we obtain:

()d N! n-'d ()N-n
Pn"/ "/= (n-1)!1!(N-n)I"/ "1 1 - ,,/ ,

so

() N! n-l(l)N-n
Pn"/ = (n _ l)!(N - n)l "/ - "/ .

This is the Beta distribution 176):

(3() = r(a + b) 0-'(1 _)'-'
"/ r(a)r(b) "/ "/

(3.12)

(3.13)

(3.14)

Efficient Algorithms with Ne ural Network Behavior

where r(a) is the gamma funct ion, a = n, and b = N - n + l.
The beta function integral:

i
1 m-l (1 _)n- 1d _ B() _ r(m)r(n)

x x x - m, n - I' [) ,o m+n

allows us to find the moments of Pn:

. N!(j+n -l)!
{--t'}P. = (N + j) !(n -1)"

In particular the mean is

n
E(-y) = {--t} = N + i '

the standard deviation is

299

(3.15)

(3.16)

(3.17)

'() (') ()' n(n+l)
(J '"1 = '"1 - '"1 = (N + 2)(N + 1)

and two moments we will need later are

n'
(N + I)'

n(N - n + 1)
(N + 2)(N + I)"

(3.18)

(- l) _ .-!!..-"/ - ,n-l

and

(3.19)

_, N(N - 1)
{--t } = (n _ l)(n _ 2)' (3.20)

If we take a large number of sample points N compared to the number
of points in a region n, the mean and standard deviation asymptotically
approach:

n
E{--t)-­

N
(3.21)

and
'(n)

(J ,,/) - N" (3.22

Density estimation. We often need to estimate the value of a proba­
bility density p(x) at a specified point x. Such an est imate might be used to
const ruct an efficient data structure as when a binary tree is const ructed to
make each child is equally likely. In other situations the estimated distribu­
tion itself contains the essence of the desired information as when sample
clusters are chosen on the basis of it .

Binning method. One common technique for est imating p begins by
decomposing the sample space into B equal sized bins of volume V. A
histogram of the points in these bins is then formed by counting how many
of the N sample po ints lie in each bin. If N; samples lie in the ith bin, then
the probability density is est imated as:

N;
p,(x) = NV (3.23)

300 Stephen M. Omohundro

where i is the bin containing the point x of interest. There are a number
of difficulties with this technique. Because the estimated distribution P.
predicts the same density at each point in a bin, any features smaller than
a bin will be lost . If the bins are too big, they will wash out important fine
structure in the distribution p. On the other hand if the bins are too small ,
in regions of low probability the expected number of points in a bin can
fall below one . In this case a low probability region will be represented by
one bin with an estimated density that is too high surrounded by empty
bins with estimated probability zero. Without knowing much about the
probability density, it is difficult to choose proper-sized bins. If N is too
small there may be no way to keep the bins from being too small in some
regions and too large in others. The process of binning throws away all
information about where sample points lie within bins, suggesting that
better procedures might exist. More discussion of the problems of binning
may be found in [96,106,42).

Let us analyze the performance of bin estimation on a uniform distri­
bution with probability density:

p{x) = Po. (3.24)

The statistics of the binning algorithm are governed by the binomial dis­
tribution. The probability of a single sample lying in the bin of interest is
PoV where V is the volume of a bin, as above. After choosing N samples,
the probability p{n) of having chosen n samples from the bin of interest is:

(3.25)

The mean number of samples in our bin is then

and the standard deviation is:

u'{n) = N poV(l - poV).

As above, we define the estimating distribution:

n
P. = NV ·

This estimate is again correct on average:

(P.) = Po·

In this case the standard deviation of the estimate is:

'() __1_ '() _ Po(l-poV)
u P. - N'V'u n - NV .

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

Efficient A lgorjthms with Ne ural Network Behavior 301

Volume method. An estimation technique which underlies many the
structures discussed in this paper considers not how many points lie in a
given volume, as in the bin technique, but rather considers what volume is
needed to contain a certain number of points 172) . For example, we may
estimate P.(x) of Pat the point x as the inverse of the volume of the smallest
sphere centered at % which contained n sample points times roughly niN.
We will see that a better estimate is:

n-1
P.(x) = NV.(x) (3.31)

where Vn(x) is the volume of the smallest ball centered at x which contains
n points. In low probability regions, the ball will be large and so based
on a reasonable number of sample points. In high probability regions, the
ball will be small and thus capable of high spatial resolution. Because
each estimate is based on n points, one expects the estimates to be equally
supported by evidence in all regions. Because the ball size is the small­
est possible consistent with the desired amount of evidence, the technique
adapts itself to a distribution as best it can with N sample points. We shall
see that it does reasonably well even with a very small number of samples.

In the constant density case, the actual probability contained in a region
of volume V is PoV. The beta dist ribution describes the probability "'I
contained in the region Vn • The probability distribution for Vn is then:

The mean volume is: n
(V) = (N + l)po'

With the definition above for P.Jl we see that:

() = (n -1) = po(n -1) (-1) =
P. NV N 'Y PO.

(3.32)

(3.33)

(3.34)

This justifies the definition of PO) ' With samples drawn from a uniform
distribution, the above procedure will produce estimates of that distribution
which are correct on average. Let us compute the standard deviation of
these estimates:

'() (') ()' p:(n - I)' (_') , , (N - n + 1)
(1 P. = P. - P. = . N' 'Y - Po = Po N(n _ 2) , (3.35)

It is of int erest to compare the relative deviations 0'2/p2 of the estimated
probability density for the two techniques, For the binning technique, we
find:

0 2 I-poV
=

(Po)' NVPo

1 1
NVpo - N' (3.36)

302

For the volume technique , we find:

Stephen M. Omohundro

(7' N-n+ 1 1 n -1
(P.)' = N(n - 2) = -n---2 - N(n - 2)' (3.37)

IT N is less t han l /VPo, then the deviation of the binning technique
is as large as the esti mate, which is ind icative of the all or none binning
noise we discussed ab ove. When p varies, this problem will occur in the
regions where p is sm all. The relative deviation using the volume technique,
however, is indepen dent of the dens ity and goes to zero wit h increasing n .
By let ting n grow with N, t he volume techni que can do as well as the bin
technique even in high probability regions. Asymptotically, n should be
chosen so that n -+ 00 but n/N -+ 0 as N -+ 00. Reference [721 suggests
that n = ..;N is a goo d choice and [421 gives a functional form for the
optimal choice of n under cert ain assumpt ions.

In sect ion 4.1 we will discuss methods for find ing a point's n nearest
neighbors in time O(n). For small n these methods can be used to give
very fas t density est imates. For large n, as required by the optimal cho ice
above we suggest using the partial summation technique from section 3.2.
Nothing in t he derivation ab ove required the use of the spheric al volumes
implied by considering t he n nearest neighbors. We can just as well use the
volume of the smallest hypercube centered at the point of inte res t which
contains n sample points . IT we store the points in an adaptive gri d , the
partial summation t rick lets us dete rmine the number of sample points in
a hyper-rectangular region in cons tan t time. Using a binary search, we
can find that volume which contains n points by looking at a maximum
of log, N hypercubes . We have found this technique useful for estimating
various densit ies in images. It also gives an efficient means for implementing
the histogramming technique in [99] and gives insight into what the peaks
found by the method in [951 actually ar e.

M edian estim ation . In building trees and k-d trees, we would like to
cho ose discriminators at the median of the underlying distribu ti on in the
region cor responding to a node. This implies that a query search which
reaches that node is equally likely to choose t he left or right branch. In
this situation we want to cut a hyp er- rectan gle perp endicular to one of its
axes . To apply the analysis leading to equation 3.13 we choos e the nested
family of regions to be the left region in the hyper-r ectangle as the cut
plane goes from left to right. We would like to choose that cut for which "t ,
the total probability content of the left po rt ion , is equal to 1/ 2. We must
make this cho ice on the basis of N inp ut samples in the region of int erest.
From equat ion 3.17, the exp ected 'Y if we cut at the nth sam ple point is
n/(N +1). If N is odd, then choosing the middle point (i.e. n = (N + 1)/2)
will give (-y) = 1/ 2 with st andard deviation

1

4N
(3.38)

Efficient Algorithms with Neural Network Behavior 303

Notice that of all n's this is also the choice for which the estimated volume
has the lowest standard deviation . If t he density is un iform near the me­
dian, then when N is even, we can choose the cut to be half way between
the center two points with simi lar results.

Boundary estimation. A problem which is of great importance to
classification is the estimation of the boundary of a region from N points
drawn from it. An important special case is a hyper-rectangular region
with a uniform probability distribution. One could estimate the region by
choosing the smallest hyper-rectangle which contains all the sample points,
but it is intuitively clear that this is likely to cut off some of the probability
around the outside. If we project the sample points onto one of the axes,
we can compute how far the leftmost point in a sample of N points drawn
uniformly from an interval of length L is likely to be from the left end of
the interval. We let the nested fami ly of regions be sub-intervals starting
at the left end of the interval. Let us denote the length of the smallest of
these intervals which contains n samples by Ln. From equation 3.33, the
mean value of L n is

(L) -~
n - N+1

and the standard dev iation is

u' L _ L'n(N - n + 1)
(n) - (N + 2)(N + 1)"

(3.39)

(3.40)

(3.41)

A simple way to est imate L is to measure the d istance between th e i th
an d jth points and assume this dist ance is equal to:

(L . - L .) = (i -J)L
• , N + 1 .

For example if x is the dist ance between the leftmost and r ightmost points,
then we est imate t he width of the region as

L '" (N + l)x.
N - 1

(3.42)

If the dens ity is really constant, we can get much better estimates by uti­
lizing all the sample points. IT t he density varies, however , we would like to
estimate how far the interval extends beyond t he leftmost sample by using
only samples near the left end. Notice that the extension of the interval
beyond the leftmost po int is L 1 and t hat this is equal on average to the
distance between the first and second points L1 - L1• A reasonable proce­
dure to apply when the density varies is to extend each boundary of the
hypercube out from the first sample poi nt it hits by a distance equal to
that between the first and second sample points.

Error bounds . Many of the algorithms in later sections create struc­
tures from sample inputs that are meant to deal well with future inputs
drawn from the same distribution. A useful proposition from [1321, based

304 Stephen M. Omohundro

on the Chernoff inequality may often be used to bound the probability
that there is a large set of inputs from an unseen part of the input space.
L(h, S) is defined as the smallest number of independent trials, each with a
probability at least h-1 of success, such that the probability of fewer than
S successes is less than h-1 • For integers S ~ 1 and real numbers h > 1,
the proposition states that L(h, S) $; 2h(S +In h). If there ar e S categories,
by choosing L sample points, the proposition guarantees with probability
h- 1 that the categories from which no samples have been drawn have a
combined probability of less than h-1•

Bin filling time. When the categories are equally likely, we may do
much bet ter than this bound on average . IT we draw samples from S equally
likely categories, then after we have samples from j of the categories , the
probability of sampling a new category is (S - j) IS. The mean number of
trials required to achieve this success is 8 /(8 - j). The average total time
to draw a sample from each category is then:

8-1 S
L S- ' = SH s ,
;=0 J

(3.43)

where Hs = l:f~l(l/i) is the Sth harmonic number. It is easy to see that
In S < H s $; In(S + 1) by comparing the sum of l iz with its integral. The
average number of trials needed to draw one sample out of each of S equally
likely bins is therefore less than or equal to S(lnS + 1).

3.4 Building data structures

We now consider the problem of building the data structures that we have
described. Let us begin with the one-dimensional structures. As in choosing
a representation, in the building of structures there is also a subtle interplay
between using the structure of the stored data and the structure of the
embedding space .

Bucket sort. The address-based structures are extremely easy to build.
In most cases, a single pass is made through the data in which each entry
is simply inserted into the proper location. For example, once an array is
declared and filled with null pointers, we may fill it in a single pass through
the dat a. The array location is obtained directly from t he key of the ent ry,
and the data is inserted at the head of the linked list stored there. When
the data is uniformly distrib uted, each list will have only a few entries. It
is useful to note that in this case we may make a single pass through the
array to read the data entries off in sorted order. The discussion of the
binomial distribution in section 3.3 shows that uniformly distributed data
may therefore be sorted in only linear time.

Distribution sorts. In building the two level array, we must decide
on the number M . of sub-buckets into which each top level bucket b should
be split. In [941 it is suggested that the data first be subsampled to obtain
statistics on which to base the choice of the M" . Every nth element is used

Efficient Algorithms with Neural Network Behavior 305

to incre ment a counter in the corresponding top level bucket . The counter
value in each bucket div ided by t he size of t he subsample, estimates the
probab ility of the corresponding bu cket . The discussion of bin est imation
in section 3.3 tells us how good t his estimate is likely to be for a given
dist ribution . A single linear pass through the top level array can t hen parcel
out t he desired tot al number of sub-buckets according to t hese estimates .
The computed M1/ s are stored in each top level array slot along with a
pointer to an array of size M tI• A single pass through th e dat a can now
insert each element into the proper sub-b ucket. Again, in a sing le pass
the dat a may be read out in sorted order. This procedure can be used to
sort dat a that is distributed according to a var iety of distributions in linear
ti me . In all cases [941 finds this algor ithm to be substantially faster than
the faste st implementation of quicksort.

Building tries. Tries may be built by sequent ially inserting each ele­
ment. One begins by initi alizing t he root array wit h null pointers. Elements
are added to the buckets determ ined by t heir addresses until a bu cket gets
larger than a desired size. A new nod e on the next level is then created
and the entries in the bucket are redistribu ted into the correct locations .
The average t ime to create a t rie with N nodes is N log2N . IT the branch­
ing number of a trie is a power of two, then the array locations needed in
inserting an element are given by substrings of the binary represent ation of
the address. T he structure of th e tri e is independent of the order in which
elements are inserted.

Building trees . To build a binary tree, we must choose the partitioning
values at each nod e in addit ion to inserting the data elements. To obtain
optimal search times, we would like the probabili ty of going to th e left
at each node to be equal t o th at of going to the right. As we showed in
sect ion 3.3, this behavior is best approximated by bu ilding a balanced tree,
i.e. the buckets should be divided in such a way that ha lf of th e elements
contained in them are to the left of the par ti t ion and half are to the right.
This suggests an approach to building a balanced tree in wh ich we first sort
the da ta items . Let us assume that sort ing produces an N element arr ay
of pointers to data elemen ts in which t he pointe r stored in the ith pos it ion
points to the ith largest element. The tree may be built recursively. If
there is only one data element, the tree consists of a leaf with a po inter to
that element. Otherwise, the root part it ioning value is be taken to be the
element stored at array location lN /2J, the left po inte r points to the tree
built over the elements with indices less than th e par t itioning element and
the right pointer points to the tree built over elements wit h ind ices greater
t han the partitioning element . For the sort, we may use one of distribution
sorts described above, or quicksort which has a st ruct ure quite similar to
that of the tree.

Quicksort . In building up the tree, the partitioning value is the median
of the stored values. Instead of sor ti ng all the elements to begin with, we
may at tempt to find this median value directly. This approach will be useful
in building multi-dimensional trees. To und erstand how to find the median

306 Stephen M. Omohundro

efficiently, we must first consider t he mechanism underlying qu icksort (561.
In quicksort we cho ose a random element e and partition the original set
into those elements less than or equal to e and those greater than e during
a single pass t hrough t he data. The two partit ioned pieces are recursively
sorted us ing quicksort and the res u lting lists are concatenated. A randomly
chosen element is a rough estimate of the median of the set. We can increase
the likelihood that the choice is close to the median by randomly choosing
three or more elements and partit ioning on the middle element. If the
partition value really is near the median, then the two halves will each
have roughly half the elements. In t his case, the recursion ends after log N
stages. Each element is examined during each stage causing the ent ire sort
to take average time N log, N.

Median finding. ITwe are only interested in finding the median value,
we can get linear time performance using a very similar procedure [2].
Again we parti tion t he elements into those greater than and those less than
a randomly chosen element. By counting how many items are in each group,
we can determine which group contains the median element. IT less than
half of the elements are in the lower partition, the median is in the upper
group and ot herwise it is in the lower group . In this situation we need only
recurs ively consider one of t he two partitions. ITit is the lower one, we look
for its IN/2Jnd element. If it is the upper one, we look for the element
whose rank is lN /2J minus the number of elements in the lower partition.
On average, we again have log, N stages, but now each stage only examines
about half the elements examined during the previous pass . The average
total number of steps is N + N /2 + N /4 + ... which is of order N . The
same approach may be used to find the nth largest element in linear time,
for arbitrary n.

The same idea may be extended to finding the median in probability of
a set of elements which are exp licitly assigned probability weights . Denote
the probability of each dat a element d by p(d). Such quantities may have
been collected during a statistics gather ing phase. We want to find an
element whose probability of being larger t han a randomly chosen element
is as close as possible to 1/2. We apply the same approach as above except
that du ring each stage we count the total probability instead of the number
of elements. For example, at the first partition we choose the smaller half
if its total probability is greater than 1/2 and the larger ha lf otherwise.
Again the median may be foun d in linear time on average.

To build a binary tree using the med ian selection approach, we again
proceed recurs ively. IT t here is a single element, the root just points to
it. Otherwise, we select the median at the first stage and partit ion the
elements into those smaller than it and those larger than it. The algorithm
is applied independently to t he two halves and the root is made to po int to
the two resulting trees. The time for this procedure is aga in N log2 N since
there are log2 N stages and 2i medians are found in sets of size N /2i at t he
ith stage. The act ua l amount of work required is a constant factor greater
than in the quicksor t approach, but this approach generalizes to bu ilding

Efficient Algorithms with Neural Net work Behavior 307

multi-dimensional trees.
Building grids. The address based multi-dimensional structures can

be built just like the one-dimensional ones. Grids and multi-level grids
can be built just like arrays and tries. To build adaptive k-dimensional
grids, we build k one dimensional structures, one based on each of the
coordinates. The array is then allocated and the points are inserted by
sending their coordinates through the one-dimensional structures. One can
think of this as projecting the points onto each of the axes and choosing
equiprobability part itions for this projected distribution of points. For k-d
tries, the splitting dimension needs to be chosen for each node. The issues
here are t he same as for k-d trees, which we discuss next.

Building k-d trees. The k-d tree will be used in many of the mod­
ule algorithms. In typical applications the leaves will store a the set of
sample data points that lie inside the corresponding hyp er-rectangle. The
partitioning of the tree is chosen to reflect the probability distribution of
the stored points. In the applications, the tree should be approximately
balanced and each leaf region should be approximately cubical and should
contain approximately the same amount of probability densi ty. The vol­
ume of a leaf reg ion at a given point should be approximately inversely
proportional to t he probability density there. If this can be accomplished,
the tree lets us access da ta according both by where it is and by how it is
distributed. This will allow us to implement a variety of usefu l associative
functions in the next section.

Given a set of points drawn from a probability distribution, we can bu ild
a k-d tree with the above properties if there are enough points to represent
the distribution well, l.e. the distribution should not vary much between
neighboring data points. We may build a perfectly balanced tree by a
simple recursive procedure that is exactly analogous to the one-dimensional
procedure. There are several heuristics available wh ich may be used to
decide along which dimension a given node should be cut. These heuristics
amount to choosing that dimension in which the points are most spread
out . Near the top of the tree, the distribution is likely to vary considerably
within the region rep resen ted by a node. The most spread dimension may
be defined as the dimension in which the data po ints have the greatest
standard deviation or as the one in which the nth smallest component of
any point and the nth largest component of any point are furthest apart.
Both of these statistics (and a variety of others) can be determined in linear
time and need be based on only a subsample of the data. The techniques
of section 3.3 allow one to estimate how well these statistics are likely to
represent the underlying distribution. Another idea is to form a coarse
grid (say three on a side) and in a single pass through the data determine
the number of entries in each grid block. These sums may then be used
to estimate the most spread dimension. As we get closer to the leaves
of the tree, the probability density becomes uniform within the hyper­
rectangles corresponding to nodes. In this case the dimension in which the
distribution is most widely spread is simply the longest dimension of t he

308 Stephen M. Omohundro

hyper-rectangle.
Once the splitting dimension is chosen, we would like to choose the

discrimination va lue so that half the probability inside the parent's hyper­
rect angle lies to one side of the partition and half to the other side . We
may find this value applying the one-dimensional med ian finding algorithm
or its weighted version to the chosen coordinate of the stored points. ITwe
allow the recursion to proceed to the same depth everywhere, we obtain
a perfectly balanced k-d tree. Each leaf will have the same number of
points in its corresponding hyper-rectangle (plus or minus 1 if the number
of points is not a power of 2). This means that with high probability the
leaf regions contain roughly equal portions of the underlying probability
distribution p.

If the number of points is large enough that the probability distribu­
tion is approximately constant in the hyper-rectangles associated with the
lower nodes, then we can guarantee that the leaf hyper-rectangles will he
approximately cub ical. Because the density in the node regions becomes
constant near the leaves, the construction is well approximated by an al­
gorithm which splits the longest side of a hyper-rectangle exactly in half
on each cut. IT the initial ratio of longest to shortest side is a , then in
k log, a cuts we are guaranteed that no side is less than half the length
of any other side . This is because if there are two sides of length a and
b, then in Ilog,(a/b)l splits, the longer side will become shorter than the
other side but not less than half its length. This condition persists if we
continue to cut the larger of the two in half. We get the bound above in
higher dimensions if we always cut the longest side in half.

4 . Directed discrete modules: associative memory

In this section we consider modules in which the input to output mapping
is specified by a "teacher" and whose outputs are drawn from a discrete set.
We can th ink of the N possible outputs as representing N distinct "mem­
ories ." The set of inputs which produce a given output may be thought of
as the stimuli which are associated with that memory. One of th e poss i­
ble outputs may represent the absence of any memory associated with the
given input. We shall call such an output the null output.

In the simplest circumstance, the teacher provides N - 1 inp ut-output
pairs which are to be associated and the response to any other input is to
be null. We may implement such a map using any of the data structures
discussed in section 3.1. The specified inputs are stored in the data struc­
ture along with their desi red outputs. When the key of an input request
is found in the structure, the accompanying value is output, otherwise the
null value is output. The only issues are the efficiency of access and the
efficiency of storage. Using hash t ables we obtain the best poss ible results:
retrieval in constant expected t ime and O(N) storage.

The situation is slightly more interest ing when the input-output pairs
are presented dynamically. In this case the presentation of inpu t-output

Efficient Algorithms with Neural Network Behavior 309

pairs to be learned is interspersed with retrieval requests. Much of the
development of sophisticated dynamic tree balancing algorithms was stim­
ulated by the requirements of exactly this kind of dynamic data base [801 . If
the module is supposed to have a fixed capac ity, then criteria must be cho­
sen to decide which memory to forget when a new element is to be stored.
Such a choice might be based on query request statistics that can be stored
along with each item. Typical forgetting ru les are to forget the least re­
cently accessed memory or the least often accessed memory. A number of
interesting data structures have been designed which are self organizing in
the sense that the most popular items are eas iest to retrieve and the least
likely items get harder and harder to access (say by moving onto disk) unt il
they are finally forgotten. One of the nicest of these is the splay tree. This
is an ordinary binary tree, but when an item is accessed the tree structure
is altered so as to make the accessed item become the root. The analysis of
t his tree 's behavior shows that on average the tree remains balanced and
the less likely an item is to be queried, the farther it tends to reside from
the root [122J .

4 .1 n nearest neighbor ge neralization

A module generalizes when it produces an output other than null on inputs
which were not directly associated with that output during training. One of
the best techniques for generalization produces the output associated with
the stored input which is nearest the unknown input in the input space
I . Reference [251 shows that the probability of mak ing an error by using
this procedure is less than twice the probability of mak ing an error using
any other procedure based only on sample points. A generalization of this
idea looks at the n nearest neighbors and lets them vote on the output . In
the next section we will consider procedures that interpolate between the
outputs of the n nearest neighbors.

Computing the n nearest neighbors of a point has traditionally been
viewed as an extremely desirable, but very expensive operation. Many
systems compute the distance from the given point to every stored point
and then choose the n points with the smallest distances. Many speech
recognition systems, for example, compare an incoming word with every
word in their dictionaries. Reference [43] suggested using the branch and
bound technique for cutting down the number of needed comparisons. The
data points were to he first clustered and the search for near neighbors
begun in a single cluster. When the nth closest point already seen was
closer than the boundary of a cluster, there was no need to examine the
points in that cluster.

Reference [401 then suggested that k-d trees were an efficient and nat­
ural mechanism for implementing the clustering. This reference proves
that when the nodes are partitioned along the most spread dimension, the
expected number of leaf buckets which intersect the smallest sphere con­
taining a point's n nearest neighbors is only O{n). The branch and bound

310 Stephen M. Omohundro

technique is easily implemented, since the distance to a hyper-rectangle is
the distance to its nearest corner. The logarithmic search to find the leaf
bucket containing an input point takes time log, N. The time to find the
n nearest neighbors is therefore only of order (log, N) + n. The nearest
neighbor is likely to be in a bucket near the query point's leaf bucket.

Reference [63] suggests using what we have called an adaptive grid to
cut the nearest neighbor search time down to 0(1). This reference suggests
using hashing to access the correct grid location but does not say how this
might be done. It appears that the bin merging tec hnique discussed in
section 3.2 is ideal for this application.

We have found that in many circumstances, obtaining the exact nearest
ne ighbor is not important and that a nearby neighbor may suffice. In this
ease, we do not need to implement the branch and bound check. IT there
are enough sample points, the leaf regions of the k-d tree are approximately
cubical and each contain the same number of samples. The nearest neighbor
of a point is very likely to lie in the same bucket as the sample point or in the
neighboring bucket on the side closest to the sample point. By choos ing the
nearest neighbor out of the points in just these two buckets, we make the
search algorithm extremely fast and trivial to implement without sacrificing
much of its utility.

An interesting use for the ability to quick ly retrieve the n nearest neigh­
bors arises when we consider a network of mod ules . As evidenced by the
disease of epilepsy, one of the problems with networks of mutually excita­
tory cells (such as the pyramidal cells in cortex) is the tendency toward
an instability which leads to explosive firing activity. As suggested in 118j
many of the reciprocal bundles of fibers in the brain may function to create
a negative feedback loop among the computational areas. Early areas along
the input-output pathway sho uld generate just the amount of output that
later areas can use. When later areas begin to recieve too much input, they
dampen out the earlier areas via the feedback pat hs. The same idea may
be applied to a network of mo dules. Each mo dule would receive a "level of
activity" input commanding it to produce a set of outputs corresponding
to successively further nearest neighbors of the current input. If the sys­
tem is working on a set of inputs with a straightforward and unambiguous
interpretation, it will quickly generate appropriate outputs. If the input
is more ambiguous, then later modules should increase the activity of the
earlier ones to allow looser and looser interpretations of the input. It ap­
pears that this kind of analog feedback might be quite useful when applied
to information How even in digital systems.

4.2 Classification heuristics

The n nearest neighbor approach always class ifies an input into some cate­
gory. In many circumstances, some inputs should produce the null output .
For example, we have built an optical character recognition system that
should produce null if it is presented with a character which is too unlike

Efficient Algorithms with Neural Network Behavior 311

any it had been trained on. The system begins its computation by quickly
extracting several scale-independent parameters from the pattern of pixels
which make up a letter. It must classify an unknown letter from these pa­
rameters using a data structure constructed on the basis of labelled sample
points in the parameter space. Each character is represented by a swarm of
data points and these should determine disjoint class ification regions. The
nearest neighbor approach will categorize every query with the stored point
nearest to i t.

One way to restrict the extent of the classification regions is to search
for points in a fixed radius of the sample points. Efficient algorithms for
this task are discussed in [161 and [171 . Unfortunately, the opt ima l ra dius to
searc h within varies from region t o region. High probability categories wit h
small regions are likely to be fairly densely covered with sample points while
low probability categories with large regions are likely to be only sparsely
covered.

We have used several variants of the k-d tree construction algorithm
presented in section 3.4 to deal with this situation. The first difference
between these algorithms and the k-d algorithms is that we choose the
splitting dimension and the discrimination value to optimally separate the
categories in addition to evenly dividing up the probability. In the optical
character recognition example, a cut through a hyper-rectangle is given a
score based on how many character categories are completely to one side or
the other of the cut, how even ly the hyper-rectangle is cut, and how evenly
split any categories t hat are cut are.

This cutt ing procedure proceeds until a hyper-rectangle contains only
entries from a sing le class. The resulting leaf hyper-rect angles are then
shrunk down on the enclosed sa mples using the boundary est imation tech­
nique discussed in section 3.3. Thus t he second po int of depar ture from
standard k-d t rees is that the leaf regions do not cover the entire space. In
some situations it may be important to do t he shrinking at each level of the
tree, because the optimal sp litting dimension according to some heuristics
may change after shrinking. The classification regions are represented as
unions of hyper-rectangles and points which fall outside of any leaf region
are classified as null . Classification of a point requires only a single traver­
sal of the tree and is therefore extremely fast. A statistical justification for
a similar approach to classification is presented in reference 119]. Section 6
discusses similar data structures for categorizing data without a teacher.

The fast nearest neighbor classification technique should be useful for
real-time speech recognition. A standard approach to speech recognition
171) is to compute the distance between an unknown word and each stored
sample using dynamic t ime warping. This uses a dynamic programming
algorithm to choose the optimal distortion of the time axis when match­
ing two time series. Unfortunately, the use of warping means that there is
no obvious way to app ly the branch and bou nd technique discussed above
and an unk nown word mus t be compared wIth every stored sample. An
alternative approach is parameterize a time series by arc-length in t he pa-

312 Stephen M. Omohundro

rameter space instead of by time [1301 . This eliminates the warping step; to
compare two words, we nee d only compare two curves in parameter space,
inde pendent of their time parameterization. This allows us to introduce
a distance measure be tween words which sat isfies the triangle inequality.
The samples may be stored in a k-d tree and the nearest match may be
found in logarithmic t ime. Speech recognitio n also appears to be an ideal
candidate for t he shrunken hyper-rectangle classification technique.

Incremental learning In th is section we briefly consider incremental
learn ing. We assume that the module is corrected whenever it misclassifies
an input. A useful heuristic is to use nearest neighbor classification and to
only store those dat a points which are misclassified. Any of the dynamic
mult i-dimensional tree techniques mentioned in sect ion 3.2 can be used to
hold t he points. ITmemory space is an important issue, the data structure
can be pe riodically "cleaned up" by removing redundant data points.

How many data points need to be seen before th e classifications are likely
to be correct? As a first estimate, we may ask how many samples need to
be drawn to get rep resentatives from all the likely types. As d iscussed
in section 3.3, if there are S types and 2h(S + In h) samples then with
probability h-1 the unchosen types have a comb ined probability of less
than h- 1• As we saw in section 3.3, when the ca tegories are equally likely
we need only choose S (lnS + 1) samples on average to draw one from
each ca tegory. If we decompose the classi ficat ion regions into equi-probable
hyper-rectangles using the algorithm above, then ap plying these res ults
to the number of hyper-rectangles in the decomposit ion gives the order
of the expected number of samples needed to ach ieve the desired level of
decomposition.

4.3 Other generalization behaviors

Depending on the application, there are a variety of other useful ways to
access hierarchically stored information. A common situat ion with mul ti­
dimensional data is that only some of the dimensions will be specified. For
example, if we are searching a visual database to do object recognit ion,
then when an object is occluded by another object some of the features will
be unavailable. A partial-match sear ch is a search which retur ns all st ored
items which agree with the query in the specified dim ensions and have ar­
bitrary values in the unspecified dimensions. Rang e searching is a further
generalization in which one wants to retrieve all stored data whose coordi­
nates lie in specified ranges in each dimension. A ran ge search operat ion
returns all data points which lie in a specified hyper-rectangle. A vari ety
of structures which support range searching are discussed in reference [14J.
K-d trees may he used for efficient range searching by examining only those
leaves which intersect the query hyp er-rectangle. One proceeds from the
root by taking the left branch, the right branch , or both depending on
which intersect the query region. For cubical range regions, the number of
entries that must be examined is of order log2N plus the number of points

Efficient Algorithms with Neural Network Behavior 313

returned.
Another useful kind of query combines range searching with nearest

neighbor searching. Some dimensions are given specified ranges and in
others we are to find the closest m points. This kind of que ry can be imple­
mented on a k-d tree in an obvious way. The branch and bound is carried
out only in t he nearest neighbor directions and all bins intersect ing the
specified ranges in the range dimensions are examined. This type of query
is used in an alternative ap proach to learning and evaluating nonlinear
mappings which we will discuss at the end of the next section.

A final important type of query is partial match when the component
in each dimens ion is chosen from unordered sets with only a few eleme nts .
For example, th e inputs might be Boolean vectors in which the dimensions
correspond to features and the components of the vector specify the pres­
ence or absence of each feat ure. A query specifies the values of some subset
of the components and the search is supposed to return all stored entries
which have these va lues in the specified locat ions. Because the space is dis­
crete, the geometric approach discussed above does not immediately help .
Reference 11111 suggests concatenating a few bits from each component of
the key to make up a bin label. A partial match search will specify some
of the bits in the bin label, and the search examines the contents of all the
bins with the specified bits by letting the other bits run over all possibili­
ties . Reference {3] investigates the optimal number of bits to choose from
each key when the queries are governed by a known distribution. Further
practical cons iderations are d icussed in the references [73,74]. Another ap­
proach is to store the records in a k-d t rie. This has the ad vantage t hat
if the specified bi ts are near the to p of the t rie, lar ge chunks of the data
base are pruned. Reference [13] discusses t he choice of trie discriminators
in this case.

If there are a lar ge number of binary dimensions in the key and each
has a low probabili ty of being true , then using a bin lab el made by oring
dimensions together is useful. If the query specifies that a certain dimension
is set, then we need not consi der keys in bins whose label does not have the
corresponding bit set. This situation ar ises, for example, when searching
a database of documents for those documents which contain a given set of
words or when searching a visual dat abase for those objects which contain
a given set of feature pairs joined in a specified relation.

s. D irect ed continuous modu les: smooth m a p p in gs

In t his section we discuss an important class of modules for building sys­
tems that interface with the physical world. T hese modules can efficient ly
represent , evaluate, and learn nonlinear mappings from one space to an­
other. Such a capability is of critical importance in applications such as
dynamic, adaptive control of robo t manipulators or au to nomous veh icles in
changing environments and t he decoding of visual and audito ry dat a into
geometric information about the objects which generated it.

314 Stephen M. Omohundro

A mapping assigns to each point in the input space I (a lso ca lled the
domain of the mapping) a point in the output space 0 (also called the
range of the mapping). We will assume that the domain and range are
subsets of Euclidean space. If the domain has dimension k and the range
has dimension n , t hen Ric and Rn denote the Euclidean spaces in which
they are embedded. We specify a point in either of these spaces by giving
its coordinates, k real numbers for a domain point an d n for a range point.
The software or hardware modules we wish to construct take as input the
k numbers specifying a dom ain point and should produce as output the n
numbers specifyin g a range point.

In the simplest of mappings the input and output are linearly re lated.
IT VI is sent to UI and V2 is sent to 1£2, then for any real numbers Q and {3
for which av! + {jV2 is in the domain, a VI + {3V2 is sent to £Xu! + {3u2 . Most
mappings are not linear, b ut linear mappings often make useful approxima­
tio ns. For smooth mappings, if tL is sent to u, then small dev iations from
u. map approximately linearly into small deviations from v. The smaller
the dev iation, the better the ap proximation (by Taylor's theorem) . The
linear map of deviations is ca lled the linea rization or the Jacobian of the
or iginal nonlinear map at the point u, In many physical systems, the origin
in Ric represents the absence of activity and the origin in R" represents
the absence of response. In this case the response to small inputs will be
approximately linear.

The idea proposed here is to represent an arbitrary nonlinear mapping
by a piecew ise linear mapping. We have seen many effective data structures
which hierarchica lly decompose the input space and support efficient iden­
tification of t he partition reg ion containing a query poi nt. In this section
we will approximate an arbitrary mapping by one which is linear wit hin
each region and will choose the decomposit ion to adapt to the nonlinear­
ities in the map. In most situations of inte rest, the mappings are very
smooth, curving only slightly in mos t regions wit h occas iona l singular ities
or discontinui ties sca ttered about the input space. We will adapt the map­
ping rep resentation to have high reso lut ion in regions of high curvature and
low reso lution elsewhere. We will present the representation algorithms in
te rms of a desired error E. The smaller the desired error, the finer the
required decomposition of the input space. We will estimate how many
decomposit ion regio ns are needed as a function of the desired error.

In a complete intelligent system, the mapping un its may only need to
give a very crude approximation to the actual mapping. Different mapping
modules will often be used in conjunction with each other and they will
often operate on partially red undant data. The ensemble response of a
collection of units can be much more accurate than any individual unit .
In another common circumstance, the mapping units will be embedded
in feedback loops . As long as their outputs predict roughly the correct
direction for a process to proceed, the feedback will vary the input so as to
eventually cause t he desired response.

It is worth contemplating the maps we must presumably use in even

Efficient Algorithms with Neural Network Behavior 315

so simple a task as picking up an object. We probably have a variety
of components in our visual systems which together map the visual input
associated with the object into our internal model of its position in three­
dimensional space. This map is likely formed by combining mappings based
on a variety of visual cues such as stereopsis, size information, shading
information, information from the relative image motions under small head
movements, depth of focus of the eyes and relative angle of th e eyes. The
mapping is not precise, as is indicated by our inability to exactly estimate
the distance to the object. Based on proprioceptive information we map the
sensed joint angles and muscle extensions of our arm into its position in our
internal model of the three-dimensional world. The desired trajectory and
final position of the arm must then be computed and mapped into muscle
control coordinates. An estimate of how accurate this map is without the
benefit of visual feedback may be obtained by reaching with closed eyes.
With visual feedback we correct for inaccuracies in the muscle to space
map. Once we come into contact with the object, tactile information is
also mapped into the space where the goal state is computed.

Vision-based Robotics. We are currently using the techniques de­
scribed in this section to develop a vision-based robot manipulator system
that learns the visual impact of its actions. A video camera produces an im­
age of the robot arm from which the bas ic parameters describing the visual
position and angle of each limb are extracted using the image processing
techniques described in section 7. The system also controls the joint angles
of the arm. Using the algorithms in this section, it will learn the mapping
between the joint angles and the parameters of the arm in the image. In
this way it will be able to use visual feedback in tasks such as picking up
objects and following moving objects at a specified distance.

5.1 One-dimensional mappings

Let us begin by understanding mappings from a one-dimensional space
into another one-dimensional space. The one-dimensional problem arises
in any higher dimensional context when all but a single degree of freedom
is constrained. Some examples of one-dimensional maps that might be
important to learn include the relationships between: the angle of an arm
joint and the distance to its tip, the observed intensity of a patch of surface
and the angle between its surface normal and the direction to a light source,
the response of a tactile sensor and the force applied to it, the Doppler pitch
shift of a sound source and the rate at which the source approaches, the
divergence of the optic flow in an image as an object approaches [l.e. the
rate at which the size of objects grows as they approach) and the time to
impact, and the rate of air flow needed to produce a given pitch.

Choose coordinates in the domain so that the inputs lie in th e unit in­
terval [0,11. Let the nonlinear mapping from [0,1) to R' be denoted by f
and the value at a point x E [0,11 by f{x). We wish to construct an approx­
imation to f which has an error of less than E: with high probability. We will

316 Stephen M. Omohundro

denote the approximate function by j . We will choose the approximation
to be equal to f at N "knot" points: Xl = 0, %2, .• . , XN-h XN = 1. i will
he defined between these points by linear interpolation. IT Xi ~ X ~ Xi+h

then
j(x) '" f(x,) + (x - x,) f(x'+I) - f(x,). (5.1)

Xi+1 - Xi

We will choose N and the points X i so as to keep the error below E. IT
possible, we would like to keep N as small as possible cons istent with this
requirement so as to minimize the storage space and search time requ ired
for the data structure.

Any of the data structures discussed in section 3.1 may be used to
efficiently implement evaluation of the approximation j. Given a point
x E [O, lJ we would like to quickly find the subinterval [x;, ""+II in which
it lies. To build a static structure representing i using comparison based
searching, we could build a balanced binary tree with the Xi in sor ted order
as leaves. We may either directly store the value of f at each point with
the corresponding leaf and perform. the interpolation comp utation on each
retrieval (equation 5.1) or we may store the coefficients

and x ·
b = f(x;) - • (1(",,+,) - f(x,))

Xi+l - Xi

(5.2)

(5.3)

along with the left endpoint of each interval so that we need only compute

j(x) = ax + b (5.4)

to complete an evaluation. As was discussed in sect ion 3.1, the t ime to find
the correct interval is O(log, N). Because the interpolation takes time of
0(1) , the cost to evaluate j using this technique is o(log, N). We might
also use the address computation structures described in section 3.1 to find
the correct interval in constant time. In this case the data structure might
require us to use suboptimal intervals and so require more of them.

5.2 The required number of intervals in one dimension

Let us now discuss the number N of intervals required to keep the error
below f. Most of the mappings t hat arise in practice have a slowly varying
slope. For example, one typical source of nonlinearity is the t rigonometric
relat ionship between lengths and ang les. This shows up for example in re­
lati ng joint pos itions and angles or object size and orientation. In examples
of this type a sinusoidal relationship typically causes the slope to vary only
from 1 to -lover the entire range of the angular variable. In many other
examples, the nonlinearity arises only as a small correction to a linear map.
In these examples as well as many others, the slope varies slowly over the

Efficient Algorithms with Neural Network Behavior 317

(5.5)I~;,I ~ C

range of the variables. We may take account of this by assuming that the
rate of change of the slope, i.e. the second derivative of the map, is bounded
by a constant C. We will compute a number of desired quantities in terms
of this constant.

What is the maximum error in approximating a function f which sat­
isfies

by linearly interpolating its values at the two points x = Xl and x = X2?

The error e(x) at each point x is given by:

I
f(x,) - f(Xl) Ie(x) = f(x) - f(Xl) - (x - Xl) .

X2 - Xl
(5.6)

We would like to determine the maximum of e over all points x in the
interval for that f for which it is largest. It is clear that we can get larger
errors if e is entirely of one sign over the interval. Let us take it to be
positive. e(x) then satisfies the following:

e(xl) = 0, (5.7)

e(x,) = 0, (5.8)

and

Id'el = Id'fl < C. (5.9)dx 2 dx 2 -

Let us show that the function with the largest error has constant second
derivative -C over the range. Consider the slope of e. This must vanish
at the maximum of e and can increase at a rate no greater than C as
we approach the endpoints of the interval. The height of the peak in e
is the integral of the slope over this range. Thus we must maximize the
area under a curve of bounded slope. This maximum is achieved when the
slope equals the bound. Therefore the worst possible error is given by the
quadratic function:

C 2 C CXIX2
e(x) = --x + -(Xl + x,)x - --.

222
(5.10)

The largest error occurs at the midpoint:

Xl + X2
x=---

2
(5.11)

and has the value

~(x, - Xl)'.
8

For this error to be less than the desired to, we must have:

(5.12)

(5.13)

318 Steph en M. Omohun dro

This then tells us that the largest number of intervals we could possibly
need is:

N = 1 = rc (5.14)
Ix, - xII Y8..-

This grows more slowly th an the inverse of th e error as e ---+ O.
We may obtain a better estimate for the required number of po ints if

we look in the asymptotic limit as E --+ O. In this case, the spacing between
neighboring points shrinks. Eventually, the samples become so dense th at
the second derivative is approximately constant between any two points.
In this case the argument above gives the spacing, where at the point x we
take C to be !,s second der ivative at the point x. The better estimate is:

(5.15)N(.) = vk f ~ 1~;'ldX.
This ho lds even when the second derivative is not restricted to be less than
some fixed bound. T he asymptot ics are on ly valid, howev er, for choices of
t which get smaller and smaller for larger and larger second derivati ves.

It is easy to see that isolated discon tinuities in the function or its deriva­
tives do not change the required number of knot points asymptotically. We
need on ly include two nearby po ints in the case of a discontinuity and on ly
the corner po int in the case of a discont inuous change in slope.

5.3 Static methods for choosing I -D kn ot points

There are several strategies for building a data structure to represent a de­
sired mapping. In the best of situat ions , a module may requ est the correct
output for arbitrary inputs . This occurs, for example , when a syste m is at­
tempting to learn a mapping which describes the sensory result of a motor
action. By trying out the action, t he system may sense the result. Another
useful inst ance ar ises when there is a complex analyt ical description of a
desired mapping which is too time consuming to evaluate dur ing actual
running . We might want to replace th e analytic function by an approxi­
mate mapping which can be evaluated very quickly. In this "stat ic" case ,
th e system would be allowed a learning phase during which it evaluates
th e an alytical expression at arbitrary points. Later in th e sect ion we will
investigate t he dynamic situation in which th e system must make use of a
given random sequence of input-output pairs.

In the static case we might hope to approach the optimal numb er of
knot points der ived in sect ion 5.2. We may, in fact, achieve this value
asymptotically for small E by mak ing a single linear sweep over the interval,
determining successive knot points in order. For small t the funct ion is well
approximated over an interval by the first three te rms in its Taylor series
approximation taken at the center of the interval. Let us deno te the cente r
of the interval of interest by :

(5.16)
2

Xn.,-+-'-,:X,-,.-,-+~l .x = -

Efficient Algorithms wit h Ne ural Network Behavior

For Xi :::; X ~ XHh f is asymptotically well app roximated by:

dfl 1 d'flf(x) '" f(x) + - x + - -, x'.
dx :I:=~ 2 dx :I:=~

319

(S.17)

As we have seen, when we linearly interpolate this approximation between
the values at the endpoints, the worst error occurs at the midpoint X. One
strategy is to probe for t he next knot point Xi+! by attempt ing to make the
following function vanish:

e. (S.18)

To the extent that the approximation is valid, t his will give th e larges t legal
interval start ing at XQ. There are a variety of techniques for finding zeros
of functions numerically [1061. The basic idea is to use binary search or
interpolat ion search to hop from side to side of the zero in ever shr inking
jumps until it is approximated sufficiently accurately. We may allow for
the inaccuracies in this process by searching for an c slightly less than the
desired one. An approach which generalizes well to higher dimensions is to
successively halve the intervals until the approximation is good enough.

Sometimes we will be interested not in finding an approximation to
within a fixed error but rather in finding the best approximation possible
with given resources (such as memory space). This is probably t he task
that neural systems face, where a fixed number of neurons must be used to
accomplish tasks as well as possible. As we saw above, given N po ints we
should distr ibute t hem accor ding to the dist r ibut ion:

vp(x) = v~ I~;'I .
where l/ is chosen to satisfy the normalization constraint :

N = v J.' p(x)dx .

(S.19)

(S.20)

We may apply the technique which was introduced in the context of prob­
ability distributions in section 3.4 to this situation. The idea is to est imate
p(x) using an input sample and to base the partition of the interval on this
estimate. There are a var iety of numerical techniques which may be used
to estimate p(x) using values of the function at points in a neighborhood
of the point where the estimate is des ired.

The simplest approach to choosi ng knot points would beg in by est i­
mating p(x) at m points y, evenly spaced in the int erval. We would t hen
comp ute R, the sum of p in all inte rvals:

m

R = I>(Y,).
i=1

(S.21)

320 Stephen M. Omohundro

We would then parcel out knot points to intervals according to the density
of p that they contain. Let us denote the number of points assigned to
interval i by N i • The following expression gives each successive N, in terms
of the previous ones:

I:Nij.
i=1

(5.22)

The N i may be uniformly distributed in their intervals to give the knot
points.

As we saw in section 3.3 , we may do better by estimating p(x) with more
points in regions where it is larger . We may accomplish this by recursively
decomposing the interval into halves which are expected to have an equal
number of kno t points. The estimation and decomposition procedure is
repeated until there are N intervals. Because the same number of samples
is taken from each of the segments of the partition at a given level of
recursion, smaller segments (which have a higher density of p) will have a
larger sample density than large segments.

Incremental methods. A module will often have to form the data
st ructure representing a mapping without hav ing control over the input­
output pairs it is presented with. In this case the structure must be built in­
crementally as the poi nts arrive. The most straightforward approach would
simply store each input point in the data st ruct ure along with the corre­
sponding output. When an input request arrives, the two closest stored
inputs would be retrieved and their corresponding outputs used to inter­
po late. Any of the dynamic data st ruct ures suggested in sect ion 3.1 could
be used to maintain the points. If the inputs are random, a simple binary
t ree is pro bab ly sufficient in practic e, but it may need occas ionally to be
reb uilt to maintain balance .

If th e inputs are randomly chosen from a uni form distribut ion th en we
can est imate the number of inputs needed to achieve a certain accuracy. In
equ ation (5.14) we gave the maximum number N of uniform sized inte rvals

that cou ld be required to achieve a desired accuracy of iG / 8f.. In section
3.3 we showed that th e average number of samples nee ed to choose one
from each of N equally likely bins is less than N (In N + 1). The average
number of samples needed to obt ain an error bound of f. is therefore less
than

rc (!:.In C + 1) .VB, 2 8,
(5.23)

A t echn ique to adapt ively st ore mor e points in regions where th ey are
needed is to first test each input-output pair t o see if the current st ructure
predicts the out put to within th e desired error limit. The pai r is added to
th e data structure only if the current struct ure does not predict it suffi­
ciently well. Fas te r convergence may be obtained if the error req uirement
a pair must satis fy to avoid inclusion is more stringent than the desi red
error requirement . A good choice is to require prediction to with in e/2 for

Efficient A lgorithms with Ne ural Ne twork Behavior 321

exclusion. For mappings well approximated by linear ones, this technique
can drastically cut down on the number of stored points.

When the sam ple distribution is non-uniform, we may wish to know how
many samples are required to get prediction within e with high probability.
We saw in section 3.3, that if we draw 2h(N + In h) points, then of the N
bins, the probability the missed bins have a combined probability greater
than h- 1 is less than h-1 • If we want the error to be less than e on all
but a part of t he space which has probability less than. with a probability
greater than 1 - e, we need only use

~ '/2 2- e- -- lne
2 •

(5.24)

samples. Note that th is is typically larger than the average number requ ired
when the d ist ribu tion is uni form.

5.4: Multi-dimensional mappings

The k-dimensional situation is very similar to the one-dimensional one. We
will approximate a smooth nonlinear mapping from one multi-dimensional
space to another as a piecew ise linear mapping. The input space will be
decomposed into regions on which the approximation is linear. We saw in
section 4 that the n nearest neighbors of a query point in a stored set of N
points could be found in average t ime log, N + n by using k-d trees. This
result suggests the first approach. We store a collection of input-output
pairs using a k-d tree. To process a query point, we beg in by finding its
k+ 1 nearest neighbors. The approximate output value at the query point is
given by linear interpolation be tween the output values at these k + 1 near­
est neighbors. Linear interpolatio n on a k dimensional space is described
by a constant offset and k x k matrix for each component of the output vec­
tor. The interpolant may be computed from the stored va lues by standard
techniques (e.g. reference [106]). We may either explicitly compute the
interpolation coefficients for each region at query time or precompute them
and store them along with the sample points. An intermediate choice is to
initially compute interpolants when queries demand them, but to cache the
computed results. For large k the number of regions may make this storage
prohibitively expensive.

Number of points. The analysis of the required number of stored data
points is quite analogous to the one-dimensional case. The k + 1 nearest
points to a query typically define a simplex [i.e, a generalized tetrahedron)
surrounding the point . As in the one-dimensional case, given a bound on
the second derivatives, we would like to est imate how many stored points
are needed to achieve an er ror bound of e. Let us again denote by C the
bound on the second derivative of the output vector when comp uted along
any straight line in the input space. For real-valued outp uts, C will be
t he largest eigenvalue of the Hessian matrix of the mapping. For a given
choice of k + 1 points, the error e(x) representing t he difference between

322 Stephen M. Omohundro

the original mapping and the linear ap proximation is a function with the
same second derivative bound C which vanishes at the points in question.
The error is a distance in the output space, the const ant C is the ratio
of a distance in the output space to th e square of a distance in the input
space , and th e scale d of the stored points is a distance in the input space.
Dimensional an alysis immediately tells us that the scale d needed mus t
be of order Vf / C. The maximum number of st ored points needed in k

dim ensions is t herefore N -lid' - (C/ f)' !'.
To work ou t a specific example, let us assume t hat the stored points lie

on t he ver t ices of a uniform grid with linear spacing d. In this case, the
sets of po int s with t he same k + 1 nearest neighbors (called t he faces of the
k th ord er Voronoi d iagram [12lJ) within a grid cube are the 2' subcubes of
side dJ2 made by partit ioning th e grid cube in half along each dim ension.
The function with the maximum error inside one of these subcubes has th is
maximum at the cente r of the grid cube. We may bound the erro r by first
bounding the va lue at the center of the k - 1 simplex determined by taking
all but the closest vertex. In this simplex, the max imum has zero first
derivat ive and so we may use the same method as was used above for the
one-dimensional case. Once we compute th e maximum at the cente r of th e
simplex, we can bound the growth along th e diagon al of th e cube starting
at th e closest corne r , passing th rough the center of th e simplex and finally
reaching the maximum value at the center of th e cube. Carrying out these
calculat ions gives the bound

(5.25)

Not ice that when k = 1 we get the one-dimensiona l bound. In the uni t
cube there are N = l/dk

""" f.- k!2 of these grid cubes as f. vanishes . Making
estimates exact ly as in t he one- dimensiona l case shows that in an average
of order

- f.-k/2 In f. (5.26)

samples, we will have drawn one from each grid cube. For nonuniform
distributions we may bound the pro bability of having this density of samples
as above.

Cheaper versions . A coarser, but cheaper, alternative to linearly
interpolating between the k + 1 nearest neighbors is to use the same linear
approximation throughout an entire leaf region of the k-d tree. If the
leaves contain more than k + 1 points, then th e linear approx imation may
be chosen to be a least squares fit . In this case, th e matrices and offsets
could naturally be stored in the leaf. An approximation err or could be
maintained and when it exceeds a preset threshold, th e leaf could be split .
We may either split leaves by cu tting across the direction in which the
est imated second derivative is largest, or , as in section 4, we may split the
leaf along the longest dimension, to yield roughly cubical leaves. As in
the one-dimensional case , we may assume that the sample points are all

Efficient Algorithms with Neural Network Behavior 323

presented at once, and we may build an approximate ly optimal t ree by
recursive split t ing or incrementally adding sa mples, including them only
when th ey are not already predicted sufficiently well.

An even cheaper version would just assign to a point the same out put
as its nearest ne ighbor. A more refined vers ion would ass ign the average
(perhaps weighted by a function of distance) of the n nearest neighb ors.
Since t he kth order Voronoi diagram ty pically has many more regions t han
sample points, we get a finer approximation to the funct ion wit hout the
expe nse of interpolation.

Learning the gr aph. There is ano ther approac h to learning, rep re­
senting, and evaluat ing mappings. In mathematic s it is common to repl ace
a mapping from I to 0 by its graph, a surface in t he product space I x O.
This product space has a dimension which is the sum of the dimens ions
of I and O. Each of its points represents a pair of points in the original
spaces, one from I and one from O. An input-outpu t training pair is thus
a point in I x O. We may store the training points by decomposing th e
whole product space I x 0 with a k-d tree. To find the output correspond­
ing to a new input, we use the mixed nearest neighb or and range search
technique discussed in section 4.3. This version is capable of learning re­
lationships which are not mappings, and allow one inpu t to correspond to
several outputs.

5.5 Applications of mapping modu les

There are a variety of important ap plicat ions for piecewise linear map ping
modules. These include lear ning geometric relationships, projecting out
unwanted informat ion, comb ining data from different sources, and learnin g
to predic t spatial and temporal sequences.

Object and state recognit io n. Many recogn ition t asks must dea l
with objects t hat have different states. Sometimes one wants to identify a
specific object independent of its state and sometimes one wants to identify
the state independent of the specific object. For example, speech recog­
nition t ries to classify words independent of the speaker , while speaker
recognition tries to classify the speaker independent of the speech. Sim­
ilar dichotomies are evident in problems such as handwri t ing recognition
versus handwriter recognit ion, face identification versus facial express ion
identification, determination of illumination versus determ ina t ion of sur­
face refiectivity, identification of textures independent of viewing geometry
versus using identification of the geometry from the text ure variation, iden­
tification of object color versus illumination color , etc . An important class
of smooth nonlinear mappings projects out one of these components to give
the other. Often what is thrown away in one of the projections is exact ly
what is kept in the other. For example, in sp eech recognition one might
want to do time warping and pitch renormalization to convert a spoken
word into a more speaker independent form . The parame ters of th is trans­
formation may be excellent clues as to the identity of the spe aker . Similarly,

324 Stephen M. Omohundro

one might translate, rotate and scale the image of an object to put it into
a can onical form for recognit ion. The paramete rs of this transformat ion
identify the geometric placement of th e object. The mappin gs which per­
form these proj ections are a very important class an d the algorithms in this
section coul d be used to learn them. We are currently bu ilding a system
based on these modules which both learns to discriminat e textures and to
extract geometric information from the var iation of a single texture [57J.

Sequence p rediction . A vitally impo r tant task for biological organ­
isms is the predicti on of spatial an d temporal pat terns . Much be havior con­
sists of p erforming appropriate ac tions after perceiving sequences of events.
This includes communicat ive functions such as speech an d birdsong and lo­
como tive functions such as walking and swimming . Similarly, mu ch of the
activity of science consists of forming mo dels to make predictions about
future events on th e basis of observed data . Reference [32] will report on
indep endent work which shows that piecewise linear maps can be used in
pr ediction of physical systems . The nonlinear mapping modules d iscussed
in this section can learn to perform predicti on if they are presented with
several successive states in a sequence as their inputs . If a sequence is pre­
d ictable on the bas is of the presented number of states, then t he simple
learning algori thms discussed above will produce a piecewise linear pre­
dictor for it . If th ere are several "branches" which a sequence may take,
depending on information not available in the observed previous states,
then we may use the graph learning technique t o obtain a comp lete list of
likely predictions in any st ate. This type of system can in particular be used
to represent and learn the behavior of determinist ic and non-deterministic
finite state machines. It would be interesting to investigate wheth er th is
kind of mechan ism is su fficient for grammar acquis it ion.

Information comb inat ion . A final application for map ping modules
is learning to combine mul tiple sources of informati on optimally. Much of
the perceptual informat ion used in machine vision, for example, is intrin­
sically ambiguous when taken alone. It appears that the ambiguity in one
mod ality may be resolved by information from other modalities. For ex­
ampl e, there are a large number of visual cues for ext ract ing object shape
including shading, contour, texture, surface contour , motion, and ste reop­
sis . A fundament ally important task is to comb ine th ese different kinds of
information in computing an interpretation of an image. Current attempts
at do ing this tend to simply use rath er ad hoc weighted voting schemes ,
but one would really like a system to learn the ap propriate response to
different combinat ions of inputs. T he mapping modules described in this
section ap pear ideal for this task .

6. Undirected d iscr et e modules: category forma tion

In this section we discuss undirected algorit hms which produce a discrete
set 0 of outputs. Let us denote the numb er of non-null outputs a module
can produce by 101. The set of inputs which produce a given output may be

Efficient AlgorUhms with Neural Network Behavior 325

th ought of as a class or a category. These modules mus t create categories on
the bas is of the observed statis tics of th eir inputs. T his type of task is often
called clus tering. We would like the regions corresponding to each catego ry
to be roughly cubical and to divide up the input probability distribution
evenly. We would like enough out puts so that the probability dens ity in
each regio n is approximately uniform. These are almost exactly the goals
for the k-d t ree leaves described in sect ion 3.4. Thus th e process of build ing
a k-d tr ee gives a natu ral clustering algorithm if we consider the po int s in
the leaf regions as clusters.

Shrin k a nd split . In pra ctice, we will often want to use the va ria nt
suggested in section 4 in wh ich the leaf hyper-rect angl es are shrunk to a
size given by the criteria in sect ion 3.3. The leaf regions will t hen demar­
ca te t he high prob ability port ion of the input space. The fineness of the
demarcation is determined by t he number of samples and the depth of the
k-d tree. In fact , the shr unken regions at each level of the k- d t ree are a
natural hierarchical clustering of the input spac e. We call th is ap proach to
hierarchical representation th e shrink an d split technique.

Image analy sis. We have found th e shr ink and spli t tec hnique to be
useful in the analysis of images [971 . Using the par t ial summation technique
discussed in section 3.2, pa rti t ionin g and shr inking ope rations can be done
in logarithmic t ime. We have bu ilt an opt ical character reader which finds
th e rectangular boxes sur round ing characters by using this kind of struc­
ture. We are also bu ild ing a sys tem for understanding line drawings wh ich
uses the technique to obtain a hierarch ical represent at ion of a drawing.

C olor maps. Referen ce [48] uses a similar technique to find an op ti ma l
color map for a color image. The colors in the image are histogrammed in
the three-dimensio na l color space. A k-d t ree is bu ilt over the color space
based on t he histogram, and color map representat ives are chosen from the
leaves. Use of t he part ial summation technique presented in sect ion 3.2
could probably speed up the t ree construction in this algorithm substan­
tially. Reference [99] uses a similar technique to analyse histograms and to
imp lement high dimensiona l Hough transforms .

Speech coding. The technique of vector quanti zation, which is widely
used in speech coding, compression, and recogni tion [751 qua nt izes a t ime
series by decomposing the space coordinatized by successive samples into
regions which are labelled by codes. A powerful body of theory has been
developed to analyse op timal quant izatio n cho ices but it appears that algo­
rithms based on k-d tree variants could speed up many pro cedures substan­
t ially. T hey could be used both to decompose the space into quantization
reg ions and t o code and decode entries.

Minimal spanning t ree s . There are several useful clustering tech­
niq ues based on the Euclidean minimal spanning tree of the set of inp ut
poi nts [1431 . This is the tree whose st raight line edges jo ining all the points
in the set have a total length smaller than or equal to that of any other
such tree. References {15,91] discuss the use of k-d t rees to construct the
Euclidean minimal spanning tree over N nodes in average t ime of order

326 Stephen M. Omohundro

N log2N independent of the dimension k. The algorithm is based on Prim's
which considers edges joining pairs of points in order of increasing length.
An edge is added to the partially constructed tree if it does not create a
closed loop . The result ing tree joins all the points and is the minimal span­
ning tree. The k-d tree algor ithms make use of the fast nearest neighbor
ability to choose the next edge.

A natural way to cluster points in a Euclidean space depends on a real
parameter. Given a parameter value, join all pairs of points which are
closer to each other than this value, and consider the clusters to be the
connected components of the resulting graph. A hierarchical structure is
introduced as the parameter is varied from infinity down to zero. Clusters
break into two when the parameter goes be low the shortest edge jo ining
the two halves. It is easy to see that the critical edges in this process are
exactly the minimal spanning tree edges . Thus the hierarchical pattern
of clusters can be determined directly from the minimal spanning tree by
removing edges in order1 from longest to shortest. In the next section we
will discuss mappings which preserve the minimal spanning tree of a set of
points.

7. Undirected continuous modules: self-organization

We come finally to modules whose behaviors are analogous to neural net ­
works mo dels wh ich exh ibit self organization. The outputs that these mod­
ules produce are continuous in character and the mapping that they im­
plement is determined by the distribution of inputs. We will discuss al­
gorithms for two particularly interesting behaviors. In the first kind, the
output space has the same dimension as the input space and the mapping
imposes a distortion that tends to make the probability dens ity uniform.
In the second kind, the output space has a lower dimension t han the input
space an d t he mapping attempts t o preserve the neighborhoo d relationsh ips
of high-probabili ty regions.

7.1 Probability equalization modules

There are a variety of applications for modules which equalize the probabil­
ity of states in their output spaces. In systems composed of many modules,
such mod ules adjust the internal representation of states so that most of
the inp ut space of later modules is focused on inpu ts that occur with siz­
ab le probability. This renormalizat ion also makes the Euc lidean distance
metric used by later modules in nearest neighbor calcu lat ions act more like
a conceptual distance than an arbitrary coordinate distance. A well-known
feature of human psychology is that people are better able to discriminate
between pairs of items, like faces or speech sounds, which have been re­
peatedly encountered than between those which have not. An equalizing
mapping makes the probability of a region approximately equal to its vol­
ume. Information theory te lls us that a process which loca lizes states to

Efficient Algorithms with Neural Network Behavior 327

fixed volumes gets the maximal amount of information when the probability
distribution is uniform.

Histogram equalization. In one dimension, the probability equaliza­
tion operation is often called histogram equalization and is widely used in
image processing. In this application, the appearance of a monochrome im­
age can often be greatly improved by mapping its intensity values so that
the number of pixels with each possible intensity is roughly equal. The
standard technique begins by histogramming the intensities of the pixels.
Dividing the total number of pixels by the number of intensities gives the
number of pixels that should have each intensity in the final image. A single
sequential pass through the histogram is made, partitioning the old inten­
sities every time a bin's worth of pixels is passed. This process will join
weakly-represented intensities into a single intensity and spread the pixels
of strongly-represented ones among several intensities. Several heuristics
have been introduced to split up a large number of pixels representing a sin­
gle intensity value [103] . This procedure is particularly effective in lowering
the intensity resolution of an image with as little degradation as possible.

There are several algorithmic approaches one might take to probabil­
ity equalization in higher dimensions. We will present two that have the
advantage of extreme algorithmic simplicity and efficiency. The first tech­
nique is based on the adaptive grid structure and is continuous. The second
technique is based on k-d trees and does a better job of equalization but
can be slightly discontinuous along some edges.

Grid equalization. If we have an adaptive grid, whose cells have been
chosen so as to have approximately equal probability, we can achieve equal­
ization by merely mapping the cell with label (i1 , . . . , i d) to the cell with
the same label in a uniform grid. The hyper-rectangular regions within a
cell are linearly mapped into the hyper-cubical cells of the uniform grid.
This mapping is clearly continuous and piecewise linear and it equalizes
probability to the extent that the original grid regions were of equal prob­
ability. Notice that the mapping may be described by done-dimensional
equalization mappings; one applied to each of the coordinates. The density
that one of these mappings equalizes is the total density projected to the
relevant coordinate. The final density that is produced by this operation
has uniform projections to each of the coordinate axes. Unfortunately, iter­
ating the procedure does not improve the equalization performance of this
technique.

K-d equalization. A k-d tree may also be viewed as a k-d trie by
ignoring the discrimination values stored at each node and only taking
account of the stored dimension numbers. A k-d tree cuts a hyper-rectangle
so that half the probability is on each side of the cut. A k-d trie cuts a
hyper-rectangle so that half the volume is on each side of the cut. If we
create a balanced tree, then each leaf of a k~d tree contains the same amount
of probability, while each leaf of a k-d trie contains the same volume. The
probability equalization mapping which we are proposing here sends the
points in each leaf in the k-d tree to points in the corresponding leaf in

328 Stephen M. Omohundro

the k-d trie with the same structure. The hyper-rectangles are mapped by
linearly scaling each dimension appropriately. We have seen that k-d tree
leaves are approximately cubical with a volume inversely proportional to
the probability density they contain. If p varies smoothly, then neighboring
k-d tree leaves will undergo approximately the same transformation and
the mapping will be approximately continuous along the edge joining the
leaves. In practice, to find the image of point under the mapping, we first
search for it in the k~d tree. We need to produce the d components of the
output point. At a particular node in the traversal of the k-d tree, if the
dimension number is i, then whether we go left or right determines the
next bit in the ith component of the output. When we finally reach the
leaf, we need merely tack the binary expansions of the relative position of
the point along each dimension of the leaf hyper-rectangle onto the ends of
the partially specified output components. This operation is very fast, and
does a good job of equalizing probability. The mapping produced is one­
to-one and onto (assuming that the boundaries of the leaves are handled
correctly) and quite close to continuous if there are enough leaves in the
k-d tree.

7.2 Dimension reduction

There are many uses for a module which reduces the dimension of a space
while preserving as many of the neighborhood relationships between high
probability regions as possible. As we discussed in section 5.5, there is a
need to combine data from different modules throughout intelligent sys­
tems . A natural approach is view the output of two modules as a single
point in the product of the two output spaces. The dimension of this prod­
uct space is the sum of the dimensions of the original two output spaces.
To keep the input spaces from getting larger and larger in successive layers
of modules, we need to reduce the dimension of the space while preserving
the important relationships within it. A more mundane use for these algo­
rithms is to collapse multi-dimensional data structures to two dimensions
so that their contents may be viewed on a screen or page.

K-d tree approach. A simple approach to dimension reduction uses
a k-d trie decomposition of the input space. The idea is to identify some
subset of the input dimensions with each output dimension. We reinterpret
the k-d trie decomposition of I as a k-d trie decomposition of 0 by replacing
each split dimension with the corresponding output dimension. To find
the output coordinates of an input point, we traverse the tree, at each
juncture adding bits to the corresponding output coordinate value. Finally,
we project the input leaf region onto the output leaf region to get the low
order bits of the output coordinates. This approach preserves much of
the hierarchical and neighborhood structure determined by the original
partition. Nested node regions in the input space are still nested and pairs
formed by splitting a region in the input correspond to pairs formed by
splitting the corresponding region in the output.

Efficient Algorithms with Neural Network Behavior 329

Category representation . Another use for dimension reduction arises
in the categorization modules described in section 4. Modules which cate­
gorize their inputs as belonging to one of M disjoint subsets of the input
space must choose an encoding for outputting the category. The most
straightforward encoding simply labels the M classes with integers from
one to M without regard to any structure possessed by the classes. A simi­
lar encoding would utilize M output lines , each one representing one class.
These encodings ignore any relationships that exist among the classes. IT
there is a metric on the input space, we may define a notion of which classes
are near to which other classes . If the encoding preserves aspects of these
relationships, later modules can use them. One approach to imp lementing
such an encoding chooses a representative point in each of the classes whose
coordinates are output when a class is chosen. ITthese representatives are
typically situated in their classes, the metric relationships between them
will be representative of those between the classes. The disa dvantage of
this scheme is that it preserves the dimensionality of the input space. The
dimension reduction technique presented above does an excellent job of re­
ducing this dimensionality if the k-d trie is built so that each leaf contains
only one classification point. It is of interest, though, to determine theo­
retical limits on the preservation of the metric relat ionships between a set
of points under dimension reduction.

Two-dimenslonal representations. There are a variety of indica­
tions that two-dimensional encodings are particularly important in biolog­
ical nervous systems. The major pathways from sensory systems to the
cortex, from the cortex to motor systems, and from one cortical area to
another are made up of parallel bundles of nerve fibers which tend to pre­
serve topographic relationships from one end to the other. Such ordered
projections are presumably easy to grow and to specify genetically. When
such parallel bundles are used to transmit information from one region to
ano ther, the data is represented in the pattern of activity across its two­
dimensional cross section. Because of the limited extent of the dendritic
arborization of the neurons receiving input from this bundle, ne ighboring
fibers will tend to activate similar responses. The metric st ructure of three
dimensional space may wen impose itself on the neighborhood relations be­
tween represented concepts. As we discussed in section 2, the neocortex
itse lf is a two-dimensional sheet organized into two-dimensional areas.

The three-dimensional nature of the world also causes much of an an­
imal's sensory input to be naturally two-dimensional. An an imal has a
two-dimensional bounding skin enclosing its body and the somatic sensory
inp ut is organized in te rms of this two-dimensional topography. Visual in­
put arrives along the two-dimensional sphere of rays centered at the lens of
the eye and is focused on the two-dimensional sheet of photoreceptors mak­
ing up the retina. This two dimensional topography is preserved (though
distorted) in the surface of the lateral geniculate nucleus and the first few vi­
sual areas of cortex. A number of two-dimensional maps are superimposed
in the superior colliculus. Audi tory information about the direction of a

330 Stephen M. Omohundro

sound source is two dimensional for the same reason that visual directions
are. The different directions in which the eye can point are represented in
a two dimensional map which is aligned with the auditory and visual maps.

Even in cases where there is no obvious geometric reason for it , informa­
t ion is often represented in two-dimensional form. In speech understanding,
the vowels naturally decompose the two dimensional space coordinatized
by the frequencies of the first two formant s of a sound. Similarly, distinct
colors naturally decompose a two-dimensional space (which is linearly in­
dependent of overall intensity) . In the primary visual cortex, orientation
appears to be mapped against occu lar dominance to form two dimensional
patches (hypercolumns) which code for combinations of these two quanti­
ties.

Collapsing minimal spanning t rees. It is intuitively clear that the
ne ighborhood relations of a two-dimensional representation are much more
ab le to represent complex relationships than those of a one-dimensional
representation. The question naturally arises as to what extent higher
dimensional relationships can be encoded in two dimensions. We saw in
section 6 that the minimal spanning tree of a collection of points is useful
in describing how the points are clustered. Given M points in n dimen­
sional space, to what extent can we find corresponding M points in two
dimensions, such that the spanning trees are the same? Points in n dimen­
sions which are joined by a minimal spanning tree arc should correspond
to points in two dimensions which are joined in the two-dimensional min­
ima l spanning tree. We will show that any collection of M points in an n
dimensional space, with a Euclidean minimal spanning tree whose vertices
each have degree less than 6, may be projected onto M points in the plane
such that the Euclidean minimal spanning trees are taken to one another.

We will prove this theorem by induction on the number of vertices M.
The induct ive statement is that an arbitrary tree whose vertices each have
degree less than six can be embedded in the plane as a Euclidean minimal
spanning tree in such a way that given pos itive real numbers d and £ and
a spec ified vertex v of degree less than five, the vertex v is placed at the
po int (d,0), t he entire tree lies inside a circle of radius £ centered at (d,0)
and v is the closest point in the t ree to the origin (0,0). IT we can prove
the inductive hypothesis , we will have proven the t heorem by choosing the
tree to be the desired minimal spanning tree in n dimensions. We place
one of the leaves of the tree at the origin. t1 is chosen to be the parent
of that leaf. Since the original tree had degree less than six, without the
chosen leaf v has degree less than five. Inductively, the tree minus the leaf
may be placed in a disc centered at (0,1) as a Euclidean minimal spanning
tree in such a way that the origin is closer to v than any other vertex.
By Prim's algorithm for minimal spanning tree construction 121the whole
Euclidean min imal spanning tree is obtained by adjoining the origin to v
as des ired. T he base case for the induction is trivial. IT the tree has only a
single vertex, assign it to th e point (d,O) and all condit ions are satisfied.

To establish t he induction, we must construct a planar embedding of

Efficient Algorithms with Neural Network Behavior 331

the tree obeying the inductive conditions based only on the existence of
such embeddings for strict subtrees. Without loss of generality we assume
that the degree of the chosen vertex v is four. The lower degrees proceed in
an identical manner but are simpler. If we view v as the root of the tree, it
has four subtrees as children. We will inductively assume that each of these
children can be embedded with parameters which are to be determined. In
particular, we will force each of these five subtrees to lie entirely within
its own disc of radius t:2 which will be determined as we proceed. Each
disc will be centered at a distance f./2 from v. As long as f.2 < f./ 2 , the
entire tree will then lie inside the desired radius f disc. We must choose
the angular placement of the subtrees and the bound ea in such a way that
each subtree is closer to v than to any of the other subtrees and that the
origin is closer to v than to any of the subtrees.

Let us first ensure that no part of the discs containing the subtrees is
closer to the origin than v [i.e. than the distance d). It would be easy to
impose this requirement if we forced the subtree discs to lie to the right
of the vertical line x = d. Unfortunately this does not leave enough room
to make the discs farther from each other than from v. We will therefore
allow the discs to extend an angle 'Y beyond the line x = d both above and
below v. We must choose "1 so that no point of any disc is closer than v to
the origin. We will first impose the requirement that f.2 < f. / 4. Then the
subtree discs lie inside an annulus defined by the circles of radius t: /4 and
3f./4. The portion of this annulus, bounded by "1 which is closest to the
origin is on the inner radius (Le. f/4) and at the angle 'Y from the vertical.
The cosine rule shows that this point is a distance d from the origin [l.e.
the same distance as v) when sin"1 = f./8d. Since sin "1 < "1 for positive
angles, we may choose "1 = f./8d.

We now choose the angular positions of the centers of the four discs. We
need to leave room so that the entire outer two discs stay within "1 of the
vertical and the angle between the centers of the discs must be larger than
"If/3 (otherwise we cannot fulfill the distance requirement between discs).
We choose to center the uppermost disc at an angle 3f. / 32d counterclockwise
from vertica l and the next three centers at successive clockwise angles of
"If /3+f/16d. This places the last disc also at an angle of 3f/32 from vertical.

Finally, we must choose the radii t:2 so that the two requirements are
fulfilled. The outermost discs stay inside of the line defined by 'Y if ez <
(f/2) sin(f/32d) . We also need to ensure that the distance between the
closest points in two discs is larger than the largest distance from a point
in a disc to v. If the angle between disc centers had been 1r/3, they would
have formed equilateral triangles with v and the distance between them
would have been f/2. Since the actual angle is "If/3 + f/ 16d, t he distance
is larger . Let us denote the amount by which it is larger bye. The closest
points on two discs are then t:/2+€-2t:2 apart. The largest distance from v
to a disc point is f/2+f, . We get the required relationship if f, < e/3. Thus
by choosing f, to be the smallest of the inequalit ies we have given for it, all
requirements are satisfied. By Prim's minimal spann ing tree algorithm , the

332 Stephen M. Omohundro

minimal spanning tree of the point set we have defined will be isomorphic
to the original given tree. This completes the induction.

It is easy to see that no graph with a vertex of degree 7 or two neigh­
boring vertices of degree 6 can be properly embedded. Similar results hold
for embedding minimal spanning trees in other dimensions. The requisite
bound on degree is determined by the properties of sphere packing in the
given dimension.

8. Parallel algorithms

One of the apparent advantages to performing computations with neural
networks is their natural parallelism. Each network unit performs its com­
putation based only on its current inputs and each unit can proceed inde­
pendently of the others. The idea appears particularly attractive because
the function performed by individual units is very simple. This suggests
that it should be possible to inexpensively build large arrays of units. Un­
fortunately, the completely interconnected networks used in most models
are not practical to build when the number of units is large. In this sec­
tion we will show that there are parallel algorithms for architectures with
large numbers of simple components which are capable of implementing the
efficient algorithms we have described in previous sections. The speedup
over a direct neural network implementation is almost proportional to the
number of processors. It thus appears that for a given amount of hardware,
one may do much better than direct emulation of neural networks.

There is a natural way to build a coarsely paralleIized implementation
of the systems built from efficient modules that we have been discussing.
We simply assign a processor to each module or to a set of modules and
the pattern of communication between processors is exactly the pattern
of interconnection of the modules. A major problem with many parallel
computers is that the amount of time spent communicating data between
processors completely swamps the time spent doing useful computations.
One advantage of modular networks is that the paths of communication
are well defined and sparse, and there is a fairly large amount of work to
be done within a module for each piece of data that is input or output.

To get a higher degree of parallelism, we must parallelize the function
of a single module. We will show how to parallelize the basic operations
we have discussed when there are O(N) queries to be handled using O(N)
simple processors which together store a data structure with O(N) pieces
of data.

8.1 Routing, sorting, and parallel prefix

There are many different designs for massively parallel machines with a
large number of simple processors connected by a fairly dense intercon­
nection network [9,49,131,119,104). There are three fundamental parallel
operations that most of these machines can support well and which form

Efficient Algorithms with Neural Network Behavior 333

useful primitives for designing and implementing parallel algorithms. The
technique of "virtual processors" [1291allows individual processors to trans­
parently simulate any number of processors. In this way, the three oper­
ations described here can be implemented to work with any number of
elements.

Perhaps the most basic operation is routing, whereby a piece of data
in one processor is transferred to another processor whose address is spec­
ified along with the data. A routing algorithm must resolve the inevitable
collisions which occur when many pieces of data are simultaneously trans­
ferred. Most designs use a variant of the algorithms proposed in [134,701
which take logarithmic average time.

The second important parallel operation is sorting. One of the first
algorithms for this task is the Betcher sort [9J, which takes log; N time
but is very efficient to implement on hypercube, shuffle-exchange and cube­
connected cycles networks. More recent sorts take logarithmic time [22,1081
and appear to be amenable to practical implementation.

The final operation has come to be known as the parallel prefix oper­
ation {67,66,119]. It takes an associative binary operation e and a vector
of elements drawn from the domain of the operation, and produces the
vector of all prefixes of the given vector combined using the given oper­
ation. Prefixing E& over the vector (A,B,C,D,E) results in the vector
(A,A Ell B,A Ell B Ell G,A Ell B Ell G Ell D,A Ell B Ell G Ell D Ell E) . By mak­
ing different choices for ED, a variety of useful operations can be put into
this form. There are several logarithmic time implementations of prefix
and it can be implemented very efficiently on the standard interconnection
networks. For example, on the Connection Machine computer, a parallel
prefix operation using the underlying hypercube connections is as fast as
a single random routing operation 1129] . A simple general implementation
uses log:/: N routing stages. At the tth stage the ith processor sends its cur­
rent partial result forward to the i + 2f

-
1th processor where it is combined

using ED with the partial result that is already there.

Useful choices for EB include "minimum" or "maximum" to find the
largest or smallest elements and "plus" to sum elements. Given a vector
composed of ones and zeroes in which the ones mark the elements of a set,
prefixing "plus" will enumerate the elements of th e set. By first enumerat­
ing a set and then routing the set elements, treating th e enumeration value
as an address, we may pack the elements of a set into consecutive proces­
sors. If the binary operation is chosen to be A Ell B = A, then parallel prefix
will spread the value of the first element of a vector to all elements. If the
elements have two components, the second of which is Boolean valued and
treated as a marker, a similar operation can be constructed to spread values
or combine them within the ranges of consecutive processors delineated by
the markers.

334 Stephen M. Omohundro

8.2 Parallel module im p lem ent a t ion

Let us now consider the parallel implementation of some of the data struc­
tures underlying the adaptive modules described in previous sec t ions . We
begin with a coarse decomposition of the data and the queries which is
appropriate for a system with an intermediate number of fairly pow erful
processors. We then consider algorithms appropriate for a system with a
large number of very simple processors.

If the input requests are distributed over the input space according to
the same distribution as stored data, it is natural to assign a processor to
each leaf bucket in a structure which has as many equiprobable leaf buckets
as there are processors. Assume the incoming queries are distributed ran­
domly to the processors. Each processor uses the addresses of the queries it
receives to compute the address of the processor corresponding to the bin
that the query should be assigned to . A routing operation can then send
all the queries to their correct bins. Because the inputs are distributed ac­
cording to the same distribution as the data, and the bins are equiprcbable,
each processor will receive approximately the same workload. Internally,
the processors use serial algorithms to process the queries according to a
further decomposition of the bin they represent. This technique is tunable
to any degree of parallelism by choosing the number of bins represented by
processors.

IT the queries are not well described by the stored data distribution,
then the above scheme can end up with a few processors handling all the
work while others are idle. This is more and more likely to happen as the
number of processors increases and the decomposition of the space becomes
finer. Let us see how by combining the three fundamental operations, we
can distribute the work over all the processors, no matter how the queries
are distributed.

Let us begin with the one-dimensional case. Assume that the input
space is an interval wh ich is bro ken into N bins. These are represented by
"bin descriptors" which contain the left coordinate of the bin and the va lue
which should be returned when an input key falls into the bin. The tech­
nique described above would assign a bin to each processor along with its
valu e. When there are many queries that fall into a bin, the corresponding
processor becomes a serial bottleneck. The t echnique we use here begins by
sorting the bin descriptors by coordinate together with the key values of the
queries. ITwe assume that descriptors are less than queries with the same
key value, then we end up with all queries that fall in a given bin residing in
consecutive processors headed by the bin descriptor. We make up a vector
which contains the value to be returned in those processors which contain a
bin descriptor and a special value "null" in those processors which contain
a query. The parallel prefix operation which sets A EB B to A if B is "null"
and to B otherwise, will spread the return values from each bin descriptor
to all query elements which lie in that bin. IT query elements have retained
their initial addresses, then a routing operation returns them there along

Efficient AIgorUhms with Neural Network Behavior 335

with the correct value to return. Notice that as many processors are de­
voted to a bin as there are queries which fall into that bin (plus one for
the bin descriptor). If all queries fall into a single bin, almost all processor
resources are devoted to that bin.

Almost the same technique works when we use an adaptive gr id to
decompose a multi-dimensional space. We again use a descriptor for each
grid element. The first step sorts these together with the queries on the
basis of the first component of the key. This will split the processors into
segments corresponding to the decomposition of the first coordinate. Each
segment begins with descriptors for all the grid elements with a given first
coordinate. In the next stage, we would like to sort elements on their second
coordinate separately within each segment. This partitions the processors
even more finely, on the basis of the first two coordinates. Proceed ing in this
manner, we end up with each bin in the grid represented by a consecutive
set of processors beginning with the descriptor and followed by all queries
which lie in the bin . We again use parallel prefix to spread the return
value to the queries and a routing cycle to return them to their original
processors.

We must now describe how the segments are sorted within themselves.
The processor at the left end of a segment can determine this by checking
that it contains a descriptor and its left neighbor either contains a descriptor
with a different first coordinate or a query value. We can then use the prefix
technique of spreading values between markers to give each element in a
segment the value of the left end of that segment. Prepending this value
to the front before sorting the entire machine on the second coordinate will
have the effect of sorting within segments. Shorter quantities to prepend
can be obtained by using a "plus" prefix to enumerate the heads of the
segments, and then spreading this segment number throughout the segment
to be prepended at the next stage.

Finally, let us give the analogous algorithm for searching for query points
in a k-d tree. The only added ingredient in this case over the grid case is that
different segments must be sorted on different coordinates according to the
dimension number specified in the descriptor at the front of the segment.
A descriptor is formed for each node of the k-d tree and is given coordinate
values equal to the those of the point with minimal coordinates contained in
the hyperrectangle corresponding to the node. In sorting, nodes higher in
the tree are treated as smaller than lower nodes with equal coordinates. On
the ith pass, the queries will be segmented according to the bins determined
by the nodes of the k-d tree at the ith level. Used up parent nodes will end
up at the front of segments and are not included in any further segment
computations. During each stage, the dimension number is spread from
the descriptor at the front of each segment throughout the segment. The
segments are enumerated and the segment number is spread throughout
the segment and prepended to the coordinate of the correct dimension. A
sort is performed to give the segmentation corresponding to the next level
of the k-d tree. When the bottom of the tree is reached, each leaf descriptor

336 Stephen M. Omohundro

spreads the desired return value to the query points in the same segment .
These may t hen be routed hack to their initial posit ions .

Most of the operations we have discussed in this paper may be paral­
lelized in a similar way. Because we sort at each level, the time to perform
th e search on an O(log, N) depth k-d tree is O((log, N)'). In this time we
sa tis fy O(N) queries on an O(N) processor mach ine. In the best of circum­
stances, a parallel implement at ion of an O(N) unit neural network wit h
o (log, N) connec t ions per neuron on an 0 (N) processor machine would
take time O(log2 N) to process a single query. The neural network pro­
cessors must do a fair amount of floating point arithmetic. The opera­
tions we have used are simply and efficient ly impl emented on the one b it
wide Boolean processors used in th e Connection Machine [49]. Even as­
suming that the time per operation is equivalent, we obtain a speed-up
of 0 (N/ log, N) per query by using the algor ithmic ap proach. In future
machines with 108 processors, this represents a speed-up of over a million.

9 . Con clu sions

Let us compare the performance of the k-d tree structures of section 3.2
with the learning matrix neural network discussed in section 2.5 on th e task
of associative storage and retrieval of one million entries, each specified by
a few real coordinates. We motivated this number in sect ion 2.5 as giving
the order of magnitude for human performance. To build a k-d tree with 10
ent ries per bucket, will take about 17 stages in which each of the 106 items
is examined, or about 108 operations. To access a given element t akes 17
compar isons and a final search through 10 elements. The nearest neighb or
of a given elemen t is likely t o be in the same bucket or a ne ighboring one,
an d so will only take a few times longer to find.

To do associ ative retrieval with a learning matrix , we must first expand
the dimension of the representation of each data item using a randomizing
function so that th e memories are likely to be linearly independ ent. As
we discussed in section 2.5, [77} showed that a learning matrix requires
a number of units equal to 1.45 t imes the number of memories times the
product of the average number of set bits in an inp ut and an output. Refer­
ences [58,4J show that sim ilar networks require about seven ti mes as many
complet ely interconn ected units as th ere are memories. Let us nonetheless
underes t imate the required number of totally inte rconnected neurons to
store a million memories to be one million. As discussed in section 2.5 such
a network will requi re on the order of 1012 opera tions to produce an output
every ti me it is presented with an input. This is to be compared to the
few hundred steps needed by the k-d algorithm. In use, we would expect
the algorithmic approach to beat the simulation approac h by a factor of at
least a billion . Even if the network is much less than totally interconnected,
one would expect a speed up of over a million .

About 1012 operations are also required to up date the weights according
to a given input and it will also require about 1012 memory locations to

Efficient Algorithms with Neural Network Behavior 337

store these weights . As we discussed in section 2.4, learning even only a
few items in typical neural networks takes thousands of presentations of
each input. Reference [1281 shows that in at least one example of back
propagation the learning time goes as the 4/3 power of the number of
inputs. Let us underestimate the required number of presentations of each
memory to be of order a thousand. Estimating lOS presentations of each
of the 106 memories, and 1012 operations to update the weights for each
presentation, we obtain a total learning time of 1021 steps . This is 1013

times longer than the k-d tree algorithm's learning time.
The parallel algorithms which we presented in section 8 speed up the se­

rial algorithms by a facto r of N/log, N by using N processors (though more
sophisticated algorithms may be able to achieve a factor of N speedup) .
Parall el hardware to simulate a neural network can at best achieve the op­
timal speed up of a factor of N with N processors . On a parallel machine
with one million processors, the above comparison is therefore only weak­
ened by a factor of log: 106 = 20. Parallel digital hardware to simulate a
neural network could be sped up by a factor of ten million if it were used to
implement one of the parallel algorithms instead . Notice that we have not
even taken into account the fact that the floating point network simulation
is likely to require more hardware per processor than the simple operations
used in the algorithmic approach.

Why are the algorithms so much faster than the networks? Both of
them work by effectively partitioning up the input space and causing desired
outputs to be produced on inputs in each partition. The neural networks
must evaluate the activity of every neuron and must consider the effect of
every weight each time they are presented with an input. The algorithmic
approach only looks at those stored values along a path of logarithmic
depth. In learning, the networks update each and every weight on every
input. The data structures only modify the parameters of those regions
which are relevant in determining the output on the given input .

This same reasoning about performance appears to apply equally well to
modules implementing behaviors from each of the four categories we have
discussed. For behaviors more complex than associative memory, however,
it is not as clear exactly what functions neural networks are actually com­
puting. It would be of great interest to compare both the computational
and cognitive performance of neural network implementations of systems
like NETtaik [120J with their algorithmic counterparts. Even if digital sim­
ulations of neural networks are not as cost-effective as the corresponding
algorithmic systems, their study is important both for the understanding
of biological systems and possibly for future technologies based on compo­
nents with different tradeoff's than current digital ones. IT an inexpensive
analog technology is found that can directly implement the neural network
operations, then this argument might be significantly weakened.

Let us conclude with a somewhat speculative estimate how far current
computers are from the human brain under the assumption that the algo­
rithms used by the brain can also be sped up by the factor 10". Assume

338 S tephen M. Omohundro

there are an average of lOs synapses per neuron and that there are 1012

neurons, each with an average firing rate of 100 spikes per second. Let
us further assume that the effective computation done at a synapse dur­
ing each potential firing period is equivalent to a 32 bit operation on a
modern computer. The brain's computation rate is then equivalent to 1011

ins t ru ctions per second. With a 109 algorithmic speedup, we would only
need a 100 MIP (million instructions per second) machine. This level of
performance should become quite common in the next few years.

10. Acknowledgements

I would like to thank Doyne Farmer. Bartlett Mel, Norman Packard, Rob
Shaw I Gerry Tesauro, and Stephen Wolfram for many stimulat ing discus­
sions about these ideas, David Ballman for a feat of digital archeology
which rescued these bytes from the ru ins of a file system. This work was
supported in part by the National Center for Supercomputer Applications.

References

{ll D. H. Ackley, G. E. Hinton, and T . J. Sejnowski , "A Learning Algorithm for
Boltzmann Machines,' Cognitive Science, 9:1 (1985) 147-169.

[21 Alfred V. Aho , John E. Hopcroft and J effrey D. Ullman, The Design and
Analysis of Computer Algorithms, (Addison-Wesley, 1974).

[3] Alfred V. Abo an d Jeffrey D. Ullman, "Optimal Partial-Match Retrieval
When Fields Are Independentl y Specified," ACM 'nana. on Database Sys­
tems, 4:2 (1979) 168-179.

[4] Danie l J. Arnit, Hano ch Gutfreund, and H. Sompolinsky, "Storing Infinite
Numbers of Patterns in a Spin-Glass Model of Neural Networks," Physical
Review Letters 55:14 (1985) 1530-1533.

[5] J ames A. Anderson, "Networks for fun and profit," Nature, 322 (1986) 406­
407.

[6] Dana Angluin and Carl H. Smith, "Inductive Inference: Theory and Meth­
ods," Computing Surveys, 15:3 (1983) 237-269.

17J D. H. Ballard , G. E. Hinton, and T . J . Sejnowski, "Parallel visual computa­
tion," Nature, 306 (1983) 21-26.

[8] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson , "Neuronlike
Adaptive Elements That Can Solve Difficult Learning Control Problems,"
IEEE 'Dan sadions on Systems. Man , and Cybernetics, 13:5 (1983) 834-846.

(91 K. E. Betcher , "Sorting networks and th eir applications," in Proceedings of
the AFIPS Spring Joint Computer ConEerence 32 (1968) 307-314.

[10) Jon Louis Bentley, "Mult idimensional Bina ry Search Trees Used for Asso­
ciative Sear ching," Communications of the A CM,18:9 (1975) 509-517.

Efficient A lgorithms with Neural Network B ehavior 339

[11] Jon L. Bent ley, "Multidimensional Binar y Search Trees in Database Appli ca­
tions," IEEE 'n-ansactions on Software Engineering, SE-5:4 (1979) 333-340.

112J Jon Louis Bentley, "Multidimensional Divide-and-Conque r ," Communica­
tions of the ACM, 23:4 (1980) 214-229.

[13} J . L. Bentley and W. A. Burkhard , "Heur istics for partial-match retrieval in
database design," Information Processing Letters 4:5 (1976) 132-135.

[14J Jon Louis Bentley and Jerome H. Friedman, "Data Structures for Rang e
Searching," Computing Surveys , 11:4 (1979) 397--409 .

[15) Jon Louis Bentley and Jerome H. Friedman, "Fast Algorithms for Construct­
ing Minimal Spanning Trees in Coordinate Spaces ," IEEE '.l}ansactions on
Computers C-27:2 (1978) 97- 105.

[161Job Louis Bent ley and Hermann A. Maurer, "A Note on Eucl idean Near
Neighbor Searching in the Plane," In form ation Processing Le tters 8:3 (1979)
133- 136.

1171Jon L. Bentley, Donald F . Stanat, and E. Hollins Williams , Jr. , "The Com­
plexity of Finding Fixed-radius Near Neighbors," Information Processing
Letters, 6:6 (1977) 209-212 .

118l Valentino B. Braitenberg, Vehicles: Experiments in Synthetic Psych ology,
(MIT Press, 1984).

[19] Leo Breiman, Jerome H. Friedman , Richard A. Olshen, and Charles J . Stone,
Classification and Regression '.l}ees, (Wadswor th Intern ational Group, Bel­
mont , California, 1984) .

[20} Korbinian Brodmann, Vergleichende Lokalisationslehre der Groesiximrinde
in ihren Prinzipien dargestellt auf Grund des Zellenbau es, (Barth, Leipzig,
1909) .

[211 Walter A. Burkhard, "Partial-Match Hash Coding: Benefits of Redun­
dancy," ACM '.l}ansactions on Database Systems, 4:2 (1979) 228-239.

[22] Richard Cole, "Parallel Merge Sort: Extended Abstract," preprint New York
University (1986).

[23] Douglas Comer , "Heuristics for Trie Index Minimization," ACM 1Tansac~

tions on Database Systems, 4:3 (1979) 383-395.

1241L. N. Coope r, F. Liberman and E. Oja, "A theory for t he acquisition and
loss of neuron specificity in visual cortex," Biological Cy bernetics 33 (1979)
9-28.

[25] T. M. Cover and P. E. Hart, "Nearest Neighbor Pattern Classification,"
IEEE 'Il-ansactions on Information Theory, I T-13:1 (1967) 21-27.

340 Stephen M. Omohundro

126) F. H. C. Crick and C. Asanuma, "Certain aspects of the anatomy and phys­
iology of the cerebral cortex," in Parallel Distributed Processing: Explo­
rations in the Microstructure of Cognition. Vol. 2: Psychological and Bio­
logical Models, edited by J. L. McClelland &: D. E. Rumelbart, (MIT Press,
1986).

(27] J . R. Driscoll , N. Samek, D. D. Sleeter, R. E. Tarjan, "Making data struc­
tures persistent," Proceedings of the 1986 ACM Symposium on the Theory
of Computing (1986) 109-121.

[28] C. M. Eastman and S. F. Weiss, "Tree Structures for High Dimensionality
Nearest Neighbor Searching," InFormation Systems 7:2 (1982) 115-122.

[29] H. Ede lsbrunner and J. van Leewen, "Multidimensional data structures and
algorithms, A bibl iography," IIG, Technische University Graz, Austria, Re­
port 104 (1983).

[30] David C. Van Essen and John H. R. Maunsell, "Hierarchical organization
and functional streams in the visual cortex," 71-ends in Neuroscience (1983)
370-375.

[31} Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong,
"Extendible Hashing-A Fast Access Method for Dynamic Files ," ACM
'Iransactions on Database Systems, 4:3 (1979) 315-344.

1321 Doyne Farmer and John Sidorwich, "Predicting Chaotic Time Series," in
preparation.

[33] B. Feverjon, "Obstacle Avoidance Using an Octree in the Configuration
Space of a Manipulator," in Proceedings of tbe IEEE International Confer­
ence on Robotics (1984).

[34} J. A. Feldman, "Dynamic connec tions in neural networks ," Biological Cy­
bernetics, 46 (1982) 27-39.

[35] J. A. Feldman and D. H. Ballard, "Connectionist Models and Their Proper­
ties," Cognitive Science, 6 (1982) 205-254.

[36] Ysmar V. Silva Filho, "Optimal Choice of Discriminators in a Balanced K-d
Binary Search Tree ," Information Processing Letters, 13:2 (1981) 67-70.

1371 R. A. Finkel and J . L. Bentley, "Quad Trees: A Data Structure for Retrieval
on Composite Keys," Acta Informatica 4 (1974) 1-9.

[38) Philippe Flajolet and Claude Puech, "Tree Structures for Partial Match
Retrieval," in Tbe 24tb Annual Symposium on Foundations of Computer
Science, (IEEE Computer Society Press, Los Angeles, CA 1983) 282-288.

[391 E. Fredkin, "Trie Memory," Communications of the ACM, 3:9 (1960) 490­
499.

Efficient Algorithms with Ne ural Ne twork Behavior 341

[40] Jerome H. Friedman, Jon Louis Bently, and Raphael Ari Finkel, "An Al­
gori thm for Finding Best Matches in Logarithmic Expected Time," ACM
7}ansactions on Mathematical Software, 3:3 (1977) 209-226.

[41} Jerome H. Friedman, Forest Baskett, and Leonard J . Shustek, "An Algo­
rithm for Find ing Nearest Neighbors," IEEE Trenseciione on Computers
(1975) 1000-1006.

[42] Keinosuke Fukunaga and Larry D. Hostetler, "Optimization of k-Neerest­
Neighbor Density Estimates." IEEE 1ransactions on Information Theory
(1973) 320-326.

143] Keinosuke Fukunaga and Patrenahalli M. Nerendra, "A Branch and Bound
Algorithm for Computing k-Nearest Neighbors," IEEE 1l'ansactions on
Computers (1975) 750-753.

[44J Kunihiko Fukushima, Sei Miyake , an d Takayuki Ito, "Neocognitron: A Neu­
ral Net work Model for a Mechanism of Visua l Pattern Recognition ," IEEE
1l'ansactions on Systems. Man, and Cybernetics, SMC-13:5 (1983) 826­
834.

[45] H. H. Goldstine and Joh von Neumann, Plann ing and coding ofproblems for
an electronic computing instrument. Part II, Vall (1947) ; reprinted in A.
H. 'Ieub, ed., John von Neumann - Collected Works , Volume 5, (Pergamon
Press , 1963).

[461 G. H. Gannet, Handbook of Algorithms and Data St ructures, (Addison­
Wesley 1984).

[47] D. O. Hebb, Organization of Behavior, (John Wiley & Sons) 1949).

[48] Paul Heckbert, "Color Image Quantization for Frame Buffer Display," Com ­
p uter Graphics 16:3 (1982) 297-304.

[49} Danny Hillis, The Connection Machine, (MIT Press, 1986).

[50] Klaus Hinr ichs, "Implementation of the grid file: Design Concepts and Ex­
perience," Bit, 25 (1985) 569-592.

[51J Hecht-Nielsen Neurocomputers, 5893 Oberlin Drive, San Diego, CA 92121.

[52] G. E. Hinton) "Learning distributed representations of concepts," Proceed­
ings of the Eighth Annual Conference of the Cognitive Science Society, (Hills­
dale, New Jersey: Erlbaum, '1986) 1-12.

153] G. E. Hinton and J. A. Anderson, Parallel models of associative memory.
(Hillsdale. New Jersey: Erlbaum Associates, 1981) .

[54] G. E . Hinton and T. J . Sejnowski, "Optimal perceptual inference," Proceed­
ings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, (Washington) D. C. , 1983) 448-453.

342 Stephen M. Omohundro

!55l G . E . Hinton and T . J. Sejnowski, "Learning and relearning in Boltz­
mann machines," in Parallel Distribu ted Processing: Explorations in the
Microstructure of Cognition. Vol. 2: Psychological and Biological Mod els,
edited by J . L. McClelland & D. E. Rumelhart, (MIT Press, 1986) .

[561 C . A. R. Hoare, "Quicksort: Computer J ournal, 5:1 (1962) 10-15.

[57] Darrell Hougen and Stephen M. Omohundro, "On Learning to Discrimin ate
Textures," in preparation.

[58] J . J . Hopfield , "Neural networks and physical systems with emergent col­
lect ive comput ationa l abilities," Proceedings of the National Academy of
Science, USA 79 (1982) 2554-2558.

159] J . J . Hopfield and D. W. Tank, "Neural Computation of Decisions in Opti­
mization Problems," Biological Cybernetics 52 (1985) 141.

l60j J. J . Hopfield and D . Tank, "Computing with neural circuits: A model ,"
Science, 233 (1986) 624-633.

[61] R. Colin Johnson, "Neural Net Speech System In Works," Electronic Engi­
neering Times, (March 23, 1987) 10.

162] Eric R. Kandel and James H. Schwartz, Principles of Neural Science, Second
Edition, (Else vier Science Publishing Cc. , Inc., 1985).

[63) Baek S. Kim and Song B. Park, "A Fast k Nearest Neighbor Finding Al­
gorithm Based on t he Ordered Partition") IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8 :6 (1986) 761-786.

[641 T. Kohonen , "Correlation Ma trix Memories," IEEE Transactions on Com­
puters, C-21 (1972) 353-359.

[65J T. Kohonen, Self-Organization and Associative Memory. (New York:
Springer Verlag, 1984).

[oo} Clyde P. Kruskal , Larry Rudolph , and Marc Snir, "T he Power of Parllel
Prefix," in Proceedings of the 1985 International Con ference on Parallel
Processing, (IEEE Compute r Society Press, Washington, D. C. , 1985) 18G­
185.

[67] R. E. Ladner an d M. J . Fisch er , "Parallel Prefix Comput ation," Journal of
the Association of Computing Machinery (1980) 831-838.

[68J D. T. Lee and Franco P. Preparata, "Computational Geometry-A Survey,"
IEEE 1l-ansactions on Computers, C-33:12 (1984) 1072-110!.

[69] Eric J . Lerner , "W hy Can't a Computer be More Like a Brain?" , High
Technology, August (1984) 34-78.

[70] G. F . Lev , N. Pippenger, and L. G. Valiant , "A Fas t Parallel Algorithm
for Rou ting in Permutation Network s," IEEE 1Tansactions on Computers,
C-30 (1981) 93-100.

Efficient Algorithms with Ne ural Network Behavior 343

[71] Stephen E. Levinson, "St ructu ral Methods in Automatic Speech Recogni­
t ion," Proceedings of the IEEE 73:11 (1985) 1625-1650 .

[72) D. O. Loftsgaarden and C. P. Quesenberry, «A Nonparametric Estimate
of a Multivariate Dens ity Functi on," Annals of Mathematical S tatistics 36
(1965) 1049-1051.

[731 J . W. Lloyd, "Optimal Partial-Mat ch Ret rieval," Bit 20 (1980) 406-413.

{74] J ohn W. Lloyd and K. Ramamohanarao, "Partial-Match Retr ieval for Dy­
namic Files," Bi t 22 (1982) lSD-I68.

[75] John Makhoul, Salim Roucos, and Herb ert Gish, "Vect or Qu antizati on in
Speech Coding," Proceedings of the lEE 73:11 (1985) 1551-1588.

[76] Edward B. Manoukian, Modern Concepts and Th eorems of Mathematical
Statistics, (Springer-Verlag, 1986) .

177l J . L. McClelland, "Resource Requirements of Standard and Pr ogramm able
Nets," in D. E. Rum elhart and J. L. McClelland, Parallel Distributed Pro­
cessing: Explorations in the Microstructu re of Cognition. Vol. 1: Founda­
tions, (MIT Pr ess, 1986) 460-487.

[78J J . L. McClelland and D. E. Rumelhart, Parallel Distribu ted P rocessing: Ex­
plorations in the Microstructure of Cognition. Vol. 2: Psychological and
Biological Models, (MIT Press, 1986) .

[79} W. S. McCulloch and W. H. Pitts, "A logical calculus of ideas immanent in
nervous activity," Bulletin of Mathematical Biophysics,S (1943) 115-1 33.

180] Kurt Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching,
(Springer-Verlag , Berlin, 1984) .

[81} Michael M. Merzenich and Jon H. Kaas, "Principles of Organization of
Sensory-Perceptual Syst ems in Mammals," Progress in Psychobiology and
Physiological Psych ology, 9, 1-42.

[82J R. S. Michalski, J . G . Carbonell, and T . M. Mitchell, eda. , Machine Learn­
ing: An Ar tificial Intelligence Approach, Vols. I and II, (Morgan Kaufmann
Publishers, Inc., Lee Altoe, CA, 1986) .

[83) Marvin L. Minsky, Comp utation: Finite and Infinite Machines , (Prentice-
Hall, Inc., 1967) .

[84J Marvin Minsky, The Society of Mind, (Simon and Schuster , 1986).

[85J M. Minsky and S. Papert, Perceptrons, (MIT Pr ess, 1969) .

[861 Donald R. Morri son, Journal of the ACM 15 (1968) 514-534.

[87] V. B. Mountcastle, "An organizing principle for cerebral function: Th e unit
module and the distributed syste m," in The Mindful Brain. edited by G. M.
Edelman &< V. B. Mountcastle, (MIT Press, 1978).

344 Stephen M. Omohundro

188] Nesto r Inc., 1 Richmond Square, Providence, Rhode Island 02906.

1891 Neural Tech, 177 Goya Road, Portola Valley, CA 94025.

[90] Neurocomputers , Gallifrey Publishing, P. O . Box 155, Vicksburg, Michig an
49097.

[9I J O. Nevalaineo, J . Ernvall, and J . Katajainen, "Find ing Minimal Spanning
Trees in a Euclidean Space," Bit 21 (1981) 46-54.

[92] J. Nievergelt, "Trees as data and file structures," In CA AP '81, Proc. 6th
Colloquium on nee;: in Algebra. and Programming, E. Astesiano and C.
Bohm, Eds., Lecture Notes in Computer Scien ce 112, (Springer Verlag, 1981)
35-45.

[93] J. Nievergelt , H. Hinterberger, and K. C. Sevcik, "The Grid File: An Adapt­
able, Symmetric Mult ikey File Structure," ACM 'Iransactions on Database
Sys tems, 9:1 (1984) 38-71.

[94j M. T. Naga and D. C. S. Allison, "Sorting in Linear Expected Time," Bit
25 (1985) 451-465.

[95J Lawrence O'Gorman and Arthur C. Sanderson, "The Converging Squares
Algorithm: An Efficient Method for Locating Peaks in Multidimensione,"
IEEE TI-ansactions on Pattern Analysis and Machine InteJ1jgence, 6:3 (1984)
280-288.

{oo] Stephen M. Omohundro, Geometric Perturbation Theory in Physics, (World
Scientific Publishing Co. Pte. Ltd. , Singapore, 1986).

{97] Steph en M. Omohundro, "Fast Image Segmentation and Analysis Using Per­
tial Sums," in prepar ation.

[98] Jack A. Orenstein , "Multidimensional Tries for Associative Sear ching," In­
form ation Processing Letters, 14:4 (1982) 150-157.

[99] J oseph O'Rourke and Kenneth R. Sloan, Jr., "Dynamic Quantiza tion : Two
Adaptive Data Structures for Mult idimensional Spaces," IEEE TI-ans. on
Pattern An alysis and Machine Intelligence, 6 :3 (1984) 266-279.

[100] Moh amed Ouksel and Peter Scheuermann, "Mult idimensional B-Trees:
Analysis of Dynamic Behavior," Bit 21 (1981) 401-418.

{101] Mark H. Overma rs, The Design of Dyn amic Data St ructures, Lecture Notes
in Computer Science, Number 156, (Spri nger-Verlag, 1983) .

[102] Mark H. Overmere and Jan van Leeuwen, "Dynamic Multi-Dimensional
Data Structures Based on Quad- and K-D Trees," Acta Informatica, 17
(1982) 267-285.

[103] T hea Pavlidis, Algorithms tor Graphics and Image Processing, (Computer
Science Press, Rockville, Maryland , 1982).

Efficient Algorithms with Neural Network Behavior 345

[I04J F . P. Preparata. and J . Vuillemin, "The cube-connect ed-cycles: A versatile
netwo rk for parallel comput at ion," Comm. of the ACM24:5 (1981) 300-309.

(IDS) Franco P. Preparata and Michael Ian Shamos, Comp uta tional Geometry, An
Introduc tion, (Spri nger-Verlag, 1985) .

[106J William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T .
VetterIing, Numerical Recipes: The Art of Scientjfjc Comp uting, (Cambr idge
University Press , New York 1986).

[107} Mireille Regnier , •Analysis of Grid File Algorit hms: Bit 25 (1985) 335-357.

1108] J . H. Reif and L. G. Valiant, "A logarithmic time sort for linear size net­
works," Proceedings of the Fifteenth Annual ACM Symposium on the Th e­
ory of Computing (1983) 10-16.

[lO9} Revelat ions Research, 4261 Sherwoodtowne Blvd ., Mississauga, Ont L4Z
1Y5, Canada.

(110] H. Ritter and K. Schulten, "On the Stationary State of Kohonen' s Self­
Or ganizing Sensory Map ping," Biological Cybernetics 54 (1986) 99-106.

1111] Ronal d L. Rivest, "Per fiel-metch Retri eval Algorithms," SIAM Journal of
Com puting, 5:1 (1976) 19-50.

1112j F . Rosenblatt , Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms , (Spartan Books, Washington D. C., 1961) .

[1131 D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Int ernal Rep­
resentations by Error Propagation," in D. E. Rume lhart and J. L. McClel­
land, Parallel Distributed Processing: Explorations in the Microstructure of
Cognition. Vol. 1: Foundations, (MIT Press, 1986) 318-362.

11141 D. E. Rumelhart, G. E. Hinton, and J . L. McClellan d, "A General Frame­
work for Parallel Distributed Processing ," in D. E. Rumelhart and J . L. Mc­
Clelland, Parallel Distributed Processing: Explorations in the Microstruc­
ture of Cognition. Vol. 1: Foundations, (MIT Press, 1986) 45-76.

[115J D. E. Rumelhart and J . L. McClelland , P&r&11e1Distributed Processing: Ex­
plorations in the Microstructure of Cognition . Vol. 1: Foundations , (MIT
Press, 1986).

(1161 D. E. Rum elhar t and D. Zipser , "Feature Discovery by Compet itive Learn­
ing," Cognitive Science 9 (1985) 75-11 2.

[117] Hanan Samet, "The quadtree and relat ed hierarchical data struct ures,"
ACM Computing Surveys 16:2 (1984) 187-260.

[118] Peter Scheuermann and Mohamed Ouksel, "Multidimensional B-'frees for
Associative Searching in Database Syst ems," Information Systems, 1:2
(1982) 123-137.

346 Stephen M. Omohundro

[119] J. T. Schwar tz, "Ultrecomputera," ACM 1i'ansactions on Programming Lan­
guages lUld Systems 2:4 (1980) 484-521.

[120] Terrence J . Sejnowski and Charles M. Rosenberg, "Parallel Networks that
Learn to Pronounce English Text," Complex Systems 1:1 (1987) 145-168.

[121J M. 1. Shamos and D. Hoey, "Closest-point problems," Sixteenth Annual
IEEE Symposium on Foundations of Computer Science , (1976) 151-162.

[122] D. D. Sleeter and R. E. Tarjan, "Self-Adjusting Binary Trees", Proceedings
of tbe 15tb ACM Symposium on tbe Tbeory of Computing , (1983) 235-245.

f123] K. Steinbuch, "Die Lernmetrix," Kybernetik 1 (1961) 36-45.

1124] K. Steinbuch, U. A. W. Piske, IEEE 1l-lUlsactions EC-12 (1963) 846.

1125] Synaptics, 2880 Zenker Road, Suite IDS, San Jose, CA 95134.

[126J Markku Tamminen, "The Extendible Cell Method for Closest Point Prob­
lems," Bit, 22 (1982) 27-41.

[127] Robert Endre 'Tarjan, Data Structures and Network Algorithms, CBMS-NSF
Regiona l Conference Series in Applied Mathematics, Society for Ind ustrial
and Applied Mathematics, Philadelphia, Pennsylvania (1983).

[128J Gerald 'Ieseuro, "Scaling Relationships in Back-Propagation Learning: De­
pendence on Training Set Size," Complex Systems, this issue.

[1291 Th inking Machines Corporation, 245 First St., Cambridge, MA, Connection
Machine promotional literature.

[130] N. Z. Tishby, private communication.

[131] J. D. Ullman, Computational Aspects of VLSI, (Computer Science Press,
Rockville, Md ., 1984).

[132] L. G. Valiant, "A Theory of the Learnable," Communications of the ACM,
27:11 (1984) 1134-1142.

1133] L. G. Valiant, "Learning Disjunctions of Conjunctions," Proceedings of the
International Joint Conference on Artificial Intelligence, (1985).

11341 L. G. Valiant and G. J. Brebner, "Universal schemes for parallel commu­
nication," Proceedings of the Thirteenth Annual ACM Symposium on the
Tbeory of Computing (1981) 263-277.

1135] C. J. D. M. Verhagen, R. P. W. Duin, F. C. A. Groen, J. C. Joosten, sud P.
W. Verbeek, "Progress Repo rt on Pattern Recognition," Rep. Prog. Phys.,
43 (1980) 786--831.

[136j B. Widrow, "Generalization and Information Storage in Networks of Adaline
Neurons," in Self-Organizing Systems 1962, ed. M. C. Yovits, G . T. Jacobi,
and G. D. Goldstein, (Spartan Books , Washington D. C., 1962) 435.

Efficient Algorithms with Neural Network Behavior 347

[137] David Willshaw, "Holography, Associat ive Memory, and Induct ive Gener­
elis ation," in Parallel Models of Associative Memory edited by Geoffrey E.
Hinton and James A. Anderson, (Lawren ce Erlbaum Associates, Hillsdal e,
New Jersey, 1981) 83-104.

!138] Terry Winograd, "Beyond Programming Languages," Communications of
the ACM, 22 :7 (1979) 391-401.

[139] Stephen Wolfram, Theory and Applications of Cellular Automata, (World
Scientific Publishing Co. Pte. Ltd ., Singapore, 1986).

[140] Stephen Wolfram , «Approaches to Complexity Engineerin g," Physica 22D
(1986) 385-399.

[141J Chuan-lin Wu and Tse-yun Feng, eda., Interconnection Networks {or Parallel
and Distributed Processing, (IEEE Computer Society Pr ess, Los Angeles,
CA,1984).

[142] L. A. Zadeh, IEEE 7l-ansactions on Systems, Man, and Cy bernetics, SMC-3
(1974) 38.

[143] Charles T. Zahn , "Graph-Theoretical Methods for Detecting and Describing
Gestalt Clusters," IEEE 'Iransactions on Computers, C-20:1 (1971) 68-86.

