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A b stract. It has been gener ally conj ectured , based on empirical evi­
dence , that the digits of", represen t a random sequence . Some recen t
expe riments ap pear to challenge this conj ecture . This note describes
a more extensive set of experiments concerning t hese repor ted anoma­
lies, which betray no significant evidence of non-randomn ess . Resu lts
for e and V2 are also given.

1. Introduction

T he question of whe ther the digi t sequence of 11" and othe r t ranscendental
numb ers are random seque nces has a unique appeal to those interested in
numb er theory. A real number is normal in base b [I] if for m :::: 1, ali bm

m-strings occur equally often. A number is normal if is normal in all bases.
It has been conjectured that many transcendental numbers, including 11'" ,

e, and J2 are normal. As a resul t of the difficulty in proving normality,
much effort has gone into empirical testing. In fact, tes t ing for norm ality
is one of the two common excuses for calculating further digits of 11'", the
ot her being computer hardware verifica tion. Normality is related to the
question of randomness, whether a representation of a number simulates
the behavior of an unpredictable process.

Bailey [21 calculated the first 29 ,360 ,000 decimal digits of 1r and sub­
jected them to normali ty tes t ing for up to 6-strings and tes ts for subse­
quence repet it ion and run lengths. He found no deviations from random­
ness, cont inuing a long line of similar resul ts dating back at least to ENIAC
[3J. However, Wolfram {4}, as part of a study on random number generation,
conducted more r igorous tests on a variety of pseudo-random sequences and
repo rt ed results which question whether 11'" is truly random. This note de­
scribes a series of experiments wh ich expand on these tests, which show
that 11' must still be considered a random sequence.
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2. Methodology

This work is based on t he randomness tes t ing tech niques of Knuth [51 who
gives a variety of empirical tests designed to uncover local and global non­
randomness. Three of these tests gave results indicating non-randomness
significant to at least the 0.05 level: the coupon collector's test, the per­
mutation test , and the gap length test. Each of these three tests have been
repeated and expanded.

The length of the sequences used in these experiments is 27,398,104 bits
for 11' , 9,699,336 bits for e, and 47,579,136 bits for vi
2.1 Coupon Collector's Test

The block accumulation or coupon collector's test measures "how many suc­
cess ive samples of m bits it takes for all 2m outcomes to occur . A cutoff of
k samples is used to ensure that the test terminates. The expected distri­
bution of sample sizes for a random sequence is calculated and compared
to the observed distribution. We use m = 3 and k = 40 for our experiment.

Following Knuth, each tes t was repeated 5/Pi times, where Pi is the
probabili ty of the least likely outcome, after which the X2 test was used to
determ ine the probability that the observed distribution was based on the
experimental one . By repeating this procedure as many times as possible
with the given number of bits , we obtain a distribution of X values which
should be uniform over the interval (0,1). The distribution of these values
were subjected to the Kolmogorov-Smirnov test, which identifies the largest
deviation from the uniform distribution and assesses its significance.

The number of samples were doubled over [4) by considering both the
first and second three bits of each 8·bit byte of the expansion. The other
two bits per byte were unused. The cumulative distr ibution is shown in
Figure I.

With 151 X values, k+ = 0.671 for a p = 0.608 and k: = 0.773 for a
P = 0.710. Neither of these values is near enough to 0 or 1 to be significant,
so the coupon test presents no evidence of non-randomness for 1r.

2.2 Permutation Test

The permutation test measures the frequency of the q! distinct permuta­
tions of q n-bit blocks. Excluding samples where two or more of the q
blocks have identical values, for a truly random sequence the probability of
each occurrence pj = l/q!. We use n = 8.

Additional resu lts can be obtained by considering permutations of a
different number of bytes and shifting the starting point for each sequenc e.
These results are not completely independent, since subsequences of fre­
quently occurring permutations should occur more often with shifting and
resizing. However, this is adequate to show the negative result.

For each of our three transcendental bit sequences, we vary q between
3 and 6 and the offset between 0 and q - I. The results are summarized in
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Figure 1: The distribution of X values for the coupon collector's test
for 1t'. A random sequence would be expected to distribute X values
uniformly over the interval (0, i ), resulting in the line y = z ,

Table l.
The p values in the table come from the Kolmogorov-Smirnov test , as

described in the previous section. The totals in Table 1 are the results of
running the Kolmogorov-Smirnov test on the distribution of these p values,
and show no significant deviations from randomness .

2 .3 Gap Length Test

The gap length test measures the length of runs of m-bit samples such that
they do not fall in the gap between two values ex and {3. All runs of length
~ k are lumped together. We use m = 8. and a variety of gaps with
{3 - ex = 50 and {3 - ex = 100, covering the interval between a and 28 - l.
Values 8, 16, and 24 are used for k.

Again, these values are not totally independent, but suffice to show a
negative result. As with both the previous tests, the X2 test was run on sam­
ples of size 5Ip;, where p, = (1- (3- ex) -' or the smallest probabil ity of any
sample. The p values in the table again are from the Kolmogorov-Smirnov
test the uniformity of the X distribution. The results are summarized in.
Table 2. Note that th e number of bits of e is not sufficient for signifi­
cance when t = 24 and {3 - ex = 100. The total p values come from th e
Kolmogorov-Smirnov test and betray no evidence of non-randomness.

3 . Conclusions

We have shown that all three transcendental numbers, 1r, e, and v"2 pass
our extended randomness tests . Thus, the evidence supports the hypothesis
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3 0 0.253 0 .566 0.095 0.951 0.270 0.547
1 0 .604 0.245 0.413 0.662 0.330 0.454
2 0.704 0.706 0.181 0.538 0.258 0.839

4 0 0.996 0.060 0.515 0.286 0.062 0.660
1 0.069 0.752 0.184 0.713 0.157 0.956
2 0.110 0.962 0.067 0.753 0.531 0.484
3 0.087 0.922 0.108 0.921 0.201 0.717

5 0 0.961 0.204 0.869 0.040 0.225 0.894
1 0.577 0.557 0.337 0.791 0.598 0.287
2 0.501 0.802 0.222 0.497 0.027 0.986
3 0.443 0.473 0.338 0.356 0.096 0.961
4 0.864 0.071 0.984 0.161 0.722 0.539

6 0 0.485 0.274 0.521 0.414 0.319 0.321
1 0.257 0.443 0.886 0.532 0.923 0.551
2 0.920 0.015 0.828 0.061 0.880 0.013
3 0.813 0.076 0.764 0.319 0.508 0.283
4 0.930 0.090 0.047 0.924 0.378 0.202
5 0.424 0.1 83 0.244 0.513 0.565 0.220

total p(k+) 0.143 0.865 0.844 0.215 0.885 0.157
p(k-j 0.583 0.060 0.117 0.449 0.043 0.583

Table 1: Permutation test results for 11', e. and vi Note that , al­
though certain individual tests seem provocative [for example, size=4,
offset=O for ;If), the anomalies do not appear with different parameter
values and are not significant.
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0 100 8 0.355 0.966 0.272 0.602 0.519 0.363
16 0.605 0.269 0.123 0.874 0.865 0.11 6
24 0.93 3 0.055 - - 0.851 0.213

50 150 8 0.826 0.408 0.4 83 0.371 0.045 0.791
16 0.928 0.653 0.050 0.968 0.951 0.1 55
24 0.871 0.198 - - 0.833 0.283

100 200 8 0.231 0.810 0.942 0.085 0.12 8 0.9 42
16 0.991 0.002 0.415 0.821 0.034 0.831
24 0.145 0.895 - - 0.211 0.712

155 255 8 0.214 0.448 0.328 0.200 0.199 0.950
16 0.178 0.843 0.434 0.747 0.203 0.883
24 0.935 0.049 - - 0.527 0.546

0 50 8 0.074 0.971 0.040 0.998 0.363 0.534
16 0 .048 0.817 0 .367 0.344 0.393 0.483
24 0.040 0.822 0.197 0.833 0.238 0.3 50

50 100 8 0.544 0.566 0.882 0.078 0 .224 0.592
16 0.677 0.176 0.933 0.007 0.148 0.700
24 0.847 0.123 0.997 0.045 0.005 0.872

100 150 8 0.181 0.813 0.406 0.661 0.058 0.922
16 0.279 0 .356 0.201 0.61 2 0.130 0.532
24 0.345 0.750 0.335 0.625 0.496 0.213

150 200 8 0.129 0.981 0.854 0.518 0.497 0.410
16 0.116 0.968 0.760 0.886 0.589 0.368
24 0.101 0.934 0.796 0.07 7 0.888 0.317

200 250 8 0.271 0.421 0.948 0.166 0.260 0.930
16 0.239 0.657 0.648 0.773 0.078 0.530
24 0.409 0.412 0.396 0.651 0.579 0.637

205 255 8 0.11 3 0.619 0.592 0 .234 0.487 0.535
16 0.455 0.228 0.519 0.315 0.930 0.087
24 0.722 0.162 0.906 0.487 0.982 0 .026

total :~7+) 0.954 0.141 0.468 0 .558 0.934 0.191
p k- j 0.235 0.864 0.446 0.664 0.266 0.466

Table 2: Gap length tes t results for w, e, and y'2. Although certain
parameter combinations lead to high or low p-values, these are not
confirmed over different gaps (a and fJ) and sequence lengt hs t .
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of randomness.
If a sequence is truly random, certain portions of it must fail any ran­

domness test. For these resu lts to be accepted as significant, closely related
tests) such as variat ions on sample lengt h or starting position should lead
to similar results . Our experiments show that these tes ts do not give any
evidence of dev iations from randomness.
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