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Abstract. We stud y th e amount of ti me needed to learn a fixed t rain­
ing se t in the "back-pro pagation" proced ure for learning in multi-layer
neural network models. The task chosen was 32-bit parity, a high­
order funct ion for wh ich memorization of specific inpu t-output pairs
is necessary. For small t raining sets , the learning time is consistent
with a ~-power law depen dence on the number of patterns in the
t ra ining set. For larger training set s, t he learn ing t ime dive rges at a
critical tra ining set size which appears to be related to the storage
capacity of the network.

There is now widespread interest in devising adaptive learning proce ­
dures for massively-p arallel networks of neuron-like comput ing elements
[1,2,10 ,11,12,17]. A prime example is the "back-p ropagat ion" learn ing pro­
cedure [8,9,6] for mu lti-l ayer feed-forward network s. In this procedure, a
set of patterns is presented to the input layer of the network, and the net­
wor k's output is computed by feed-forward pr opagation of the input signal.
An error function is then obtained by calculating the mean squar ed differ­
ence between the network 's output and the des ired output for each pattern .
T he connection strengths, or weights, of the network are then modified so
as to minimize the erro r fun cti on according to a grad ient-descent rul e. This
algorithm has displayed impress ive perfor man ce for small-scale prob lems,
and it is now of great interest to determine how it will scale to larger , more
d ifficult prob lems.

T he question of sca ling can be approached from several different dir ec­
t ions. Typically one wou ld ask how some measure of the network 's per­
formance (such as the t raining t ime , or the fraction of pat terns classified
correctly) scales wit h a paramete r describing the network , the task, or t he
learning algorithm. Basic parameters describing the network include: the
numb er of input units n, the number of hidden units h, and the number
of layers 1. Related paramet ers include: the total number of possibl e inpu t
patterns (2" for binary inp uts), and the storage capacity of the netwo rk,
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i.e., the number of modifiable weights and thresholds. (For a standard 3­
layer network this is approximately nh .) The major parameter describing
the computational task is the order of the computation k (as defined by
Minsky and Papert 17]) . Parameters describing the learning algorithm in­
clude: the learning rate E, the "momentum" coefficient (x, and the size of
initial random weights r , An example of a scaling relationship would be a
statement of how the training time T depends on t he order of computation
k. (There is reason to believe that the dependence should be exponent ial,
i.e., T - c' 118,19,20,3,161.)

In this brief note, we cons ider the situation in which the network is
trained to compute a Boolean funct ion of a fixed set of input patterns. The
size of the t rai ning set S is taken to be much less than the total number
of possible input patterns. This is expected to he representat ive of the
general situat ion for large problems. In contrast, most previous studies of
small problems used all possible inp uts in training the network. This is
feas ible only for networks with a small number of input units; for large
problems it quick ly becomes int ractable to generate all 2" inp ut patterns
for a problem of size n.

Given a fixed training set of size S, a natural question to ask is how the
training time T scales with S, keeping every thing else fixed. One would
expect two fundamentally different kinds of scaling behavior, dep ending on
whether or not the network is able to "generalize". By generalization we
mean that the network abstracts the general principle of the computation,
and is able to correctly classify new inp uts without having seen them pre­
viously in the training phase. Generalization will be possible if the network
has enough weights to solve the problem, and if the training set contains
enough exemplars to determine the general rule.

Ifgeneralization is poss ible, t hen one would expect that the learning of a
particular example in the t ra ining set is ass isted by the presenc e of the other
examples. In other words, t he required number of presentations of each
example shou ld decrease as the training set size increases, and multiplying
by S, one concludes that the total t raining t ime T shou ld increase at a
slower than linear rate. (Such sublinear sca ling has in fact been seen for the
problem of text-to-speech conversion 1141 , a problem in which substantial
generalization is possible.) In the extreme case of perfect generalization ,
one would expec t that T would remain constant as S increases, because
the network would already be able to correctly classify new exemplars due
to generalization. (This type of scaling behavior has also been seen for
the problem of detecting symmet ries in random-dot pat terns 113J.) On the
other hand, if generalization is not possible, then the required number of
presentations of each example should remain constant (or possibly increase
due to conflicts) as S increases. This implies that the training t ime should
increase at least linearly with the number of patterns to be memorized.

The study reported here conforms to the situat ion in which generaliza­
tion is (effectively) not possible. The computat ional task was 32-b it parity,
i.e. , the input is a st ring of 32 binary digits, and the desired output is a 1
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if there are an odd number of 1's in the input string and 0 otherwise. It is
suggested that the minimal number of distinct training patterns necessary
to obtain correct generalization increases exponentially with the order of
the computation being trained. Since k = 32 for 32-bit parity, this would
imply that generalization would take place only when the training set con­
tains some substantial fraction of all possible inputs [i.e. S - 2"). For
training sets much smaller than this, generalization would not be possible,
and the network could only memorize the patterns in the training set.

The network used in this study was a standard three-layer feed-forward
network, with 32 input units and one output unit. The hidden layer con­
tained either 8, 16, or 32 hidden un its , which were fully connected to the
input and output layers. The training set contained between 10 and 1000
random 32-bit integers. The back-propagation algorithm of [141 was used
to modify the weights, with parameters f = 1.0, a = 0.9, r = 0.5, and a
margin of 0.1. The weights were updated after every pattern. Continuous
cycling through the data base proceeded until the network reached 80%
performance on the training set, at which time the training was stopped
and the training time recorded.

Numerical results are plotted in log-log form in figure 1. Reported
training times typically represent averages over 3-5 individual runs, and
the errors in these measurements are expected to be around 10%. One can
see in figure 1 that for small values of S, the log-log plot appears to be
roughly linear in form, indicating a power-law T ,..., S"'. For the network
with 32 hidden units, no significant devation from this law was observed up
to 1000 training patterns. However, for 16 hidden units, the final data point
at S = 1000 deviated from the power-law relationship, and for 8 hidden
units, the dev iat ion appears earlier, at S = 500. (For S = 1000 the 8-hidden
unit net was unable to learn the training set to the 80% performance level.)

Standard fits applied to the apparently linear regions in figure 1 yield
'Y = 1.33 ± 0.02 for 32 hidden units, 'Y = 1.34 ± 0.03 for 16 hidden units,
and 'Y = 1.34 ± 0.03 for 8 hidden units.

The data presented is consistent with the following interpretation. There
is a critical training set size Se which is proportional to the storage capacity
of the network. For values of S <c Sc, the network has no trouble memo­
rizing the individual patterns, and the training time follows a well-behaved
~-power law dependence on S . However, as S approaches SCI the limita­
tions of the finite storage capacity of the network cause the training time
to diverge. (For S > Be the training time is infinite, i.e. , the network is
not able to learn the training set.) This proposed scaling relationship is
summarized in the following formula:

T - AS'!' + B(S, - S) -'

where Be ,..., nh and q is undetermined from the data.
In swnmary, there appears to be a simple scaling relationship for learn­

ing 32-bit parity with a fixed training set. Such scaling relationships may be
elucidated by a more fundamental mathematical analysis. No fundamental



370 Gerald Tesauro

o 32 hidden units

G 16 hidden units

,&. 8 hidden units

10 25 50 100 250 500 1000

s

Figure 1: The number T of presentations needed for networks of vari­
ous sizes to give 80% correct results for the 32-bit parity computation,
as a functi on of the number of instanc es S used in training them. The
st raight line represents a best fit to the results for the 32 hidden unit
case I and suggests a relation T ...... 8'/s.
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explanation is yet known for the peculiar value of the scaling exponent "1.
Qualitative arguments might explain an integer or half-integer exponent;
however , a ~ exponent defies simple explanation. It would be of great in­
terest to determine the extent of "universality" of this particular exponent.
This might be approached for this particular problem by varying other pa­
rameters such as n , e, and a. It might also be approached by studying other
computational problems such as memorization of random outputs . (For
learning of a data base of expert backgammon moves, the training time
appears to scale roughly quadratically with the size of the data base 1151.)
Finally, a comparison with other learning algorithms is clearly worthwhile.
In particular, a similar scaling study for the Boltzmann machine learning
algorithm [4,5,1] would provide a great deal of insight into the issue of
whether the Boltzmann algorithm or the back-propagation algorithm will
scale more favorably in large difficult problem domains.
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