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Abstract. Temporal pattern learn ing, control and predict ion , and
chaotic data an alysis sha re a common pr oblem : ded ucing optimal
equations of motion from observations of time-dependent behavior .
Each desires to obtain models of the physical world from limited in­
formation. We describe a method to reconstruct the deterministic
portion of the equations of motion directly from a data series. These
eq uations of motion represent a vast reduction of a chaotic data set's
observed com plexity to a compact, algorit hm ic specification . T his
approach employs an informational measure of model optima lity to
gu ide searching th rough the space of dynamica l systems . As corollary
results, we indicate how to est imate the mi nimum embedding dimen­
sion, extrinsic noise level, metric entropy, an d Lyapunov spectrum.
Nu merical an d experimental app lications demonst rate the method's
feasibility and limitations. Extensio ns to est imating pa rametrized
fami lies of dynamical systems from bifurcation data and to spatial
pattern evolut ion are pre sented. Applications to predicting chaotic
dat a and t he desig n of forecasting, learning, and control systems are
d iscussed.

1 . Introduction

Wh en refinin g a model of a phys ical process, a scientist foc uses on the
agreement of theore tically predicted and experimentally observed behav­
ior. If these agree in some accepted sense, then the model is "correct"
within that context. Lore nz [1,2] pointed out the fundamental limi t at ions
to which this scient ific proced ure is subject , when t he underlying p hysical
proc ess is chaotic. In considering exact theoretical prediction, there is an
irreducib le long-term error in the prediction of a system's state that is on
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the order of the chaotic attractor's size in state space [3]. Even a "cor­
rect" model cannot exactly reproduce observed chaotic behavior, an d one
must turn to geometric 141 or stat istical [5] criteria of validity. Such quali­
tative informat ion about the geometry and t he asymptotic d istribution of
states on the attractor is contained, in fact , in a single ti me series [4,6].
At present, a model of a chaotic process is considered "correct" when the
geometry, d imension, and ent ropy of its attractor agree with those of the
att ra ctor reconstructed from the observed data.

Here , we consider the inverse prob lem to verifying theoretical m odels:
how can we obtain t he equations of motio n directly from measurements?
To do this, we will extend the notion of qualitative informati on contained
in a sequence of observations to consider directly the underlying dy namics.
We will show that, using this information, one can deduce t he effective
equations of motion. T he lat ter summarize up to an a priori specified
level of correctness, or accuracy, t he deterministic portion of the observed
behavior. T he observed behavior on short t ime scales! unaccounted for by
the reconstructed equations will be considered extrinsic no ise [7].2

T his model ansatz is tantamount to assuming that the observations
have been produced by some arbitrary dynamica l system in the presence of
fluctuations. Un less explicitly noted , we res trict our disc uss ion to the case
that the dynamical system is finite-dimens iona l: the state is specified by
the po int x = ( XO, Xh ••• , Xm6cd- l ) EM, where M is an mbtd-dimens ional
manifold , the state space. The state evolves according to the dynamic
F(i) = (fo(i) , f, (i), · . . ,fm••,- l(i) ). If the behavior varies continuous ly in
time, then t he system evolves according to a stochastic different ial equat ion

i tt) = F(i(t )) + W). (1.1)

In the case of discrete-time, the evolution is specified by a stochast ic dif­
ference equation

(1.2)

where n deno tes time step. Further assumptions appear in these equations:
the effect of fluctuations is addltive," stationary, and independent of x. We
t ake e(t ), for example, to be zero-mean Gauss ian distributed S-correlated
noise with amplitudes Out along each coordinate:

w t)W - r )) = o(r)iT.. t- (1.3)

"Time scales". < 1:-, where h~ is the metric entropy and 10 j:d - log2 E: is the unb iased

average information obtained from a measurement of resolution e.
2Naturally, by broadening one's notion of the relevant dy nam ics, wit h concomitant in­

crease in the model's comp lexity, the extrinsic noise may be revealed to be of det ermin istic
origin and therefore incorporated into the estimated equations of motion.

3Wh ile th ere are sit uations where, say, parametric or nonlinear fluct ua tion coup ling are
appropriate, experience has shown that the additive form is adequat e for most mo deling
purp oses. The analysis presented here may be carried through for these ot her mo dels with
greater theore tical and computational difficulty .
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A model M then consists of the pair (..p,an t) of estimated dynamic and
extrinsic noise level vector.

To aid in the geometric interpretation of a model M = (F,an t), we
introduce slightly more general terminology. If the space of all dynamical
systems on some manifold M is denoted D(M): then F E D(M); that
is, the model dynamic is a point in the space of (deterministic) dynamical
systems. In practice, we must consider a wider class of dynamical systems,
as initially we do not know the dimension of M, and so D shall denote the
space of all dynamical systems, and F is to be considered a point in this
larger space also. The model M with its stochastic component is then an
"ellipsoid" centered on FED. The set of dynamical systems in this ball
are noise-equivalent, as they describe essentially the same time-averaged
dynamics in the presence of a given level ii~zt of fluctuations. Said another
way, M is an ensemble of realizations of a stochastic dynamical system.
In practice, we introduce reconstruction basis coordinates for M and a
function basis ;b(x) = (qlo(x), ... , qlK-l(X) for approximating the dynamic
F to "order" K: F(x) = A;b(X), where a;, = (A) .. is the coefficient of the
kt h component t/>k for Ii. These choices result in the space of deterministic
models D M , which is the K mb~d-dimensional space of approximations to the
infinite-dimensional D. Note that we do not include the mbed components
of iin t in D M I and F is linear in the parameters {aik}.

Properly considered, the problem of deducing the deterministic portion
of a data series is a subset of the general problem of pattern recognition:
detecting a priori unknown structure in data. This is, indeed, not a new
problem. A vast literature in statistics, optimization, control, prediction,
and information theory addresses itself to problems of this nature. In fact,
the use of state space methods has recently come to the fore in times series
analysis [8]. What distinguishes our work is the incorporation of concepts
from dynamical systems theory:

1. the notion of global stability (attractors);

2. the deterministic production of apparently random behavior (chaos);

3. quantitative measures of temporal complexity (metric entropy and
Lyapunov characteristic exponents);

4. the notion that relevant state space coordinates can be developed
systematically from a data set (reconstruction); and, finally,

5. the consideration of manifestly nonlinear behavior.

The approach outlined here proposes a set of problems through which
we may complete the line of investigation concerning the geometric charac­
terization of apparently random behavior that has developed over the last
half dozen years. Going beyond this, it suggests an approach that employs
global structure in chaotic data analysis. Previously, measures of chaos
have been based on averages or random samples of local structure. When
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employed in real data analysis, these have often suffered from large er rors
[9] and from spurious resu lts [10] and also in their consistent interpretation
[10,11]. This is due largely to the omission of global informat ion that is
manifestly contained in the data.

Before presenting the method for deducing deterministic equat ions of
motion, we will first br iefly review chaotic data analysis and at tractor re­
construction. Following the method's desc ription, we show how it leads
to an estimate of the minimum embedding dimension, and to estimates
of the Lyapunov sp ectrum, metric ent ropy, and ext rinsic no ise level. The
analysis of data from several numerical and experimental examples then
illust rates its application. We conclude with a few comments on implemen­
tation and a discussion of applications to other more complex dynamical
systems, prediction and control systems, and scientific model build ing.

2. Data acquisition

We must first describe the nature of the informat ion with which data anal­
ysis begins. A data series is a set of N sequential temporal data po int s
{tln : n = O, · ··,N -I}. The sampled data is obtained every sampling
int erval T, with measurement resolution CII' Information is acquired at the
measurement channel rate Gaeq = - TII-

110g2(clI) : the communication ca­
pacity [12] of the measurement channel [7]. This rate imposes an upper
limit on the observable complexity of the process which ca n be entire ly
reconstructed. Specifically, the measured me tric entropy hjJ is boun ded:
hjJ ~ Gaeq • In the typical experiment al situation, this upper bound is rarely
approached. In ot her words, measurements of the state variables contain
vastly more informat ion than the dynamics which generated the data se­
ries is capable of producing.t To illustrate the basic method, we will be
concerned with t ime series: a temporal sequence of a single exper imental
observable.

The overall approach to chaot ic data analysis that we present he re con­
sists of five parts. These are not necessarily separate steps; e.g., some
estimates can be improved iteratively. First, one chooses a reconstruct ion
technique and transforms the data into the state space. Second, the dime n­
sion of the reconstructed data is est imat ed to provide an initi al guess of an
upper bound on the embedding dimension m~ed' T hird , the equations of
motion are estimated; this also yields the minimum embedding dimension .
Fourth, a number of re lated statistical quantities are computed , such as a
estimates of the ext rinsic noise Oezfl the Lyapunov spectrum, informati on
dimension , and metric ent ropy. F ina lly, these steps can be repeate d with
data from successive control settings to get an arc in DM of a parametrized
fam ily of dynamical systems.

"We should point out that with spat ially extended or fully turbulent systems this may
not be the case. The dominant problem often becomes how to obt ain sufficient infonnation
to characterize spatial pattern evolution.
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3. Reconstruction
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A reconstruct ion techn ique [41 R is a nonlinear (diffeomorphic [6]) coor­
dinate change x = R 0 v from v, the sampled data, to x, t he recon­
structed state space coordinates . Several reconstruction techniques have
been used to date. Cons ider a single cont inuous-t ime scalar signal v(t ).
In the derivative method , the coordinates are developed from the signal
as successive temporal derivatives: x(t) = (v(t) , ti(t) , ii(t),-· -} . The most
widely-used method is delay reconstruction . Here , the coordinates are
taken as success ive delays of a signal, x = (v(t),v(t - r) , v(t - 2r),· · ·).
Spatially-separated probes have also been used as state space coordinates:
x = (V. (t), V.H (t ),V.+,,(t) , .. ·). r and Ii are free parameters chosen to
yield optimal reconstructions; where opt imality is determined by th e ap pli­
cat ion . The Karhunen-Loeve t ransformat ion applied to these coordinates
greatly reduces a reconstruction's sensit ivity to T and 6 [13]. We note in
passing that all of these techniques can be foun d in one form or another
in the above- mentioned body of related literature as scatter plots, time­
differenced series, contiguity lag models, multivariate time series, and so
on . This literature ap parently does not supply, however , a systemat ic the­
ory to aid in the selection between the methods nor is there any geometric
interpretation of reconstruct ion itself like that provided by dynamical sys­
tems theory.

As will be shown, deducing the optimal equa t ions of mot ion leads to an
estimate of the minimum embedding dimension . To get started , however ,
an est imate of an upper bound for m6'ed is he lpful. This can be found using
standard techniques to est imate the local dimension mlClcal [5,14,15]. With
this, the initial guess , an upper bound, for the embedding dimension is
2m/,,,, [161 .

The reconstruction method R can introduce unknown distortions that
complicate the representation of the dynamic in some given function basis .
Ult imate ly, one would like to generalize the opt imization method describ ed
below to search in space of reconstruction techniques [i.e., emb eddings) and
also to look for nonlinear coordinates. For our present purposes, we sha ll
assume that an ade quate reconstructi on is available. With t his, t he dat a
can be embedded in a hierarchy of state spaces of increasing dime nsion.

4 . The equations of motion pro cedure

By defini tion, the function basis ¢ spans the model space D M F (x)
A~(x). We assume th at this can be done systema tically for any m." . With
any such basis the t ask reduces to the common st at ist ical problem of es­
timating the parameters {Gik}, A E RKmh ." from a cloud of data points
that lie on or near the deterministic dynamic. Numerous expansion bases
are available for this, such as Taylor, Chebeysev, rational functions, and
splines. One might even consider expansions in which the coefficients en­
tered as nonlinear parameters . Although th ese choices are important for
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(4.1)

a part icu lar a pplicat ion, they do not a ffect our me thod 's overal l im ple­
me ntat ion , only the ease an d acc uracy wit h which equations of motion
are obtaine d and the apparent simp licity, or lack t hereof, of the estimated
equations of moti on themselves.

Ro ugh ly speaking, there are two estimation classes: one based on using
data from the ent ire attractor to estimate parameters, the ot her based on
us ing data from local reg ions on the attractor. T he first we ca ll the global
eq ua tions of motion procedure; the latter, the atlas equations of m otion
procedure. We shall concent r ate on the former, as it is simplest to describe
and leads to equations of motion mos t like those with which we are famili ar.
The at las method, as we shall describe below, is closely allied to differential
topology [171and is more general than t he global approach in the sense that
fewer statistical and geometric assumptions about t he data are required.
Consequently, the at las approach can be successfu lly applied to a wider
class of behavior.

The goal in est imat ing the deterministic equat ions of motion from a
noisy data set is to deduce a minimal model that reproduces the be havior .
To do this we first need a measure of deviati on of the data fro m a given
dynamic F. The observed noise ao'" = (Uoh.,O, Uoll. ,h · · ·, Uoh '"",d - d provides
th is and is defined component -wise by

1 N -l

CT:,." = N L (Yo,; - F;(io))'
n=O

where fin = (Yn,o, Yn.l, ... ,Yn,,,,,,.,,-l) is the state that succeeds in in the data
se t. This measures the error in predicting the observed next state fin using
the est imated dynamic on the observed current state in: F(in ) . In the
stat ist ics literature it is ca lled the "one-step prediction error varianc e."

T he second requirement is a goodness-or-fit measure that reconc iles the
two confl ict ing tendencies of the improvement in fit an d the model's in­
creased complexity, with increasing approximation order [18]. This is used
to objectively select an optimal model from th e range of those consistent
with the data. It is, in fact, a "cost function" that ranks model candidates
in DM • The information contained in a model or model entropy I (M) is
given, in a simple app roximation , by

m k" "".." ,T(K)

I (M } '" L log, CT,..,; + L log, CT,,, '" log, CT". + m" .T(K ) (4.2)
i= l ,=1

.1:=0

whe re T(K) = (""..."'~~) I is the numb er of basis functions up to order K
""h oi

in mllt d vanabtes," ua,It. are the error variances of the param eters , and
CT" . = lIa".lI /m" .. The basic principle for select ing the op timal model
in D M I an informational Occam's razor, is that the model entropy I(M) is
minimized. This should be compared with the maximum ent ropy form alism

OWe suppress the m k d dependence of T{K) for notational convenience.
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of Jaynes [191. We could have simply selected ad hoc a particular approxi­
mation scheme, such as linear or quadratic Taylor functions. With such a
restriction, the model entropy does not play an important role. However,
the inclusion of the optimality criterion of minimum model entropy allows
for the procedure itse lf to select the most appropriate scheme.

As defined be low, I(M) differs from conventional "model ident ificat ion
cr iteria" [20J in that it accounts for the effect of deterministic amplifica­
t ion or damping of aut. This is especia lly important for t ime- or space­
dependent da ta series derived from loca lly unstable dynamics. Any such
cr iterion applied t o da ta pro duced by a chaotic dynam ical system, for ex­
am ple, that ignores t his systematically underestimates the "goodness of fit"
and reports that the data is random when it may be wholly deterministic.

A few comments on I(M) are necessary to suggest its interpretation
and how the above approximation is developed. Consider an ensemble of
experiments each of which produces a data set and, upon equations of
motion analysis, a model. The ensemble of models is described in part by
the distribution PM on D M of estimated dynamics. The model ent ropy is
formally

(4.3)

where PM' describes the a pr iori dist ributi on of models M' in the class spec­
ified by equations (1.1) and (1.2) . Recalling the Gaussian approximation
that is implied there and not ing that PM consists of two components--de­
viat ions due to erro rs in paramete r values and "errors" due to aut for a
given order K expansion-the model entropy is

, , 1 (N-' (- F(- »' )I (M ) = log, ",.. +"", ~ ",••+- L Yn - ,xn +T(K) (4.4)
qeid 2uoh 2N n =O U oh

where Ueid = IlUeidll /m6ed ' Ignoring the determinist ic amplification of aut
[i.e., the first and second terms) using a subjective estimate of the mea­
surement errors for (job' in the third term, and dropping common, constant
factors, we recover in the remaining third and fourth terms an existing
information criterion based on maximum likelihood 1201 .

5. Lyapunov characteristic exponent spectrum

The full spectrum of mbed Lyapunov exponents {.\i : i = 0,' •. , mbed - I}
may be estimated using the optimum model. The Lyapunov exponents
associated with directions transverse to the orb it and off the at tractor (i.e.,
not directly const ra ined by information in the data set ) are estimated in
the sense of optimality defined by I (M). T he vector field not const ra ined
by the dat a set is informationally the simplest with respect to the chosen
reconstructio n R and function basis ;fJ.
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The procedure for this estimation derives directly from the Lyapunov
characteristic exponent (LeE) spectrum's defin it ion. For disc rete-time dy­
namics (or discretely-sampled continuous data),

Ai = Jdp.(x) log, 1I8 f n (X) • <ill, (5.1)

where e. is the J"th basis vector in t he tangent sp ace; the index i is taken so
that the spectrum is monotonical ly decreasing; of is the matrix of partial
derivatives; and JJ.(X) is the invariant measure on the attractor, which is
simply estimated by the data itself. This yields the LeE estimator given
by

(5.2)

Thus, the computational technique is straightforward and directly rela ted
to that developed for numerical simulations 121,221. The overall ap proach to
estimating the full Lyapunov spectrum proposed here should be compared
with estimations based on averages of linear approximation to the tangent
space from local data [9,10,11].

The metric entropy is then estimated as th e sum of posit ive Ai, the
informat ion dimension , via th e Kaplan-Yorke form ula [23J . We note that
another ind epend ent estimate of the metric ent ropy may be developed from
the local sp reading due to F as meas ured by a conditional probabili ty den­
sity [24,25]. This estimator forms the basis of optimal predict ion algorithms
described in the applications at the end.

6. Extrinsic noise level

If, as we have ass ume d, the data is produced by a chaotic system the ob­
served no ise level Doh measu res, but does not distinguish, two sources of
"error": those due to the deterministic amplification of extrinsic fluctua­
t ions and the fluct uati ons themselves t This decomposition is expressed
informationally as

(6.1)

The units for each term are bits per time uni t , where th e time uni t is r,.
Once the deterministic amplificat ion of ext rinsic noise is est imated by

the metric entropy or Lyapunov spect rum , an est imate of the "true" ex­
trinsic noise level follows

(6.2)

With respect to the assumed model class, th is yields an estimation of the
fluct uat ions actua lly present in the system an d not generated by the deter­
ministic dynamics. The methods of est imating aut used in references [25J
and [7) should be compared to t his. In this context, log, " ", plays th e role
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of a thermodynamic ent ropy : t he information missing from the deduced
"macroscopic" variables and parameters of the determinist ic dynam ic. We
shall return to this thermodynamic interpretation in a later section. To
summarize, th ere is no need for an a priori estimate of the extrins ic noise
level, as one often finds explicitly or implicitly in current chaotic quant i­
fiers. We have rep laced this wit h the model hypothesis of equations (1.1)
and (1.2) and model entropy minimization.

7. The attractive hypothesis

A further important assumption is that the reconstru cted data lies near or
evolves to an attracto r. Although this need not be the case if the equa­
t ions of motion analysis is being app lied in a context in which explicit ly
t ransient , globally unstable behavior has generated the data set, it is worth
discussing in some detail for several reasons. First, it is the main case of
interest to us here; th ere are several interest ing app lications. Second, it
aids considerably in improving estimated equations of motion and in re­
ducing computational resources. Third, it is an often unspoken assumption
that dese rves exp licit acknowledgement in any statistical analysis of chaotic
data. It articulates one's ant icipation of an important property of the data ,
that mayor may not be born out during analysis. As such, we call it the
attractive hypoth esis.

The mathematical state ment formalizes the requirement that the da ta
"map" into itsel f. We define the state space volume Aattract as the largest
Euclidean mbed-cube circumsc ribing the reconstructed data points {Xn}:

{i E Rm
••, : m in{xni} :s Xi :s max{Xni}' i = 0, .. · ,m',d - I}. (7.1)

The extrema are taken over the entire data set {xn}j the subsc ript i refers
to the l'th coordinate. With this, t he att ract ive hypothesis requires

F(Aattract ) ~ Aa uract. (7.2)

For brevity's sake and as it does not affect the main points of our discussion,
we cons ider only the deterministic dynamic and not the model's stochas­
tic component," This particular statement of the attractive hypothesis is
rather strong. A weaker form, for example, would be to limit t he constraint
to an e-cover of the data set. This, however , has its own difficult ies, so we
will use the above form.

The geometric interpretation of the att ractive hypothesis is rather sim­
ple for continuous t ime flows, equation (1.1): the vector field sufficiently far
from the data cloud points inwards . Thus, any simulated trajectory start­
ing outs ide the region constrained by the data will move toward Aauract . For

6Ruelle [26J provides a detailed discussion of attractors in the presence of fluctuations.
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d iscrete time maps , the geometric picture is simply that an ini ti a l condit ion
maps into ! o.Uro.ef on the first iteration.

In implementing the a t t ract ive hypothesis, the vector field or discrete­
time dynamic outside the data-containing region is augmented with a smooth
contractive extrapolation. To facilitate this , the data is normalized initially
to I- l, l ]m."ol . One of several standard extrapolations outside this cube is
then imposed. One alternative is to simply add da ta outside the cube that
provides t he desired extrapolat ion. Another alternative is to employ a ba­
sis that explicitly implements the attractive property outside the cube, e.g .
Hermi te polynomi als rather than Taylor functions .

As discussed in this section, the attractive hypothesis app lies to either
global or atl as equat ions of motion analysis. It imposes boundary condit ions
on the chosen fitting procedure, toward whose implementation details we
now turn.

8. Dynamic estimation and a diagnostic

This completes the theoretical background of our method. In th is sec­
t ion, we describe pro cedures for fitting the graph of the dynamic For,
equivalently, estimating the parameters {a;k}. There is a large number
of algorithms for the central fitting and optimization task that we have
ju st introduced: least squares, simplex methods, simulated annealing, and
the Boltzmann machine come to mind. Afte r experience with the first
t hree , we have settled on the singular value decomposition imp lementa­
tion of least squ ares fitt ing [27,28). This is very robust and stable for t he
type of over-determined and nearly sing ular problems with which we are
concerned here." Furthermo re, it does not require an orthogonal bas is as
errors in parameter est imates are independent due to t he implicit use of
Karhunen-Loeve transformation.

T here are a number of pr actic al concerns regarding the choice of basis
funct ions. For example, if we use smooth bas is funct ions to fit a dyn amic
with apparent (e.g. circle map) or real discontinuiti es [e.g. Lorenz map)
or th at is not smooth (e.g. tent map) , the fits are naturally very poo r.
Similarly, a term in the real dynamic may not be optimally approximated
in the chosen basis: e.g. a periodic dr iving term approximated by a Taylor
expansion. A basis may be ap propriate if the data is properly t ransformed,
however. For example, one can use z = sin(wt) rather than t as a coordina te
for a Tay lor function basis in the case of data from a driven oscillator .

To aid in the detection of poo r approximation, we have developed a sim­
ple diagnostic . Although it does not take into account particular features of
a chosen basis, it does provide a measure of the difficulty encountered using

7Th is is an opt.imisat.ion problem wit.h the cost function being I(M) . We have im­
plement ed simula ted annealing and a simplex method . For low dimensions (m~d < 5).
th e singular value decomposition is much faster. Perhaps for larger m~d, where the com­
putational resources for singular value decomposition are prohibitive, these alternative
techniques will be preferred .
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smooth bases to fit a dynamic whose graph has high state-space frequency
components . We use the e-convergence properties of a dimension-like quan­
t ity that measures the RMS range of th e dyn amic over e-size domain cells.
Its convergence is monitored in the same manner used for entropy conver­
gence to investigate the effects of noise on symbolic dynamics 1251. The
diagnostic is interpreted as follows. If t he convergence is slow, there is
much var iation in the dynamics and the estimation will require high order
or fail altogether. If the convergence is rapid, then a smooth approximation
is likely t o work.

Ult imate ly, we believe a proce dure will be found that avoids this class
of fitting problem altogether by determining the optimal nonlinear basis
direct ly from the data set. It would then go on to estimate the equat ions
of motion in a form compact with respect to that basis. A first st ep in this
directi on is the atlas equations of motion procedure presented in t he next
sect ion.

9. Atlas equations of motion est imation

To balance these cautionary remarks on implementat ion details, we digr ess
at this point to indicate the general applicability of deducing equat ions
of motion. The proof th at equations of motion analysis always works in
principle for smooth dyn ami cal systems relies on the Morse lemma. This
states that any smooth manifold is approximated by a set, or atlas, of
local quadratic polynomial charts [29J. In th e case of equations of motion
analysis, there are two manifolds of interest : (i) the reconstructed state
space, the domain of the dynamic, and (ii) the graph of the dynamic. If,
as we have assumed, the underlying dynamical system is smooth, there is a
finite domain cell size e below which th e coordinate charts for the dynamic
allow adequate approximation within some error level (; in the range of the
dynamic. With real data, the minimum e is bounded from below by qed'

It may be much larger, however , indicating a simpler state sp ace manifold
and dynamic and that fewer than O(q~,:,~c. ) charts are necessary .

Employing th is topological fram ework, our atlas equations of motion
proce dure computes a global list of coordinate patches to the graph of the
dynamic, approximating the dynamic with a local spline and noting the
domain of applicabili ty for each. The splines may go up to cubic order
in our imp lement ation. Thus, for a fixed error {;, th e domain cell size
is chosen to be e l=::: {;- i: for an order k spline . Within each chart, th e
spline parameters are est imated from the local data using singular value
decomposition," A number of splines ar e available for this task: B-spline,
Bezier, and Hermite. Each provides its own type of loca l approximation.

8When appl ied to the der a in the domain of each char t , singular va lue decomposition
also provides a method for simult aneously estima t ing m'ocal. T his is estimated as the
rank of the local covariance ma trix, computed by th e number of significant singular values,
avera ged over each chart in th e atlas. This method is closely related to the "local linear
regression" method of dim ension estimation 114,30J.
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We have imp lemented B-splines as they allow both the first and second
derivatives to he cont inuous across the charts. This results in a globally C2

dynamic. We note that B-splines also allow for rapid computation of the
LCE spectrum. Finally, the model entropy is simply summed over the fit
of each local chart.

The atlas procedure is ta ntamount to implementing equat ions of motion
analysis with a funct ion basis of sp lines. This approach allows a much wider
range of dynamics to be fit than by global fitting with conventional bases.
Unfortunately, its implementation is more difficult and it produces "piece­
wise" equations of motion. The latter are not what one typ ically considers
a "closed" form model. From the computational point of view, however, the
complexity in atlas equations of motion is only apparent . Theoretically, the
vast reduction in algorithmic complexity of the chaotic data to a dynamical
system is the same in the atlas procedure as for the global method. Prop­
erly speaking, the algorithmic complexity is the same for both methods,
although their required computational resources differ by some constant
factor. Practically, with our atlas -based dynamical system simulator, the
difference is noticed only as a moderate slow down in simu lation speed.

Local approximation of the dynamic over small regions in the state
space has also been discussed previous ly in the time series literature by
Priestley [31] under the name of locally-l inear autoregressive moving av­
erage (ARMA) models. In these, the dynamic is approximated by simple
linear regression or interpolation. The central motivation is forecasting
time ser ies. Independently, references [321 and [331 have suggested very
recent ly the same approach. The former provides a wide-ranging review of
efficient data structures and algorithms for artific ial intelligence computa­
tion. A hierarchical tree-s tructured piece-wise linear atlas is proposed as
an efficient method for learning behavior and also for sequence prediction.
Local data is linearly interpolated to produce the predictions. The second
reference evaluates thi s approach for predicting chaotic t ime series. This
work does not discuss , howeverI deducing equat ions of motion, simulat ing
them, or other important facets , such as the at tract ive hypothesis, extrinsic
and observed noise, and so on.

There has also been much related work in chaot ic data analysis that
examines stat istics from local linear fits . The first at tempt to measure
chaotic att ractor dimensions employed a local Jinee r regression to obtain
a piecew ise linear approximation to an attractor !141. More recently, work
on measuring the Lyapunov characteristic exponents from chaot ic data has
emp loyed local estimates of the tangent mapp ing, which is itse lf a locally
linear approximation of the dynamic [11,341.

In our own investigations of piecewise linear atlases, we have found them
to be unreliable indicators of the underly ing deterministic behavior. Simp le
examples, even in one dimens ion, show that piecewise linear equat ions of
motion can exhibit periodic behav ior when the original dynamics is chaotic
and vice versa. Th is depends on the chart size and on trans lation of the
atlas spline knots as a whole. The other consideration which has lead
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(10. 1)

us away from piecewise linear dynamics to smoother atlases is that they
violate the physically motivated hypothesis of smooth dynamical systems.
Most physical processes do not exhibit arbitrarily fast changes in their
first deri vatives. Finally, without smooth continuation between charts, it
is not clear how far differential topology can be applied to piecewise linear
equations of motion.

In their defense, there are some data sets for which abrupt changes in
derivative and even discontinui ties are appropriate. Additionally, if the
chart size is near iied and this noise is added during a simulat ion, then
piecew ise linear atlases will exhib it behavior that is noise-equivalent to a
smooth atlas.

We shall not discuss the atlas procedure fur ther due to the subs tantial
comp lication of the method. In an effort to convey the central ideas of
equations of motion analysis, in t he remaining sections we will consider
only the global equations of motion procedure: global function fitting over
the reconstructed attractor.

10. Global equations of motion estimation

The globa l equations of motion procedure operates component-wise to est i­
mate each Ii in turn. The result is the estimated dynamic F, a set of mbed

functions, and mbed noise levels. The basic method is to compute I (M ) as
a fun ction of approximation order K and mbed and also as a fun ction of
the removal of particular bas is functions. Additionally, the singular value
decompos it ion computes singu lar va lues t hat measure the parameter erro r
ellipso id size, and these too may be reduced in number in order to minimize
I(M) and so improve the fit at each step . The latter is taken as th e inner
most loop in our procedure, then the order K is varied, an d fina lly, t he em­
bedding dimension is changed. We start mbed at 2mlocal and K at a large
value permitted by the computat ional resources. These are red uced by re­
mov ing coordinates and bas is funct ions which decrease I (M ) unt il there is
no further improvement. The result ing mbed is the mi nimum embedding
dimension.

Once the optimum mo del is obtained in this way, it may be com pared
to the original data via numerical simulation of equa tions (1.1) and (1.2).9
The comparison requires that the appropriate amount, iJe~h of noise he
ad ded to the simulation and that any coordinate transformation due to
reconstruction or lat er modification be inverted.

For data series from conti nuous-time signals, t he integral form of equa­
t ion (1.1) is est imated. That is, we approximate the flow <Pt : M ---+ M,
whe re x(t) = </>r (x(t - T )), and </>T is a discrete-time mapping given by

/, ' ~x(t ) = x(t - T) + drF(x(r )).
'-T

9 As a necessary tool in eq ua t ions of motion analys is, we have written an inter active
simulator that directly accepts a basis type, such as Che beyeev , Taylor, or B-sp line, and
a list of expansion coefficients produced by t he equations of motion analysis.
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Figure 1: Effect of extrinsic noise on model entropy. I(M) versus
expansion order K E [0,11] and extrinsic noise level Ue'Lt for the one­
dimensional map described in the text . The extrinsic noise level was
10-18,10-1\ 10-1°,and 10-6 for the stars, circles, squares, and di­
amonds respectively. At each noise level, the Taylor coefficients are
reconstructed with errors less than lO- s.

There are two benefits of fitting this integral form over fitting equation (1.1)
directly. First, more robust estimates of the parameters are ob tained due to
the averaging of short-time scale no ise. Second, the same fitting algorithm
may be used for discret e and continuous t ime data streams. When the signal
is fit in this integral form, our method of estimating the parameters of ff
is high ly reminiscent of linear prediction filters, used extensively in speech
synthesis, for example. In linear prediction coding, the Ii are linear. In
contrast, our method, via equation (10.1), const itutes a nonlinear prediction
filter. We shall return to this topic in the last sections.

There are four general comments on the method's implementation. First,
although we have not done an exhaustive study of data set size scaling, ex­
perience indicates that a relatively small number of points, less than a few
thousand, is adequate for chaotic attractors in up to four dimens ions .

Second, in comparing original to model orbits, one must keep in mind
that the comparison is both geometrical and statistical. A corresponding
level of noise Out must be added during the simulation of the estimated
model. If the behavior is chaotic, the model does not reproduce the origi­
nal data series, nor is F itself necessarily the "true" deterministic dynamics
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and iie~t the "true" extrinsic fluctuation streng th. The method makes t hree
claims: (i) the original dynamics and the est imated model are in the same
noise-equivalence class; (ii) almost all simulated orbits are statistically sim­
ilar, in the sense of, say, power spectra and statistical moments to the
orbit reconstructed from th e or iginal data; and, (iii) almost all simulated
orbits lie on a branched manifold that is topologically equivalent to the
reconstructed attractor.

Third, for the global equations of motion procedure, t he required com­
putat iona l resources, that is, memory and time , sca le as N2m~edT(K) . The
number of fit parameters must also be kept smaller than the number of dat a
point s. Some authors suggest th e upper bound for this is.;N. We note
th at the met hod is easily para llelized for distributed processors or adapted
to array processors , and so may be greatly speeded up . Even so, on current
scientific workstations we expect through further optimizations to estimate
global equations of motion in up to eight variables using function bas es up
to fourth order .

Finally, we note that transient data and data from different experi­
mental runs can be used. Indeed, in some circums tances t his can greatly
improve the accuracy of equations of motion analysis. This is because data
off of the attractor serves to constrain parameter est imate in reg ions of the
dynamic which otherwise would not be det ermined directly.

11. N umerical examples

We will illust rate equations of motion analysis with t he global procedure
using a Taylor function basis for three numerical an d three experimen­
tal chaot ic data sets. Although extensive test ing has been performed, only
these examples will be described, as they illustrate not only that t he method
is readily applied to real data, but also some limitations and several ad di­
tional feat ures whose more general discussion cannot be included . Unless
otherwise noted , all examples are discrete time maps in low dimensional
systems. Another motivation for the choice of examples is that with data
from a low-dimensional system several of th e important features of the anal­
ysis can be graphically demonstrated. Resul ts for high dimensional systems
do not admit simple illustration.

The first example shows the effect of extrins ic noise on the mod el en­
tropy and the optimum model. We consid er the stochast ic logistic map
Xn+l = rxn (l - xn) + en where the nonlinearity parameter r is 3.7, so that
the deterministic behavior is chaotic. en denotes uniformly distr ibuted noise
with amplitude qezt. Figure 1 shows the depend ence of I(M) on expansion
order K and noise level qed . Note that T(K) =K for one dimension. One
thousand iterates were used in the analysis.

At each noise level, the parameter r , as well as the ot her implicit pa­
rameters, are correct ly est imated to within .1 percent error or bette r. The
ext rinsic noise level is est imated with similar accuracy. T he overa ll feat ure
to note in the figure is a dist inct minimum in the model entropy t hat iden-
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Figure 2: Estimating the minimum embedding dimension. I(M) ver­
sus expansion order K E [0,25] and embedding dimension m6ed E [1,9]
for the delay-reconstructed logistic map, as described in the text. The
minimum I(M) identifies the optimum model as indicated . The ex­
trinsic noise is zero. The Taylor coefficients for the optimum model
are estimated to better than 10- 6 .
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tifies the optimum model. Initially, with increasing approximation order,
the model entropy drops steeply to a convergence floor once a sufficient
number of terms are reached. In this example, this occurs at th e inclusion
of quadratic terms. Beyond this, there is a linear increase as the model
grows in complexity with added redundant terms.

The next figure demonstrates the estimation of the minimum embed­
ding dimensio n in terms of the trade off between m6ed and approximation
orde r T (K ). Figure 2 shows a perspect ive plot of the model entropy su r­
face for the logistic map ju st described. The reconstruct ion used delayed
coor dinates in up to nine embedding dimensions. The approximat ion order
went up to 25. Although difficult to discern in t he plot, there is a grad ual
increase in I( M) wit h m 6ed along the trough. This increase is sufficient to
select the m6ed = 1 model as optimum.

The second numerical example used the two-dimens ional Henon map to
generate a t ime series:

Xn+l = !In + 1. - l.4xn

!In+l = .3xn (11.1)

The reconstructed attractor in vario us dimensions was obtained using suc­
cessive delays of X n . Figure 3 shows I (M ) as a function of mboed and T(K)
for this example. One thousand points were used. The optimum model,
indicated by the dot in the figure, was found to be

Xn+l = .839 - 1.76Yn

!In+l = .785 + .016xn + .300 Yn - 1.79x~ (11.2)

(Terms wit h parameters smaller than 10- 3 have not been included. ) Here ,
the variables X n and !In refer to the original variable X n and its first delay
%n+1 ' There is no discernible difference between the original reconstructed
attractor and the one simu lated using the optimum equations.

The third example demonstrates the type of dynamic with which global
function fitting has difficulty. Two-dimensional data was taken from the
phase i Po incare section of the dr iven, damped Duffing oscillator

x=y

iJ = --yy + ax - bx' + F cos(wt) (11.3)

where b, a,b , F,w) = (.03, 1., 10., .65, .93). The position and velocity were
sampled at t he driv ing period.

Upon equations of motion global analysis, fitting to high order exhib­
ited only a very slow convergence and no converge nce floor in I (M ). The
diagnostic was consiste nt wit h t he interpret ation of a comp lex dynamic.
T his was confirmed, as shown in figure 4, with a stereo plot of the one
component of the graph of t he dyn am ic: %nH is plotted as a funct ion of
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Xn+! =.839 -1.76Yn

Y,,+! = .785 + .016x" + .300y" -1.79x,,2

l(M )
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Figure 3: I (M) versus expansion order K and embedding dimension
m/ledfor the delay-reconstructed Henan map, as described in the text .
The minimum I(M) identifies the optimum model as indicated. This
model reproduces the qualitative features of the original data. The
floor to the right indicates various (mbed , K) for which I(M) was not
computed.
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(Xn,Yn)' There are sharp ridges and steep cliffs that are obviously difficult
to approximate with Taylor, or any other known, function basis.P

Driven systems do lead to one interesting feat ure, and this will be our
only direct comment on numerical investigation of continuous-time flows.
Consider a two-dimensional driven oscillator, like the Duffing oscillator just
mentioned. The state space is three-dimensional, cons ist ing of pos ition, ve­
locity, and driv ing phase coord inates. When the equat ions of motion global
analysis is carried out in m bed = 3 dimensions, t he sin (wt) term must be
approximate d directly in the chosen bas is. This leads to slow convergence
and relatively poor approximation . However, when th e equa tions of motion
analysis is carried out in higher dimensions with the phase var iable included
as one coordinate amo ng ot hers, a Hami ltonian subsystem is detected in­
stead of a periodic dr iving te rm. The latter could have been approximated
by a series expansion, as was done in three dimensions . This would have
been a more complex approximation. Instead, the proced ure "chose" to
substitute a dynamical subsystem to generate sin(wt). This achieves a
simplificat ion of the optimum model by substituting a computational pro­
cedure {:i: = Y,iJ = - w",} in the place of explicit inclusion of the sin(wt)
expansion.

To conclude the numerical example section, we note that we have tested
the global met hod using a number of ot her nume rica lly generated data sets
from well-known dynamical systems. The three dimensional flows included
Rossler , Lorenz, and ot her parameter regimes of the driven , damped Duff­
ing, and van der Pol ordinary differential equations. Four dimensional flows
included Rossler's hyperchaos 1351 and th e Henon-Heiles system 1361. The
latter is a Hami lt onian flow. One six-dimensional flow was tested: a cou­
pled pair of Rossler oscillators. The discrete t ime maps included several in
each of one, two, t hree, four , and fifteen dimensions. The latter was data
generated from a I5-site logistic lattice [37j. Reconstruct ion techniques
used include the original variables and derivatives of single variables. To
test the sens itivity to poss ible distor t ions of the data, addit ional transfor­
mations were applied to the reconstructed data for the lower dimension
examples. These included shearing, scaling, rotation, and t ranslat ion. The
results were all consistent with the procedures we have just outlined. The
fits were typ ically very good . In a few cases, such as Rossler's towel map,
equations simpler than the original system were recovered .

Interestingly, time delay reconstruction, a very popular method, often
leads to poor approximations. The general indication is that it produces
fairly complex, difficult- to-fit dynamics. Fortunately, the at las method
gives good results with t ime delay reconstruction.

lOThis is a. counterexample to t he state ment in reference [32J that "most m appings t hat
arise in practice have slowly varying elope."
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Figure 4: Graph of the dynamic for the Duffing oscillator Poincare
map. A stereo pai r of perspective plots of the x-component of the
dynamic. The long vertical axis is X n E [- .68,70]j the horizontal,
Yn E [-1.17, .851; end t he third , short axis is Xn+ l E [-.68,7°1. The
latter should be viewed as coming in or out of the page, depending
on one 's stereo visualization method. Sharp ridges and stee p cliffs
are evident, indicating difficult app roximation. Approximately 4000
points are shown.
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12. Experimental ex amp les

One of the authors carried out [38] a limited vers ion of the procedures out­
lined above a number of years ago on an electronic cir cuit implementation
of Shaw's variant of the chaot ic driven van der Pol oscillator [39,40]:

± = y + Fcos(wt)
iI -I'y(a - x') - kx (12.1)

where (a,k,tL,F, w) = (.11, .72, g. , .23, 1.35). The chaotic at t r actor here
consists of two "bands" or ribbons with a single folding process . There is
no visible fra ctal st ruct ure, du e to high effective dissipation . The driving
phase tP = 0 data from x(t) and y(t) was sampled approximately every 40
milliseconds by a microc omputer with 12 bits of resoluti on. There were
2048 two-dimensional point s accumulated, so that there were 1024 points
on one of the bands. This band was paramet rized by angle of re turn On
to yield a one-dimensional map On+l = 1(0n). The fun ction 1(0) was fit
by a fourth order polynomial: I(x) = a + bx + ex' + dx' + ex', where
(a ,b,c,d, e) = (.66, 1.9, -2.4, -1.1, .91). T h is equat ion of mot ion repro­
du ced the observed chaotic behavior quite well, as expe cted . The single
Lyapunov characte rist ic exponent for the map ). map ~ .6 bits per iteration
was computed by equat ion (5.2) above. From that , the maximum Lya­
punov exponen t for the OD E was estimated : ).vdp = A::pW ~ .065 b its per
t ime unit . The obse rved no ise level iJob~ was approximately 2- 9 . The ex­
trinsic noi se level was estimated then to be slightly above the measur ement
resolut ion: O'tzt ~ Ooh 2 - )....· P ~ .0012.

To illust r ate the current p rocedure, however, we took Poincare section
data from a rece nt electron ic imp lementation of the above van der Pol os­
cillator in a more complex parameter regime: (a,k,tL,F, w) = (.07 , .37,
7.3 , .56, 1.62). We again a t te mpted to obtain the Poincare map using
global equations of motion an alysis . Although the ODEs are given explic­
itly, the Poincare map equat ions are not known a priori. In such a case,
successful equations of motion an alysis can provide analytic information,
the est imate d equat ions of motion, which cannot be analytically deri ved.

Two thousand two-dimensional points were used i'n the analysis. A Tay­
lor basis of varying order was used to fit the data in up to four embedding
dimensions . The attractor was reconstructed using various combinat ions of
the two original coordinates and their del ays. The minimum model entropy
of -30 bits was found using the two original coord inates and seventh order
approximation . T here were 20 sign ificant parameters , so we will not qu ot e
them here.

Figure 5 compares the original orbit wit h on e from a simulation of the
estimated equat ions of mo tion. The overall agreement is qu ite good . On e
noteworthy feature in the reconstruct ed dynamics is the appearance of the
attractor crossing its elf slightly. This indic ates the estimated equat ions of
motion have a certain degree of noninvertibility. This is definitely not a
property of the original data-as it derives from an ODE which admits on ly
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Figure 5: (Left) Two-dimensional Poincare section of the original van
der Pol electronic oscillator data. Two tho usand points from the data
set are shown. (Right) An orbit from the estimated Poincare map.
Approximately 4000 iterates are shown.

diffeomorphic Poincare maps. This is yet another topo logical property of
the data that could in principle be imposed during the equations of motion
analysis via the inverse funct ion theorem. The inclusion of this would
additionally complicate the implementation as it requires the simultaneous
fitt ing of all mbed coordinates of the dy namic.I! The benefits would be
a reduction in the number of parameters to be fit and so an increase in
overa ll speed and accuracy. We shal l not digress fur ther on t his interesting
problem.

We have also analyzed nine dat a sets from a chaot ic dripping faucet [41J
with good results . We shall mention a few of t hese, alt houg h the details of
these analyses will appear elsewhere.

We examined the drip-interval data sets shown in reference [3] (page 55;
figures (a), (b), (e), and (f)), as well as several ot hers as yet unpublished."
Out of the nine available data sets each representing different behavior, we
were able to obtain good equations of motion for five. Those for which

11 We note that the invertibility criterion ill straightforwardly implemented in the atlas
procedure using the local inverse function theorem for each patch of data and each local
spline approximat ion to the dynamic.

12Please refer to the cited figures for the following discuss ion. One thous and points from
these data sets were used in the equat ions of motion analyses .
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we could not obt ain equations of motion ap pe ar to be undersampled, in
t he sense that in any embedding dimension the dynamics is not completely
determined by the reconstructed states. T his is not surprising given the
rather simple and indirect t ime- interval observable use d .

For the attractor shown in figure (a) we found an op timum model in
one dimension with the deterministic dy namic

Xn+l = .243 + 2.81xn - 3.17x~. (12.2)

The ext r ins ic noise q ed was approximately .04, and the single LeE was ap­
proximately .7. When simulated without noise, the deterministic dynamic
exhibits a period four orbit. With Uezt level noise added, one finds a single
noisy chaot ic band similar to that seen in the ori ginal reconstructed data.
In a st at ist ica l sense, we can argue that the equat ions of motion an alysis
has revealed the dynamic to be periodic, in cont rast to one's ini tial per­
ception of a single chaot ic band with noise added. The extrinsic no ise has
driven the periodic determinist ic dynamics into an apparently chaotic band.
This inference is also supported by the scaling theory for pe riod-doubling
cascades in the presence of fluctuations [42J.

For the attractor of figure (b) , t he optimum model was foun d in two
dimens ions with a third-order dynamic

Xn+ l Yn

Yn+! = 9.348 - 16.1432xn - 26.3935Yn + 10.3878x~

+ 34.6795 xnYn + 24.3786y~ - 3.13519x~

7.14675x~Yn - 21.6583xnY~ - 5.91889y~ . (12.3)

O'ezt was estimated to be .01. The simulat ed attractor exhibited two noisy
bands.

Figures (e) and (f) are examples of undersam pled data sets. The "at­
tractor" in figure (e) passes through itself in one region in up to five
delay-reconstructed dimensions although it appears locally two-di mension­
al , m'oeGl ~ 2. The data in figure (f) is also similarly degenerate near
the "knotted" regions with m'ocal ~ 2. Embedding in higher than 2mlocal

dimensions does not yield a nondegenerate mapping for the est imated dy­
namic. From Wh itney 's embedding t heorem, we conclude that these data
sets are undersampled. In this sense, they are pr ojections from some attrac­
to r onto the inadequate coordinates provided by dr ip-interval sampling . To
reconstruct behavior in this regime, more probes-such as spatial probes
across meniscus under the orifice-appear necessary.

13. Chaotic data analysis

We have outlined a general approach to est imate an "experiment al" model
that optimally reduces a complex data set to a compact algorithmic form.
The deduction of equa t ions of motion from data series as pr esented here
should enjoy the same range of applicability as current st atistical measures
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of chaos. It adds a significant and new type of qualitative information
to chaotic data analysis that moves in the direction of including global
structure of the underlying dynamics. Since global structure is taken into
account, the method offers more robust characterizations of complex data
than present techniques. It a lso offers the future possibility of comparing
"experiment al" equations of motion to those derived from first principles.
We anticipate that further optimizations will extend the range of usefu lness
to higher complexity systems. Equations of motion analysis, as we have
outlined it here, puts into a single framework a number of procedures used
in chaotic dat a analysis : the determination of the mi nimum embedding
dimension, att ractor dimension and entropy, and the spectrum of Lyapun ov
characterist ic exponents.

Further comment is in order to clarify the relationship between global
and atlas equations of motion. A set of global equat ions is always to be
prefe rred over an atlas model. The former (i) affords larger compression of
the data into smaller algorithmic form; (ii) allows for fast er computation,
simulation, and prediction; and (iii) typically prov ides a better estimate
of the vector field outside the data set . The at las method, although more
widely applicable, suffers from generating more complex models: typically,
I(M",••) > I (M"•••,). For data that admits a global model, it is generally
preferred since it represents something close to a minimum algorithmic re­
duction of the data with respect to the chosen function basis. Furthermore,
it indicates that some property of the function basis is app rop riate to rep­
resenting the data. With the atlas method, there is no direct indication of
this additional structural information.

Equations of motion analysis can be also used to deduce parametrized
families of dynamical systems. Parameters are est imated across a family of
equations of motion, each of which is obtained from data at different expe r­
imental cont ro l setti ngs. Assuming one followed a single attract or through
a bifurcat ion sequence, then the particular changing parameters could be
ident ified . The smooth variation of the dynamic through a bifurcat ion se­
quence provides yet another constraint in parameter estimation and so can
be used to improve the estimates at each parameter setting. At present,
we have carried this procedure out only for the logist ic and Henon maps to
ident ify the nonlinearity parameter in each.

We turn now to discuss three areas of application that motivate our
longer term interest in equations of motion analysis.

14. Spatially extended dynamical systems

With straightforward modifications, equations of motion analysis can be
applied to spatially extended systems or higher-dimensional systems, such
as neural netwo rks and network dynamical systems. To focus the discus­
sion, we will consider only spatially exte nded dynamical systems in th is
sect ion [371 .

In spa t ially extended systems, there are other independent var iables
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in addit ion to time. Associat ed with each we must chose an opt imum
reconstruction method. For example, consider space-time patterns u(x, t)
produced by a partial differential equat ion of the form

u(x,t) = F (u, \7u, \7'u ,"')' (14.1)

Rather than est imating the differential form of spatial derivatives, it is
stat ist ically more robust to est imate the int egra l form

WK(X ,t) =i:dyK(x,y)u(x,t), (14.2)

where K(x ,y) is the kernel assoc iated with the highest spat ial derivative.
Thus, one fits to an partial integral equa t ion rather than the partial differ­
ent ial equation. If the dynamics contains a diffusion ope rator (\7'), t hen
the kernel is the Gaussian

(
- (x - y )' )

K(x, y) Q( exp 2X ' . (14.3)

Here, X is conventionally interpreted as a spat ial diffusion length. For the
purposes of spat io-temporal reconstruct ion, however, it is a free parameter
analogous to T in equation (10.1). These considerat ions are similar to the
preceding discussion on estimating th e flow rather than the ODE directly.

Once t he form of the space-time dyn amic has been selected, obtaining
the equations of motion for spatio-temp oral data proceeds just as we have
out lined in the preceding sect ions. The major differences are (i) that we
submit space-t ime patches of data to analysis, (ii) the interpret ation of the
results as a space-time dynamic, and (iii) the type of simulato r used to
study th e estimated equat ions of motion. The remaining theoret ical issue
for applying equations of mot ion analysis to evolving pa t tern data is an
embedding criterion so that the local pat tern dynamics is non-degenerate
[43]. We now describe this is some det ail for discret e-sp ace and discrete­
time lattice dynamical systems [37].

Spatial and temporal entropies measure the ra te of spat ial and te mpora l
decorrelation [44]. We denote these ent ropies h~ and h~ respectively. They
relate th e amount of information an observer has about the edge of a pat­
tern (spatial entropy ) or about t he next st ate (temp oral entropy), given the
asymptot ic statistics of space-time patches [43,45]. We assume that each
probe has the same measurement resolution e. With each measurement, a
prob e provides - log2e bit s of inform ation . To provide sufficient informa­
tion for reconstructing the space-t ime dynamic, the probes must be within
a space-t ime region R delimited by spatial and temporal decorre lat ion. We
can approximate this by the space and ti me separat ion over which signals
from two probes become mutually unpredictable. The region R is bounded
h b (± ± ' ) h - log , . d' _ log,.t en y 1"max, 0max , w ere fmax - - ht an vmex - - h . measure

• •
informationally the temporal and spatial decorrelation lengths.

The number of probes is determined by the complexity of the observed
behavior and the requirement that the local patterns in th e template lead
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(14.4)

(14.5)

at each time to a unique state at the spat ial po int of int eres t Y' T his is the
criterion for local embedding of the spat io-temporal dynamic. Quant ita­
tively, it is measured using the indeterminacy [7] app lied to the template
data .

Cons ider the set of neighborhood patterns {nh~(T) : n = 0,1,2,
... .i E spatial lattice} of radius r spatial sites. There are k2r+l possible
neighborhood patterns, where k = c- 1 is the number of distinct meas ure­
ment outcomes from a probe. A loca l embedding occurs when the neigh­
borhood patterns determine the next state with probability one. That is,
the conditional distribution P(s~+llnh~) is un ity, where s~ is the measure­
ment of the local state at ti me n and site i. The indetermi nacy provides
an informational measure of this

41 (r) = L P(nh~) L P(s~+1lnh~) log, P(s~+1lnh~)
{nh~ } {'~+l}

where P(nh~) is the observed density of neighborhood patterns {nh~}.

When ~(T) vanishes, then a sufficiently large ne ighborhood has been found
with which the space-time dynamic can be recons tructed.

The number of probes N can be est imated as follows. Measurements
from the set of probes must yield information at a rate higher than the
total informat ion production in the neighborhood templat es. The densi ty
of information product ion is given by the specliic m etric entropy hw The
specific met ric entropy is an intens ive quantity with units of bits per uni t
volume per unit t ime. Within R, the to tal inform ation production is ap­
proximate ly h~Tmax8max. The required number of probes is then

h~Tmax6max

log2e

A specific space-time configuration of probes is not ind icated by these con­
siderations , however. A particular configuration is determined by the ap­
plicat ion: the ne ighborhood dynamics itse lf and the local interconnectivity
vari abl es within R .

The occurrence of spatial amplificat ion of noise , such as in convective
instabilities, indicat es the necessity of including spatial meas ures of pertur­
bat ion propagation, such as co-moving Lyapunov characterist ic exponents
and multipoint entropies, dimension, and coherence [46J. Above , we have
seen the importance of metric entropy, dime nsion, and LeE sp ectrum, and
how equations of motion analysis can be used to estimate them. When ap­
plied to spatially extended dynamical syst ems, equations of mot ion analysis
will be similarly useful.

Another class of spatially extended systems, closely allied to lat t ice dy­
namical systems, is discrete-state cellular automata. To estimate equations
of motion in this case, we use Walsh functions as t he function basis for
F. Unfortunate ly, with manifestly discret ized state variables, we cannot

13We ignore for now the add itional complication of extrinsic noise.
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appeal to continuity or differentiability as constraints with which to lower
the external noise level by filtering, as done in equation (10.1) . Foregoing
any filtering procedures, the first author attempted to apply this approach
to estimate the neighbor t ransition matrix P(s~+l lnh~) fOT the binary cel­
lular automata-like patterns exhibited by mollusks. Digitized images of the
she lls-! were analyzed with inconsistent results. Some of the space-time
dyn amics lead to propagating patterns like those found on the she lls. On
the whole, however , the available statisti cs were inadequate. This was due
largely to limited da ta from any one shell. Add itiona lly, the data exhibited
a syst ematic bias due to th e inherent geometric distort ion of t he shells'
natural curvature.

On a positive note, equations of motion analysis has been successfu lly
applied to numerical simulat ions of several lat t ice dynamical systems 137].
We have already mentioned above the use of a 15-site logist ic lat t ice as
a high-dimensional numerical example. With the additional assumption of
t ranslation symmetry and the reduction of lattice patterns to ne ighborhood
data, equations of motion analysis yields spatial equations of motion. An
analogous experimental effort is underway to analyze image sequences from
video feedback and several mag netic systems.

Recently, the observation of extremely long transients in lattice dynam­
ical systems has brought into question the general relevance of attractors to
complex spatio-temporal behavior [37J. Recalling our previous remarks con­
cerning the use of t ransients, we conclude that even for these long-transient
systems we may st ill obtain equations of motion and so make pred ict ions
of the complex transient behavior.

In closing this sect ion, we suggest that t he genera lizat ion of equ at ions
of motion analysis t o highly interconnected systems, such as neural net­
works , autocatalytic networks, and mass ively para llel computers running
part icular algorith ms, may provide a too l for investigat ing the informa­
tio nal architecture of these systems and their processing performance. This
will hopefully allow for more quantitative understanding of these complex
high-dimensional systems.

15. P rediction and control

Deducing the deterministic portion of a chaotic signal is one example of
the general problem of detecting structure in data. The method's successes
hint at an extension of nonlinear dynamics to pattern recognition, data
compressio n, pred iction, and cont ro l. From the perspective of dynamical
systems theory, essent ially the same problem occurs in these fields: there
may be an apparent statistical component to a signal t hat contains some
a priori structure of deterministic origin. This indicates that it may be
reduced to a more compact, algorithmic specification. This specificat ion

U Th e specimens included t he Tent Olive, (Oliva porphyria Linne ), t he Flamed Venus
(Lioconcha castrensis Linne), t he Wavy Volute (A m oria llndulata Lamarck), the Courtly
Cone (Conus alllicus Linne), and t he Textile Cone (Conus ebraeus Linne) .
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forms its signature, which may then be incorporated int o a prediction or
contro l system.P

As discussed above, the estimated dynamic can be used to predict the
next st at e fin' given an observe d state xn for discrete time behav ior. The
prediction is simply F(xn ) . Ooh th en measu res t he predictor 's average ef­
fectiveness over the correspond ing single sample time. For continuous time
behavior, equat ion (10.1) is a predictor for time T . uoh(T) measures the
con t inuous t ime predictor 's average effect iveness over time T . When iioh is
small, the predictions are accurate; near unity, the pred ictions are no better
than random gu essing. Such mean square error measures of a predictor are
st andard tools in time series analysis. The est imate d dynamic is a predic­
tor that employs information from dat a points arbitrarily separated in the
data series. This distinguishes it from typical "moving average" predictors.

P redict ions for longer times are clearly possible. The information about
the observed state, however, decays initially at a rate given by the metric
ent ropy. This places a limit on the effect iveness of th e observed st ate in­
formation for predicti ons over successively longer times. The maximum
pr ediction time is simply _10:3 ~ . [25,39,50]

•The possibility of automatic ally ded ucing equations of motion for gen-
eral nonlinear dynami cal systems suggests a new look at the design of pre­
diction and contro l syst ems. Equations of motion analysis can be used to
design nonlinear predict ion and control systems using data from a t arget
system or some desired behavior to deduce t he appropriate eq uat ions. "
The est imated equa t ions form an "internal" model. In this context , the
model entropy I (M ) can be used as an informational measure of perfor­
mance for such systems . It indicates how well-adapted the int ernal model
is to th e environment th e system is attempting to predict or control.

A predict or, aside from monitoring the prediction error iioh , could also
ad apt its internal model in ways to minimize I (M ), thereby improving its
effectiveness over time. Accumulated err ors in short-term prediction pro­
vide the required information for adaptat ion of the inte rn al model over
longer t imes . During th e course of the adaptat ion, the system would simul­
tan eously deduce nonlinear models while it used t hem to predict behavior.

Another more difficult , but illustrative, application of equations of mo­
tion-based prediction is to weather forecasting. During the incept ion of
pr ediction theory, Wiener [511 discussed this from the point of view of
modern ergodic theory and dynamics. Weather forecasting, as we envi­
sion it now, combines aspec ts of spatially exte nded dynamics discussed
ab ove with equations of motion-based prediction. In setting up a weather
forecaster , the initial internal model would derive from basic meteorology.
The input would be histor ical an d real-t ime da t a from t emporal and spa­
tial probes in satellites, earth-based weather stations, and other sources.

15Th is section is an elabora tion of a dynamical system predictor using dyn amic eati­
mation propoeed 147J as an alt ern ative to Pope's at tempt 1481 to pr edict iterations of t he
logist ic map using Holland' s classifier system [49J.

IGReference 132Jdiscusse s th is possibility at some length.
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Such a forecaster wou ld require enormous computational and data acq ui­
sition resources. Nonetheless, with an appreciation of complex nonlinear
dy namics built into it, there appears at present no fundamental physical or
computational limitation to its operation.

One possib le approach to the practical limitation of computational re­
sources is to model the earth's weather system with a hierarchical and
spat ially distributed set of equations of motion-based forecasters . Eac h
level in t he hierarchy would be ass igned a particular spatial ar ray of equa­
tions of motion forecasti ng subsystems, each one of which forecasts the
weather in some localized spatial region for some specified range of spatial­
wavenumber within that region. The main theoretical uncertainty in such
a massively parallel forecasting system would be the manner in which each
local forecaster interpreted the predictions of nearby forecasters . One ob­
vious imp lementation is to include all of the neighbors' variables . However,
it may be necessary to include only those variables associated with the spa­
t ial t ransmission of information and not the entire state of each neighboring
forecaster .

T here are several benefits to a forecasting system of this design. F irst ,
it wou ld adapt its internal model, improving its performance. Second , it
wou ld deduce over time the re levant observables and meteorological dy­
namics. Third, it could allocate computational resources where they were
needed in areas of high information production. More local forecasters
wou ld be assigned to storm fronts and moved away from ca lm weather re­
gions. A massively-parallel forecaster would be ideally suited to the new
generation of parallel computers currently becom ing available.

16. Scientific modeling and the dynamic of inquiry

Beyond simply producing an "experimental" model to be compared with
theore t ical models, the long-term goal of this endeavor is to make use of
qualitative information of the type we have exploited to identify physically
re levant variables and t he new "laws" underlying t heir interaction. T he
hope is that a large fract ion of the process of scientific investigation could
be implemented automatically, without human intervent ion. Optimality
criteria based on the model entropy I( M ) and its future der ivatives will be
central in this to select between competing t heories.

Germane to t his line of discussion, we recall Packard's algorithmic pic­
ture of scien tific inqu iry.U Tradit ionally, in a classical mechanica l universe,
there has been the tacit assumption of Baconian convergence of succes ­
sively refined models to those which predict detailed behavior, such as the
future evolution of a system's state. Once a model predicts t his detailed be­
havior, it has been va lida ted. When investigating nonlinear processes, one
concl udes that the existence of chaot ic, deterministic behavior precludes
the detailed comparison of theoretical models to experimental data. The

17Reference [7\ discusses this in more detail. The mode ling met hodo logy of Box and
Jenkins 152J should be compared with t his picture.
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conventional picture of inexorable improvement of models on ly ap plies to
no n-ch aot ic behavior.

Within a small sphere of scientific inquiry , such as deducing det ermin­
istic structure in a noisy data st ream, equations of motion analysis allows
for the complete modeling of Packard's scientific algorithm. The process of
model improvement is given explicit form in terms of searching for optimal
models in the space of dynamical sys tems D. The model entropy prov ides
a quantitative foundat ion for the discussion of the break down of the tradi­
tional scientific method for chaotic systems. Equations of motion analysis
suggests an a lternative, and convergent, scientific algorit hm for mode ling
time-dependent behavior based on the minimum model entropy cr iterion.

The selection between competing t heories is based on minimiz ing th e
pre dict ion error Ooh and increasing the simplicity of the mode l. The mode l
entropy is one combined measure of this. Kemeny [18] discusses a similar
measure of a scientific t heory 's complexity that is based on the order of
polynomials and how this must be traded off against a theory 's prediction
accur acy.

Our equations of motion mode l M can be thought of as a scientific
theory in the sense that predictions can be based on it and their success
evaluated. The evaluations in turn form the bas is for compar ison and vali­
dat ion . This might seem to elevate the rather humb le notion of model that
we have employed up to this point to an inappropriate genera lity. One
should keep in mind, however, that we are discussing this in the limite d
context of noisy t imes series of combined stochastic and dynamic origin.
As an example of the competition of scientific theories in a similar setting,
cons ider the physical problem of fluid turbulence. A decade and a half ago,
there were the two riva l theories due to Landau [53] and Lorenz-Ruelle­
Takens [1,541. The relative weighing of these two hypothesized dynamic
models has occurred since then , with t he lat ter being the most appropriate
in the onset regime of turbulent flows. We note now, at this late date,
that this scientific evaluation could have been done automatically by de­
duci ng the equations of motion from t he turbulence data and not ing that
the model was not of the Landau high-dimensional torus typ e, but was
in fact of the low-dimensional chaotic attractor type. Even if the Landau
model made equally accurate predict ions, it is an inherently more complex
model, I(MLa.da.) > I (MLRT), as it requires arb itrarily many oscillato r
subsystems.

We return to the choice between global and atlas equations of motion
as it presents some interesting philosophical issues. As we have already
indicated, in deducing equations of motion, global equations of motion are
to be preferred over atlas equations of motion when th e former is available.
We have, nonetheless, demonstrated with the graph of the Duffing oscillator
Poincare map a dynamic that is very complex in any conventional global
basis. Thus, atlas analysis may very well he our only recourse, since it
adap ts t o unconventional nonlinearities. But an atlas equations of motion,
with its set of charts and parameters for each, does not naturally indicate
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simplicity in the observed behavio r, even if we incorporate efficient storage
and evaluation. The size of the data structure is large, roughly O(f:-m.c.t) .
We doubt t hat new "laws" could be discovered with this. If this turns out
to be the typical situation as one applies equations of motion analysis to
wider-ranging problems, then what of Poincare's, and many other scien­
t ists" belief in nature's simplicity, or at least in humanity's ability to find
simplicity in nature? According to Poincare Iss], it is by the identificat ion
of this simplicity that science progresses. Will we be left with the data of
our experience coded into enormous, efficiently organized data st ructures
that admit no further simplification and from which humans cannot dedu ce
order?

We conclude with a final query that encapsulates the problem discussed
in this section. This concerns the automatic, machine-based deduction
of mac roscop ic var iables given only microscopic information about a ther­
modynamic system. Jaynes 1561 addresses the complementary problem of
predict ion amongst macroscopic variables and the constraints imposed on
microscopic states . Consider a box of gas for which we wish to deduce the
existence an d form of macroscopic var iables, such as temperature, pressure,
and entropy. The only available information, however, details the micro­
scopic velocities and posit ions of each molecule. The theoretical questions
then are : what structures in the extremely high-dimensional state space in­
dicate macroscopic variables, and can a machine (algorithm) identify t hese
macroscopic variables automatically? Constructive, affirmat ive answers to
t hese questions would be a major st ep toward automating scient ific inquiry,
realizin g Poincare's "scient ific machin e" [55J. Perhaps, however , the exis­
tence of such macroscopic st ructure can only he intuited.

17 . C losin g r ema r k s

In a sense, we have reduced the problem of deducing equations of mot ion
to statist ical "quadrature" . We have identifi ed the necessary concepts from
dynamic al systems theory for the statistical problem of modeling data se­
r ies. What is needed to go beyond the usefulness of the approach presented
here is a theory of the relative complexity of functions. The rigorous foun­
dation of equations of motion analysis requires a measure of the complexity
of a function that can be ap plied to the graph of the dynamic rep resented
by the data. The model entropy and the diagnostic are steps in this direc­
t ion, but t hey are ind irect and incomplete as they do not take into account
the complexity of the chosen function basis itself.

In this essay, we have been able to cover our to pic on ly with broad
st rokes, from est imating expe rimental equations of motion to consideration
of Poincare's scientific machine. There are a number future problems that
deserve closer scrut iny. The following lists a few.

1. The relationship between the var ious selection crit eria: m inimum pre­
diction error, minimum model size, max imum likelihood , maximum
entropy, and minimum model entropy;
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2. Scaling of the mo del ent ropy with data set size and approximat ion
type and order;

3. The implementat ion of efficient hierarchical data structures for smooth
atlases;

4. The design of a generic equations of motion-based control system;

5. The design of the proposed massively-parallel forecaster; and fina lly,

6. Adaptive noise reduction using equations of motion an alysis.

With equations of motion analysis and the independent work in refer­
ences [32] and [331 , we see a rapprochement of dynamics, prediction, and
modeling . Kolmogorov and Wiener [511 are generally credited wit h in i­
tiating prediction theory. It is a somewhat curious fact that wh ile both
were contributors to dynamical systems, especially Kolmogorov, t he actual
deve lopment of prediction theory has strayed qu ite far from the geometr ic
state space approach of dynamics . We recall a similar lament [57] con­
cern ing chaot ic dynamical systems, computat ion, and complexity theory.
There, too, the parallel developments of dynamical systems and algor ithmic
complexity diverged rather far apart , and left physics altogether. During
Kolmogorov's, Shannon's, and Wiener's day, dynamics, complexity, and
physics were not disparate endeavors. It strikes us that the intimate con­
nection between dynamics, one the one hand, and modeling, prediction,
and complexity, on the other, has been ignored with no small intellect ual
cost. We have attempted, within a rather limited context, to aid in the
simultaneous recurrence of these only apparently d ist inct fields .
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