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Abstract. Collision rules are presented for the four-dimensional face-
centered-hypercubic-lattice (FCHC). The velocity set after collision is
deduced from the velocity set before collision by an isometry, cho-
sen so as to preserve the momentum and minimize the viscosity. A
detailed implementation recipe is given. The shear viscosity is com-
puted; the result shows that essentially all memory of the previous
velocities is lost at each collision. Another set of collision rules, based
on a random choice of the output state, has similar properties. The
isometric principle can also be applied to the two-dimensional square
(HPP) and triangular (FHP) lattices: one recovers the usual rules
with minor differences.

1. Introduction

Lattice gas automata have recently emerged as a new technique for the
numerical simulation of fluid motion (see [1], and in particular [2], for an
introduction to the subject). Particles move on a regular lattice. Time is
divided into a sequence of equal time steps, and the evolution consists in
two alternating phases: (i) propagation: during one time step, each particle
moves from one node to another along a link of the lattice; (ii) collision:
at the end of a time step, particles arriving at a given node collide and
instantaneously acquire new velocities, which determine their motion for
the next propagation step. Thus, two basic ingredients are needed: the
lattice and the collision rules. Taken together, they define a lattice gas
model.

In pioneering work, Hardy, de Pazzis, and Pomeau [3,4,5] considered a
square lattice with simple collision rules (called HPP model in what fol-
lows). This model, however, is not sufficiently isotropic for a simulation
of the full Navier-Stokes equations. A two-dimensional model with the re-
quired degree of isotropy was proposed by Frisch, Hasslacher and Pomeau
(FHP model) [6]; it consists of a triangular lattice and appropriate collision
rules. This model has already been used in a number of simulations; see [1]
for examples.
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The subject is much less advanced in three dimensions. It turns out that
no suitable three-dimensional lattice exists [6,7,8]. One must therefore go to
four dimensions. (Three-dimensional problems are then easily simulated as
a particular case). A four-dimensional lattice with the required properties
has been proposed by d’Humiéres, Lallemand, and Frisch [7,2]: the face-
centered-hypercubic (FCHC) lattice. The nodes are the points with integer
coordinates (1, 3, T3, £4) such that the sum z; + z3 + z3 + 74 is even. Each
node is linked to its 24 nearest neighbors x', which lie at a distance /2,
and correspond to the following values of the vector x' — x:

(£1,+1,0,0), (£1,0,+1,0), (£1,0,0,41),
(0.1, 41.0), (0,4:1,0,41), (0,0,41,+1). (1.1)

These 24 nearest neighbors form a regular polytope. We normalize the
time step to 1, so that the vectors (1) are also the 24 possible velocities of
particles arriving at a node or leaving it. The velocities will be called ¢;,
with 7 = 1 to 24 (this numbering is arbitrary). All velocities have the same
modulus ¢ = /2.

However, no collision rules have been proposed so far for the FCHC
lattice (this is why we speak of the FCHC lattice and not of the FCHC
model). It is the purpose of the present paper to present one possible set
of rules, which satisfies the basic conditions, is easily implemented, and
results in a reasonably low value of the viscosity. The basic principle is
that the velocity set after a collision derives from the velocity set before
collision by a suitably chosen isometry (i.e. a rotation around the origin,
plus an optional mirror symmetry). We refer therefore to these rules as
the isometric collision rules, or the isometric algorithm. Together with
the FCHC lattice, they define what might be called the FCHC isometric
model. Rivet [9] has recently conducted numerical simulations based on this
model; he has shown that its properties are in agreement with theoretical
predictions, and that it can be used in practice for the simulation of three-
dimensional fluids.

2. Isometric collision rules

We define G as the group of the isometries which preserve the set of veloc-
ities (1). This group will be studied in more detail in section 3. We also
define the input state as the set of the velocities of the incoming particles
(before collision). The input state is conveniently represented as a collec-
tion of 24 boolean numbers: s = (s1,...,52), where s; = 1 if velocity ¢;
is present in the input state, O otherwise. Similarly, we define the output
state as the set of the velocities of the outgoing particles (after collision),
and we represent it by s' = (s},...,s},).

Collision rules must satisfy the following conditions (see, for instance,
[2,10]):

1. In any particular collision, the number of particles is preserved.
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2. In any particular collision, the total momentum is preserved.

3. There does not exist any other quantity which is preserved in all
collisions.

4. Exclusion principle: The new velocities are different from each other.

5. The collision rules have the same symmetries as the lattice; more
precisely, they are invariant under any isometry of G.

6. The collisions satisfy semi-detailed balancing.

In the two-dimensional “six-bit” FHP lattice, the number of possible
input states is only 2° = 64, so that the collision rules can be selected by
hand. Moreover, the above conditions severely constrain the choice of the
rules and only a few variations are possible [2,11]. In the present FCHC
lattice, the situation is completely different; there are 2% = 16777216
input states, and it is clearly out of the question to consider them one by
one. We need a guiding principle, leading to a more or less automated
construction of the rules. Also, one finds that the conditions still leave
room for a tremendous number of possible collision rules, and the problem
is to choose among this multitude. This again points to the need for some
structure in the rules. In other words, we will impose additional restrictions
s0 as to bring down the number of possibilities.

Our first restriction is defined by the following rule:

Rule 1. Every collision is an isometry.

By this, we mean that in all cases, the output state is deduced from the
input state by an isometry of G. Motivations for this rule are, first, that
in a sense we select “simple” collisions, so that the actual computation will
be easier. We note also that in the HPP and FHP lattices, all collisions
are isometries. Finally, the above conditions 1 and 4 are automatically
satisfied.

Condition 2, however, is not automatically satisfied: the isometry must
be chosen so as to preserve the momentum. This suggests the introduction
of a second rule.

Rule 2. The isometry depends on the momentum only.

Taken together, rules 1 and 2 lead to a considerable reduction of the
number of cases to be examined. As will be seen in section 5, the number
of possible values of the momentum is only 7009. By taking advantage of
the symmetries, we will be able to bring down the number of cases to 37,
and ultimately to 12.

Another important criterion for the choice of the collision rules is that
the resulting shear viscosity of the lattice gas should be as low as possible, so
that higher Reynolds numbers can be reached [2,10]. Intuitively speaking,
this means that the mean free path should be as short as possible, or that
the output state of a collision should be “as different as possible” from the
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input state. (A precise definition will be given in section 4.) In this respect,
one might wonder if the above rules are not overly restrictive and if there
is not a risk that the only permitted isometry will be the identity in many
cases. Fortunately, it turns out that this never happens: the number of
permitted isometries is always at least two (see table 2 below). In other
words, there exists always at least one non-trivial isometry (distinct from
the identity) which preserves the momentum.

The number of permitted isometries ranges in fact from 2 to 1152, de-
pending on the momentum, and is larger than 2 in most cases (see Table 2).
Thus, one still has much freedom in the choice of the collision rules. It will
be shown in section 4 that the contribution of an isometry M to the vis-
cosity can be characterized by a number w lying between 0 and 1. Roughly
speaking, this number measures the average correlation between an input
state s and the corresponding output state s' obtained by M. (In particu-
lar, w = 1 for the identity.) In order to minimize the viscosity, one should
choose isometries with w as small as possible. We call H the subgroup of
G consisting of all isometries which preserve a given momentum, and Wy,
the minimum of w on H. We call optimal isometry an isometry of H for
which w = wy;,. Our third rule, then, is

Rule 3. The isometry is randomly chosen among all optimal isometries.

Our collision rules are thus completely defined. For convenience we will
refer to them as the isometric algorithm. The rules are obviously invariant
under any isometry; thus, the above condition 5 is automatically satisfied.
Condition 6 (semi-detailed balancing) is also satisfied; in fact, the stricter
condition of detailed balancing is satisfied, because the inverse of an optimal
isometry is also optimal. Finally, it is not difficult to show that condition
3 is also satisfied.

The isometric algorithm is applicable not only to the FCHC lattice,
but to any “one-speed model” belonging to the general class defined in [2]
and [10]. It is of interest to note that in the case of the HPP lattice, the
classical collision rules are exactly recovered; this is described in Appendix
A. Similarly, in the case of the FHP lattice, we recover the usual rules,
including the “head-on collisions with spectator” and the dual collisions,
with one minor change (see Appendix B).

3. The isometry group G

The isometries of R* which preserve the set of 24 velocities, or equivalently
the regular polytope formed by the 24 nearest neighbors, form a group G
called symmetry group of the polytope, of order 1152 [12]. An isometry
can be represented by a matrix:

a3 ... Q14
M=| : : (3.1)
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The image of a velocity ¢ in the isometry M is Mc. (By a slight abuse of
language, we designate the isometry and the matrix by the same symbol
M.) The composition law in the group is the ordinary matrix product.

Particular examples of isometries are

1. The change of sign of one coordinate «. This will be noted S,. For

example, we have

-1 0 0 0
0100
S1=1 00 1 0
000 1

(3.2)

2. The permutation of two coordinates « and f (e # (). This isometry

will be noted P,45. For example,

P12=

OO MO
(=N =N = I
oO=OO
- O OO0

(3-3)

3. The isometry described in [7], equation 12, which we call I:

I =1 =& =1
1) -1 o R I |

D=

21 —1 ~1 1 =1

3 =i =1

1

(3.4)

Here, it will be more convenient to use two other isometries obtained

by combining ¥ with some S, and Pyg:

{1 1
1 1 1
X1 = PuPpS158:35E = 5 1 —1
\-1 1
(1 1
111 1
Ly = PyPp38;535,L8 = 5 1 -1
\1 -1

1
=1
1
-1

e

[

(3.5)

1
-1
5 (3.6)

1

It can be shown that the above isometries are sufficient to generate all ele-
ments of G (i.e., they form a generating set). In fact, a minimal generating
set can be formed with five elements only; for example, S1, P12, P13, P14, Z1.
In practice, however, it will be more convenient to use the redundant set

of 12 elements:
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Sla Sﬂa SS’ 841P12!P135P147 P?SJ P247 P34szl3 }32' (3'7)

It can be shown that every isometry M has one and only one representation
of the form

I ] T
_ I I I I Pz
M = (54) (Sg) (Sz) (SI) (PM) §23 Pis gl (3.8)
24 P]A 2

where, in each parentheses, one of the factors is to be chosen. I is the
identity. Equation (3.8) will be called the normal form of M.

It can be remarked that every element of the list (3.7) is a simple symme-
try with respect to a hyperplane in the four-dimensional space. The equa-
tion of the hyperplane is =, = 0 for S,, £, = g for Pug, 21 + 74 = 72 + 235
for ¥y, £y = 24 + 23 + x4 for L.

4. Minimization of the viscosity

This section is written with general notations so as to be valid not only for
the FCHC lattice but for all lattices satisfying the usual conditions [2,10].
As explained in the introduction, we want to select the isometry so as to
minimize the viscosity of the lattice gas. The kinematic shear viscosity is
given by [10], equation (102):

ety
TN . 4.1

2(D+2)1— py )

where 7 is the time step, ¢ is the velocity modulus, D is the number of

space dimensions, and p, is the viscosity index, which is a dimensionless
number lying between 0 and 1, given by (ibid., equations (101) and (87))

pe=1— 2(D EZA(S s)d* (1 - d)n P! zzs.(s, — %) cos® 0;;

(4.2)
where n is the number of velocities, A(s; s') is the probability of a transition
from an input state s to an output state s', d is the average probability of
a particle arriving along a link, p = 3>; s; is the number of particles, and
0;; is the angle between the velocities ¢; and ¢;. For the FCHC lattice with
its usual normalization, we have r = 1, ¢ = 2, D = 4, n = 24, and (4.1)
reduces to

- (4.3)

61— py

For a given isometry M, we will compute an approximate average value
of (4.2), using statistical arguments to estimate cos®§;;. We will assume
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that the input velocities are arbitrary and independent. This is not strictly
true, since the input states which we are considering must have a given
momentumj this constrains the choice of the input velocities. However, the
viscosity is controlled by the second-order momentum [10], which is largely
decoupled from the first-order momentum. The present estimates are in
fact borne out by exact computations.
We remark first that as a consequence of the lattice isotropy ([10] equa-
tion (49b)), we have for a given ¢
Z:(LOS2 6.',‘ = 2‘ (4.4)
F D
It follows that for arbitrarily and independently chosen 7 and j, the average
value is

1
(f;()é‘»2 9,'_.,') = B (4.5)
Next, we consider the particular case where ¢; = Mc; (i.e., the direction j
is the image of the direction ¢ by the isometry). In this case, 7 and j are not
independent, and the average value of cos® 8; will depend on the isometry
M. For instance, if M is the isometry, then the average value is obviously
1. We will denote this value by w:

(cos2 0:; =w (4.6)

)C,':MC;
w is easily computed from M:

1

w=—
net

2 (i Me;)? (4.7)
i
Finally, we consider the case where c¢; can take any value except Mc;.
Combining (4.5) and (4.6), we obtain

1 n
28.. = B o
(cos 0.,)%_#“'_ =— (D w) (4.8)
We now proceed to estimate the quantity
Q=) &y sjcos’ (4.9)
4 7

This double sum contains p® non-vanishing terms (s; = 1 and s} = 1) since
there are p input velocities and p output velocities. Of these, exactly p
terms correspond to ¢; = Mg, since the output state derives from the
input state through M. Therefore, p(p — 1) terms correspond to ¢; # Mc;.

Using (4.6) and (4.8), we obtain

@ = B (5 ) -tz Al (g
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Next, we have to estimate the quantity
e Zs.-z.sj COS" 0.',' (4.11)
i i

We observe that (4.11) is simply a particular case of (4.9), obtained when
M is the identity, so its value is immediately obtained by substitutingw =1
in (4.10):

@)= (n_ 4 ) 4 (r(:' —_11)13' (4.12)

Combining (4.10) and (4.12), we obtain

(ZZs, ; — &) cos 0.,) (@' -Q)= (n p)(l w).  (4.13)

We recall that this relation is only approximate. It indicates, however, that
in order to minimize the viscosity we should select isometries for which w
is smallest.

w is given by (4.7). Its minimal value is 0; this value is reached if every
velocity is perpendicular to its image. The maximal value is w = 1; it is
reached in particular when M is the identity, and more generally if every
velocity is either identical or opposite to its image.

w can be easily computed as an explicit function of the elements a.g of
the matrix M. Let ¢;1, ¢;2, ¢i3, ¢i4 be the coordinates of c;. We have

o= % z':(zu: Zﬂ: Gagiatip)’
= ;E'I Z(E Z GapCiaCip) (Z E @5 CinCi5)
= nct Z Z Z E CQof Qs E CiaCifCinCis- (4.14)

a g o7 s

From the symmetry relations [10,8], we have
net
Z.a %= DD+2) (e #B), Z%*m

3" Ciatigincis =0 in all other cases, (4.15)
i

and we obtain

w =

[Z Z (@aaags + aaﬂ + @gptge) + 3 Z a,m] " (4.18)
D(D +2) 15 i

which can also be written
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=DD+2) D+2) [E 2 (aap + 3pa)" + ( Zaaa) +22aan] (4.17)

a f>a

This equation shows in particular that w = 0 if and only if M is antisym-
metric: @a, = 0, @ap = —@g,. For the FCHC lattice, the only isometries
having this property are those which consist of two 7/2 rotations, such as

01 00

=1 0 0 0
00 0 1 (4.18)
00 -1 0

and the other isometries deduced from (4.18) by permutations; there are
12 of them.

5. Normalized momenta

Let ¢;, g2, g3, g4 be the coordinates of the momentum. Clearly, the number
and the nature of the allowed isometries will depend on the values of the
g.; for instance, if ¢; = 0, we can use S;; if q; = ¢z, we can use Pj,, and so
on.

A detailed enumeration shows that the momentum can take 7009 dis-
tinct values (see table 1 below). We can, however, reduce considerably the
number of cases to be considered by taking advantage of the symmetries of
the problem. Specifically, we will show that by using appropriate changes
of coordinates we can restrict our attention to normalized momenta, which
we define as those which satisfy the following conditions:

1>2q0>¢G>¢2>0 and (=0 or i+q@u<g+g) (51)

The full treatment of a collision is then as follows. (i) We make a change
of coordinates as required. This is equivalent to applying to the input state
an isometry T, belonging to G, such that the new momentum satisfies (5.1).
(ii) We compute the collision by applying an isometry M which preserves
the momentum. (iii) We come back to the initial coordinates by I'"'. In
other words, the isometry I'"* MT is applied to the input velocities to obtain
the output velocities.

We now define the isometry T'. It consists of three steps:

1. If one of the g, is negative, we invert the sign of the corresponding
coordinate (we apply S,). We are thus reduced to the case where all
¢« are positive or zero.

2. We use the coordinate permutations P, to sort the g, in non-increa-
sing order. Thus, the first half of (5.1) is already satisfied.
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3. fqs>0and q + g4 = g2 + g3, we apply 2. If g4 > 0 and ¢; + ¢4 >
Gz + g3, we apply I;; then, if the new ¢, is negative, we apply S;. It
is not difficult to show that the new momentum satisfies (5.1).

There are 37 normalized momenta; it can be shown that no further
reduction of the number of cases is possible. The coordinates of the nor-
malized momenta are listed in table 1, columns 1 to 4. Column 5 is the
class (see below). Column 6 is the number r of momenta which reduce to
a given normalized momentum. The total of this column gives the total
number of momenta as 7009.

6. Optimal isometries

We determine first the subgroup H of the isometries which preserve each
normalized momentum. Momenta which define the same subgroup H will
be said to belong to the same class. A detailed study shows that there
are 12 classes. They are enumerated in table 2. The first column is an
arbitrary identification number. The second column is the definition of the
class. The third column is the order of H (i.e., the number of isometries
which preserve the momentum). (Note that the number r appearing in
table 1 is the index of H in G, and therefore r|H| = |G| = 1152). The
fourth column is a generating set for H.

Next, for each class we compute w for each element of the subgroup
H, using its matrix representation and the formula (4.17). We note the
minimal value w,,;, of w in H. The isometries for which w = wy;, will be
called optimal. table 3 gives for each class the value of wy;, in column 2,
the number of optimal isometries in column 3, and the list of the optimal
isometries (written in normal form) in column 4.

7. Recipe

We collect here as a recipe all steps of a collision computation.

1. Compute the components gi, ¢z, gs, g4 of the momentum.
2. Change of coordinates:

(a) If g¢; < 0, apply the isometry S; to the input state (and of course
also to the momentum). Proceed in the same way for gz, gs, g4

(b) Apply P.p so as to have the g, in non-increasing order: ¢ >
2> g3 g > 0.

(c) If g > 0and g +g4 = g2 +s, apply 3. If g4 > 0and g + g4 >
g2 + gs, apply I;, and then eventually S so as to have g4 > 0.

3. Collision:

(a) Determine the class, using the definitions of table 2, column 2.
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g1 g2 gs gs|Class| r|
0 0 0 O 12] 1
1 1 0 0 10| 24
2 0 0 O 11| 24
2 1 1 0 6| 96
2 2 0 0 10| 24
2 2 2 0 8| 96
3 1 0 0 9| 144
3 2 1 0 3| 192
3 3 0 0 10| 24
3 3 2 0 5 | 288
3 3 8 1 2| 192
4 0 0 O 1| 24
4 1 1 0 7 | 288
4 2 0 0 9| 144
4 2 2 0 6| 96
4 3 1 0 3| 192
4 3 3 0 7| 288
4 4 0 0 10| 24
4 4 2 0 5 | 288
4 4 3 1 1576
4 4 4 0 8| 96
5 1 0 0 9| 144
5 2 1 0 4576
5 3 0 0 9| 144
5 3 2 0 3| 192
5 4 1 0 3| 192
5 4 3 0 4| 576
5 5 0 0 10| 24
5 5 2 0 5 | 288
6 0 0 O 11| 24
6 1 1 0 7 | 288
6 2 0 0 9 | 144
6 2 2 0 7 | 288
6 3 1 0 4| 576
6 3 3 0 6| 96
6 4 0 O 9 | 144
6 4 2 0 3| 192

Table 1: FCHC lattice: normalized momenta.
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| Class | Definition | [H| | Generating set
ll@i=90>¢G>¢>0 Pry

2
2| q1=¢@=¢g>q>0 6 | Piz, Pos
3 1 1>@:>G>u=0,a=0g+g 6| 5,5
4 a>a>a>u=0,a#a+4g 2|8
5 la=@>@p>qu=0 4| S84, Pr2
6(qg1>0=¢g>q=0q=2q¢ 12 | 54, Po3, By
T @a>0=9¢>qu=0,q#2q 4| 54, P
8lgi=¢=¢>q=0 12 | 84, Py, Pos
9N >@>p=q0u=0 8 | 54, Py
V| g=@p>¢p=q¢=0 48 | Sy, P13, P3g, Ty
11| qg>q¢=g=q¢=0 48 | Sy, Pa3, Pay
12 | 1=q@=g=g=0 1152 | Sy, P13, Pa3, P34, 51
Table 2: FCHC lattice: the 12 classes and the corresponding sub-
groups H.
[ Class | wpnip | Optimal isometries
1] 12| 1] P
2| 1/4| 2| PP, PisPys
3| 1/4| 2|83, S5
4| 12| 1|8,
5 1/3 1| S4Pe
6| 1/4| 4| 5.8y, S4E;, S4PysLy, SyPasEy
7| 1/3| 1| S4Ps
8| 1/4 | 4| Py3Pi2, PasPis, S4PasPya, S4P3Pys
9| 1/3| 3| S4Ss, S3Pss, SiPay
10 1/6 6 | S3PsyPig, S4PasPa, S4S32,
5483 P34 P13 %y, 545353, Psy P25,
11| 1/6 | 6| S4S2P3, S4S3Pss, S3S2Pu,
5453 P4, S35 P34, 5452 P34
12 0 | 12 | S35, PssPi2, S4S1Ps4Pya, S352 P34 P13, 5453 PasPra,
5351 PysPi3, S451 P34 Pi3, S35, Pos Py, S4S3 P34 Pss,
5351 Pys Py, S3S1Pas Py S4S2PasPra, S4S3PasPry

Table 3: FCHC lattice: optimal isometries.
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(b) Choose at random one of the optimal isometries of table 3, col-
umn 4.

(c) Apply this isometry.

4. Apply a change of coordinates which is the inverse of the change
made in step 2. Since all isometries S,, P,5, I, are identical with
their inverses, this can be done simply in applying the same sequence
of isometries as in step 2, in reverse order.

8. Viscosity

Now that the collision rules have been fully specified, the viscosity can
be computed from (4.1) and (4.2). g4 depends on d: it is a polynomial of
degree 23 in d. The computation of the coefficients of this polynomial takes
about one hour on a VAX 785. Only the terms corresponding to normalized
momenta need to be computed; they are then multiplied by the coefficient
r given in the last column of table 1. Figure 1 shows u, as a function of
24d, which is the average number of particles per node (full line).

The collision rules are invariant under duality—i.e., when particles are
replaced by “holes” (s; — 1 —s;). Therefore, ps(d) = pg(1 — d). This
symmetry is apparent in figure 1. We note also that py is close to 1/2 over
a large interval of d values; this will be commented upon in section 9.

The Reynolds number in a lattice gas simulation is [2]

R = MI()R., (8.1)

where M is the Mach number; [y is the characteristic scale of the flow,
expressed in units of one link length; R, is given in the case of the FCHC
lattice by

A1 =
= 2v/2 2 i § (8.2)
g [
Figure 2 shows R, as a function of 24d (full line). With the isometric
algorithm, the largest attainable value of R, is approximately 2 and is
reached for 24d ~ 4.

9. Random algorithm

We describe now another algorithm for the computation of collisions, which
turns out to have properties very similar to the isometric algorithm. The
basic rule is very simple:

Rule. The output state is randomly chosen among all states which have
the same particle number and the same momentum as the input state.

This will be called the random algorithm. The conditions 1, 2, 4, 5, 6
(see introduction) are obviously satisfied; here, also, we have in fact detailed
balancing. Condition 3 is also satisfied since all permitted collisions to
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Figure 1: Viscosity index p4 as a function of the average number of
particles per node, 24d. Full line: isometric algorithm. Dashed line:
random algorithm. The kinematic shear viscosity of the FCHC lattice
is related to pg by: v = py/[6(1 — pa)].

This will be called the random algorithm. The conditions 1, 2, 4, 5, 6
(see introduction) are obviously satisfied; here, also, we have in fact detailed
balancing. Condition 3 is also satisfied since all permitted collisions do
happen in the random algorithm, and in particular those of the isometric
algorithm.

Figures 1 and 2 show the viscosity index p4 and the quantity R, for the
random algorithm (dashed lines). The largest attainable value of R, is 1.74,
for 24d ~ 4.8. We note that here again 4 is close to 1/2 over a large range of
values of d. A heuristic explanation can be given by estimating the quantity
(4.2) in the same way as in Section 4. When the number of incoming
particles is neither close to 0 nor to n, the number of permitted output
states is large. We may assume then that the output state is practically
uncorrelated with the input state. In estimating the quantity (4.9), we
therefore use the average value (4.5) for all p? terms, obtaining

2

o~

Q=7 (9.1)

Combining this with (4.12), we obtain

1 p(n—p)
s 9.2
(@ - =21l (02)
and after substitution in (4.2):

py=1- ZE Als Md"“lu —d)rrt (9.3)

1)
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Figure 2: The quantity R., proportional to the Reynolds number, as
a function of the average number of particles per node, 24d. Full line:
isometric algorithm. Dashed line: random algorithm. The actual
Reynolds number R is related to R. by equation (8.1).

or, summing on §':
-1 l u -1(1 _ Jyn—p—1
=1 3 g stfa 1] d*1(1 - d) , (9.4)

The number of input states for a given p is the binomial coefficient
n!/[p!(n — p)!]; therefore,

13 (n—2)!

F4=1—52

=i (p—1l(n—p-1)

@1 )t = % (9.5)

A more direct argument can be made, using the second-order tensors
Yap, Y5 and the quantities y; to p4 defined in [10]. If the input and output
states are uncorrelated, the quantity 3, 35 YasY, s vanishes on the average.
Then p4 reduces to (p; + p2)/2, which is 1/2.

In retrospect, then, the fact that p4 is close to 1/2 in the isometric
algorithm for most values of d might be an indication that in that algorithm
also the output state is nearly uncorrelated with the input state (at least
as far as the second-order momentum is concerned).

In both algorithms, this vanishing correlation means that the particles
lose all memory of their previous velocities at each collision. In other words,
the mean free path (insofar as it can be defined for a lattice gas, where
particles do not preserve their individuality) is smaller than one link length.

A practical implementation of the random algorithm would require that
one first computes and stores tables of the states sorted by particle number
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and momentum. The size of these tables can be reduced by considering only
the normalized momenta defined in section 5. The recipe consists then in
the same steps 1, 2, and 4 as in Section 7, and a different step 3 as follows:

3. Collision: Choose at random an output state among all those which
have the correct particle number and momentum.

We have described the random algorithm because its principle is very
simple and because of its curious similarity to the isometric algorithm.
In practice, the isometric algorithm is probably to be preferred, since its
implementation is less cumbersome and its performance is somewhat better.
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Appendix A. HPP lattice

We apply here the isometric algorithm to the HPP lattice. The four veloc-
ities are

(1,0), (0,1), (-1,0), (0,—1). (A.1)

The isometries form a group G of order 8. A generating set is formed by
the symmetry S with respect to the line y = 0 and the rotation R by an

angle /2:
s=(é _‘1’), R:(;’ o) (4.2)

The elements of G are:

I,R,R* R%,S,RS, R*S, R®S. (A.3)

w is again defined by (4.7). The HPP lattice is not isotropic at fourth
order, and the equations (4.15) cannot be used; instead, we have

Zcfa =2, Zciacipc.-.,c.-g =0 in all other cases. (A.4)

We obtain

1
w = (o}, + o). (4.5)

The values of w for the eight elements (A.3) are respectively
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g1 g2 |Class | r|

0 0O 311
1 0 2|4
1 1 14

Table 4: HPP lattice: normalized momenta

Class | Definition | [H| | Generating set |
1 g1 =gy > 0 2| RS
2 1> gy = 0 218
3 q1 = q2 = 0 8 S, E

Table 5: HPP lattice: the 3 classes and the corresponding subgroups
H.

1,0,1,0,1,0,1,0. (A.6)

By using an appropriate change of coordinates, we can reduce the problem
to normalized momenta satisfying

q >0, 0< @< q. (A7)

Tables 4, 5, and 6 are analogous to the tables 1, 2, and 3 and show
respectively the three normalized momenta, the definitions of the three
classes, and the optimal isometries.

The transition rules are found to reduce to

(5,6 4+2) ~ (i 41,6 +3), (A.8)

in an obvious notation. In all other cases, the velocities are unchanged.
These are exactly the usual rules for the HPP lattice.

| Class | wmin | Optimal isometries |
1 0|1]| RS

2 i o B
3 0|4|R, R RS, RS

Table 6: HPP lattice: optimal isometries.

Appendix B. FHP lattice

We apply here the isometric algorithm to the FHP lattice. The six velocities
are

1 3

2°F

13

)s (”“Ev T)’ (_1’0)’

(
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[ @ g2 [ Class | r |
0 0 3|1
1 0 216
3/2 /3/2 1|6
2 0 216

Table 7: FHP lattice: normalized momenta.

| Class | Definition | [H| | Generating set
1 g1 > gz > 0 2| RS

2 g1 > gz = 0 2|8

3 g1 =qz: = 0 12 S, R

Table 8: FHP lattice: the 3 classes and the corresponding subgroups
H.

-0 &9, wo. (B.)

The isometries form a group G of order 12. A generating set is formed by
the symmetry S with respect to the line y = 0 and the rotation R by an

angle 7 /3:
1 0 3 8
S=(0 _1), R:(!‘:ﬁ 12) (B.2)

The elements of G are:

I,R,R? R, R*, R°,S, RS, R*S, R*S, R*S, RS (B.3)

The FHP lattice is isotropic to fourth order and we can use (4.15) and
(4.17), obtaining

1
w= g[(an +an)’ + (eu + a2)” + 2(aj; + a3,)] (B.4)
The values of w for the 12 elements (B.3) are

11,11111111 (B8

By using an appropriate change of coordinates, we can reduce the problem
to normalized momenta satisfying

3
@20, 0<g< %ql. (B.6)

Tables 7, 8, and 9 show respectively the four normalized momenta, the
definitions of the three classes, and the optimal isometries.
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[ Class | Wpmin | Optimal isometries |
1] 1/2|1| RS
2| 172|158
3| 1/4|4| R, R* R, R®

Table 9: FHP lattice: optimal isometries.

The transition rules are found to reduce to

(t,0+3) — (F+1,2-+4)or(i—1,1+2),
(5,i+2,24+4) — (¢1+1,743,+5)or (i,14+2,i+4),
(i—1,i,i+2) — (i—2,5,5+1),

(f+1,i+2,i+4,4+5) — (i,1+2,i+3,i+5)
or (7,1 +1,i+ 3,7 +4). (B.7)

In all other cases, the velocities are unchanged. (7a) is the standard rule for
head-on collisions. (7d) is the rule for dual collisions. (7b) is the standard
rule for symmetric triple collisions, with one small difference: here the
probability that the velocities are modified is only 1/2. Finally, (7¢) is
the rule for the “head-on collisions with spectator”. In all other cases, the
velocities are unchanged. Thus, we recover the usual rules for the FHP
lattice, with one minor modification.

References

[1] Proceedings of the Workshop “Modern Approaches to Large Non-Linear
Systems”, held at Santa Fe on October 26-29, 1986.

riel Frisc ominique umiéres, Brosl Hasslacher, Pierre Lalleman

2] Uriel Frisch, Dominique d’Humiéres, Brosl Hasslacher, Pierre Lallemand,
Yves Pomeau, and Jean-Pierre Rivet, “Lattice Gas Hydrodynamics in Two
and Three Dimensions”, in [1].

[3] J. Hardy and Y. Pomeau, “Thermodynamics and Hydrodynamics for a Mod-
eled Fluid”, Journal of Mathematical Physics, 13 (1972) 1042-1051.

[4] J. Hardy, Y. Pomeau, and O. de Pazzis, “Time Evolution of a Two-
Dimensional Model System. I. Invariant States and Time Correlation Func-
tions”, Journal of Mathematical Physics, 14 (1973) 1746-1759.

[5] J. Hardy, O. de Pazzis, and Y. Pomeau, “Molecular Dynamics of a Clas-
sical Lattice Gas: Transport Properties and Time Correlation Functions”,
Physical Review A, 13 (1976) 1949-1961.

[6] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-Gas Automata for the
Navier-Stokes Equation”, Physical Review Letters, 56 (1986) 1505-1508.

[7] D. d’Humiéres, P. Lallemand, and U. Frisch, “Lattice Gas Models for 3D
Hydrodynamics”, Europhysics Letters, 2 (1986) 291-297.



494 Michel Hénon

[8] Stephen Wolfram, “Cellular Automaton Fluids 1: Basic Theory”, Journal of
Statistical Physics, 45 (1986) 471-526.

[9] Jean-Pierre Rivet, “Simulation d’Ecoulements Tridimensionnels par la
Méthode des Gaz sur Réseaux: Premiers Résultats”, submitted to Comptes
Rendus de I’Académie des Sciences, Paris (1987).

[10] M. Hénon, “Viscosity of a Lattice Gas”, in [1].

[11] D.d’Humiéres and P. Lallemand, “Numerical Simulations of Hydrodynamics
with Lattice Gas Automata in Two Dimensions”, in [1].

[12] H. S. M. Coxeter, Regular Polytopes, (Methuen, London, 1948).



