
Complex Systems 1 (1987) 475--494

Isometric Collision Rules for the Four-Dimensional
FCHC Lattice Gas

Michel Henon
G.N.R.S., Observatoire de Nice,

B ,P. 139, 06003 Nice Cedex, France

Abstract . Collision rules are present ed for th e four-dimensional face­
centered-hypercubic-lattice (FCHC) . The velocity set after collision is
deduced from th e velocity set be fore collision by an isometry, cho­
sen so as to preserve th e momentum and minimiz e the viscosity. A
detailed implementation recipe is given. Th e shea r viscosity is cam­
puted; th e result shows that essentially all memory of t he previous
velocities is lost at each collision. Anot her set of collision rules, based
on a random choice of the output state, has similar pr ope rties . The
isometric prin cipl e can also be applied to t he two-dimension al squar e
(HPP) and triangular (FHP) latti ces : one recovers t he usual rule s
with minor differences.

1. Introduction

Lat tice gas automata have recent ly emerged as a new technique for the
numerical simul at ion of fluid motion (see [1], and in partic ular 12], for an
introduction to the subject ). Particles move on a regular lattice. T ime is
divided into a sequence of equal time steps , and the evolution cons ists in
two alt ernating phases: (i) propagation: du ring one time step, each particle
moves from one node to anot her along a link of the lattice; (ii) coJJision :
at the end of a time step, particles arriv ing at a given nod e collide and
instantaneously acquire new velocities, which determine their motion for
the next propagation step. Thus, two basic ingredients are needed: the
lattice and the collision rules. Taken together, they define a lattice gas
m odel.

In pion eering work , Hardy, de Pazzi s, and Pomeau [3,4,5J considered a
square lattice with simple collision ru les (called HPP model in what fol­
lows). This model, however, is not sufficiently isotropic for a simulat ion
of the full Navler-Stokes equations. A two-di mensional model with the re­
quired degree of isotropy was proposed by Frisch, Hasslacher and Pomeau
(FHP model) 161; it consists of a triangular lattice and appropriate collision
rules. T his model has already been used in a number of aimu lat .ione; see [11
for examples.
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The subject is much less advanced in three dimensions . It turns out that
no suitable three-dimensional lat tice exists [6,7,8]. One must therefore go to
four dimensions. (Three-dimens iona l problems are t hen easily simulated as
a part icular case). A four-d imensional lattice with the required p rop erties
h as been proposed by d 'Humieres, Lallemand, and Frisch [7,2]: the face­
centered-hypercubic (FCHC) lat tice. The nodes are the points with integer
coordinates (Zb Xz, xs, X4 ) such that the sum Xl + X2+xs + X4 is even. Each
no de is link ed to its 24 nearest neighbors X', which lie at a dis tance Y2,
and correspond to the following values of the vector x ' .....: x:

(± l ,±l,D,D),
(0,± 1,±1, 0),

(±l,D,±l,D),
(D,±l,D,±l) ,

(±l ,D,D,±l),
(D,D, ±l,±l). (1.1)

These 24 near est neighbo rs form a regular polytope. We normalize the
time step to 1, so that the vectors (1) are also the 24 poss ible velocities of
particles arriving at a node or leaving it. The velocities will be called c.,
with i = 1 to 24 (this numbering is arbitrary). All velocities have the same
modulus c = 0.

However, no collision rules have been proposed so far for the FeHC
lat ti ce (this is why we speak of the FCHC lattic e and not of the FCHC
m odel). It is the purpose of the present paper to present one possible set
of rules. which satisfies the basic condit ions. is easily implemented, and
results in a reasonably low value of the viscosity. The basic pri nciple is
that the velocity set after a collision der ives from the velocity set before
collision by a suitably chosen isom etry (i.e. a rotation around the or igin,
plus an opt ional mirror symmetry). We refer th erefore to t hese rules as
the isometric collision rules, or t he isometric algorithm. Together with
the FCHC lat ti ce, they define what might be called t he FCHC isometric
model. Rivet [9] has recently conducted numerical simulations based on this
model; he has shown that its properties are in agreement with theoret ical
predictions , and that it can be used in practice for the simu lation of t hree­
dimensional fluids.

2. Isometric collision rules

We define G as the group of the isometries which preserve the set of veloc­
ities (1). This group will be studied in more detail in section 3. We also
define the inpu t state as the set of t he velocities of the incoming particles
(before collision). The input state is conveniently represented as a collec­
t ion of 24 boo lean numbers: 5 = (51,... ,524)' where 5i = 1 if velocity c,
is present in the input state, 0 otherwise. Similar ly, we define the output
s tate as t he set of the velocities of the outgoing part icles (after collision},
and we represent it by 5' = (5~, ... , 5~4 ) '

Collision ru les must satisfy the following cond itions (see, for instance,
12,10]):

1. In any part icular collision, the number of particles is preserved.
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2. In any part icular collision, the tot al momentum is preserved.

3. T here does not exist any other quanti ty which is p reserved in all
collisions.

4. Exclusion princip le: The new veloci t ies are d ifferent from each ot her .

5. The collision ru les have the same symmetries as the latt ice; more
precisely, they are invariant under any isometry of G.

6. The collis ions satisfy semi-d etailed balancing.

In the two-dimens ional "six-bi t" F HP latt ice, the number of possible
input states is on ly 26 = 64, so that the collision rules can be selected by
hand. Moreover , the above conditi ons severely constrain the choice of the
rul es and only a few vari ations are possible 12,111. In t he present F CHC
lattice, the situation is completely d ifferent; there are 224 = 16777216
input states, and it is clearly out of the questi on to consider them one by
one. We need a guiding principle, leading to a more or less automated
construction of the rul es. Also, one finds that the cond it ions st ill leave
room for a t reme ndous number of possible collision rules, and t he problem
is to choose am ong this multitude. This again points to t he need for some
structure in the ru les. In other words, we will imp ose add it ional restrictions
so as to bring down the number of possibilities.

Our first res t rict ion is defined by the following rule:

Rule 1. Every co11ision is an isometry.

By this, we mean that in all cases, the outpu t st ate is deduced from the
input stat e by an isometry of G. Motivations for this rul e are, first , that
in a sense we select "simple" collis ions, so that the actual computation will
be easier. We note also that in the HPP and FHP latt ices, all collisions
are isometries. F inally, the above conditions 1 and 4 are automat ically
sat isfied.

Condit ion 2, however , is not automat ically satisfi ed : the isometry mu st
be chose n so as to preserve the momentum . This suggests the introduction
of a second rule.

R u le 2. The isometry depends on th e m om entum only.

Taken together , r ules 1 and 2 lead to a cons iderable reduction of the
number of cases to be examined. As will be seen in section 5, t he number
of possible values of the momentum is only 7009. By taking advantage of
the symmetries, we will be ab le to bring down the number of cases to 37,
and ult imately to 12.

Another important criter ion for the choice of the collision ru les is that
the resu lt ing shear viscosity of the lattice gas sho uld be as low as possi b le, so
that higher Reynolds numbers can be reached [2,10). Intuitively speaking ,
this means that the mean free pat h should be as sho rt as possible, or that
the output state of a collision should be "as d ifferent as possible" from the
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input state. (A precise definition will be given in section 4.) In this respect,
one might won der if the above ru les are not overly restrictive and if there
is not a risk that the only permitted isometry will be the ident ity in many
cases . Fortunately, it turns out that this never happens: the number of
permitted isometries is always at leas t two (see table 2 below). In other
words, there exists always at least one non-trivial isometry (distinct from
the identi ty) which preserves the momentum.

The number of permitted isometries ranges in fact from 2 to 1152, de­
pending on the momentum, and is larger than 2 in most cases (see Table 2).
T hus, one still has much freedom in t he choice of the collision rules. It will
be show n in section 4 that the contribution of an isometry M to the vis­
cosity can be character ized by a number w lying between 0 and 1. Roughly
speaking, this number measures the average correlat ion be tween an input
state s and the corresponding output state s' obtained by M . (In particu­
lar, w = 1 for the identi ty.) In ord er to minimize t he v iscosity, one sho uld
choose isometries wit h w as small as possible. We call H the subg roup of
G consisting of all isometries which preserve a given momentum, and Wmin

the minimum of w on H. We call optimal isometry an isometry of H for
wh ich W = Wmin' Our third ru le, then, is

Rule 3. The isometry is randomly chosen among all optimal isometries.

Our collision rules are thus completely defined. For convenience we will
refer to them as the isometric algorithm. The rules are obviously invariant
under any isomet ry ; thus, the above condit ion 5 is automatical ly satisfied.
Cond it ion 6 (semi-det ailed balan cing) is also sat isfied ; in fac t, the stricter
condition of detailed balancing is satisfied, because the inverse of an optimal
isometry is also optimal. Finally, it is not d ifficult to show that condition
3 is also satisfied .

The isometric algorithm is applica ble not only to the FCHC lat tic e,
but to any "one-spee d model" belonging to the general clas s defined in [2]
and IIOJ. It is of int erest to note that in the case of the HP P lat tice, the
classical collision ru les are exactly recovered ; this is descr ibed in Appe ndix
A. Similarly, in the case of the FHP lattice, we recove r the us ua l ru les,
including the "head-on collis ions with spectator" and the dual collisions,
with one minor change (see Appendix B).

3. T h e isometry group G

The isometries of R" which preserve t he set of 24 velocit ies, or equ ivalent ly
the regular polytope formed by the 24 nearest neighbors, form a group G
ca lled symmetry group of the po lytope, of order 1152 1121. An isometry
can be represented by a matrix :

(
a~ l

M= :

a' i

(3.1)
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The image of a velocity c in the isometry M is Mc . (By a slight abuse of
language, we designate the isometry and the matrix by the same symbol
M .) The composition law in the group is the ordinary matrix product.
Particular examples of isometries are

1. The change of sign of one coordinate Q:. This will be noted Sa' For
example, we have

(

- 1 0 0 0 )o 100
S. = 0 0 1 0 .

000 1

(3.2)

2. The permu tat ion of two coordinates" and {J [c --I {J). This isometry
will be noted PaIJ. For examp le,

100)000
o 1 0 .
001

(3.3)

3. The isometry descr ibed in 17], equation 12, which we call E:

E=!. (-~
2 -1

-1

- 1
1

-1
- 1

-1
- 1

1
- 1

-1)- 1
- 1 .

1

(3.4)

Here, it will be more convenient to use two other isometries obta ined
by combining E with some Sa. and PerIJ:

( 1

1 1

-~ )E.
1 1 1 -1

= P"P"S,S,SsS.E = 2" 1 1 '- 1 1
- 1 1 1 1

(3.5)

( 1

1 1

-~ )E,
1 1 1 -1

(3.6)= P"P"S,SsS.ES. = 2" ~ - 1 1 -1 .
- 1 - 1 1

It can be shown that the above isometries are sufficient to generate all ele­
ments of G [i.e., they form a generat ing se t). In fact , a minimal generating
set can be formed with five elements only; for example, Sll P12,P13, Pu , E1.
In practice , however, it will be more convenient to use the redundant set
of 12 element s:
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811 52, 83 , 84 , PI2' PI3, PU, PZ3 1PZ4,P34' Ell Ez. (3.7)

It can be shown that every isometry M has one and only one representation
of the form

where, in each parentheses, one of the factors is to be chosen. I is the
identity. Equation (3.8) will be called the normal form of M.

It can be remarked that every element of the list (3.7) is a simple symme­
try with respect to a hyperplane in the four-dimens ional space. The equa­
tio n of the hyperplane is X OI = 0 for Sal :t a = xfj for POl{J1 X l + X .. = X2 + X3

for Ell Xl = X2 + X3 + x.. for Ez.

4 . Minimization of the viscosity

This section is writ ten with general notations so as to be valid not on ly for
the FCHC lat t ice but for all lattices satisfying the usual conditions [2,lOJ.
As explained in the introduction, we want to select the isometry so as to
m inimize the viscosity of the lattice gas. The kinematic shear viscosity is
given by [10], equation (102):

rc Z J.l.
1/ = 2(D + 2) 1 -1'. (4.1)

where T is the time step, c is the ve locity mo dulus, D is the number of
space dimensions, and J.L. is the viscosity index , whic h is a dimensionless
number lying between 0 and 1, given by (ibid., equations (101) and (87))

D
1'. = 1 - (D ) L L A(.; . ')d"-' (l - dj"-P-' L L '; (8; - .;) cos' 0;;

2-1n" , i;

(4.2)
where n is the number of veloci ties, A(s; s') is the probab ility of a trans ition
from an input state s to an output state s' , d is the average probab ility of
a particle arriving along a link , P = Li s, is the number of part icles, and
Oi; is the angle between the velocities e, and c;. For the FCHC latt ice with
its usual normalization , we have T = 1, c2 = 2, D = 4, n = 24, and (4.1 )
reduces to

1 1'.
1/ = - -- (4.3)

6 1 -I'.

For a given isometry M, we will comp ute an approximate average value
of (4.2) , using statistical arguments to estimate cos20i; . We will assume
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(4.4)

that the input velocities are arbitrary and independent. Th is is not strictly
true, since the input states which we are considering must have a given
momentum] this constrains the choice of the input velocities . However, the
viscosity is controlled by the second-order momentum [10], which is largely
decoupled from the first-order momentum. The present estimates are in
fact borne out by exact computations.

We remark first that as a consequence of the latt ice isotropy ([10] equa­
tion (49b) ), we have for a given i

"" n~cos (Jt; = D,
It follows that for arbitrarily and independently chosen i and i , the average
value is

(cos' 0;; ) = ~ (4.5)

Next, we consider the particular case where ci = Mc; [l.e., the direction j
is the image of the direction i by the isometry). In this case, i and i are not
independent, and the average value of cos! Ot; will depend on the isometry
M . For instance, if M is the isometry, then the average value is obviously
1. We will denote t his value by w:

(4.6)

w is easily computed from M:

w = ~ L;(c; . Mc; )' (4.7)
nc 4 .•

Finally, we consider the case where ci can take any value except MCi'

Combining (4.5) and (4.6), we obtain

(COS
2(Jti

)ej#Me; = n ~ 1 (~ - w)
We now proceed to estimate the quantity

Q = L.5i L.5jcos2 Oii
i ;

(4.8)

(4.9)

This double sum contains p2 non-vanishing terms (St = 1 and 8} = 1) since
there are p input velocities and p output velocities. Of these, exactly p
terms correspond to Cj = Mct , since the output state derives from the
input state through M. Therefore, p(p -1) t erms correspond to c; of M c;.
Using (4.6) and (4.8), we obtain

(Q) = pw + p(p - 1) (!!:. _w) = p(n - p)w + p(p - l)n
n - 1 D n -1 (n - 1)D

(4.10)



482

Next, we have to estimate the quantity

Q . = LSiL s; cos 2
(Jij

;

Michel Henon

(4.11)

We observe that (4.11) is simply a particular case of (4.9), obtained when
M is the ident ity, so its value is immediately obtained by substituting w = 1
in (4.10) :

(Q') = p(n - p) + p(p - l)n .
n -1 (n - l )D

Combining (4.10) and (4.12), we obtain

( L L S,(S; - Sj) COS' O,;\ = (Q' - Q) = p(n -
p)(

l _W).
i j / n -l

(4.12)

(4.13)

We recall that this relation is only approx imate. It indicates, however, that
in order to minimize the viscosity we should select isometries for which w
is smallest .

w is given by (4.7). Its minimal value is OJthis value is reached if every
ve locity is perp endicular to its image. The maximal value is w = L; it is
reached in particular when M is the identity, and more generally if every
velocity is either identical or opposite to its image.

w can he easily computed as an explicit function of the elements a t:l /3 of
the matrix M. Let eo , Ci2 , Ci3, Cit be the coordinates of c.. We have

(4.14)

From t he symmetry re lat ions [10,81 , we have

2 2 nc·
~ C'QC'~ = D(D + 2) (a i' (3),

and we obtain

w = D(D
1

2) [L L(aQQap~ + a~~ + aQ~a~Q) + 3 L a~Q]'
+ a ~¢a a

which can also be written

(4.15)

(4.16)
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(4.17)

T his equation shows in particular that w = a if and only if M is antisym­
metric: aaa = 0, aap = - afJOI " For the FCHC lattice, the only isometries
having this property are those which consist of two sr/2 rotations, such as

by permutations; there are

~ )( -~ ~ ~
00 0
o 0 -1

and t he other isometries deduced from (4.18)
12 of them.

5. Normalized momenta

(4.18)

Let qh Q2, Q3, q" be the coordinates of the momentum. Clearly, the number
and the nature of the allowed isometries will depend on the values of the
qOl; for instance, if ql = 0, we can use 8 1 ; if ql = Q2, we can use P121 and so
on .

A detailed enumeration shows that the momentum can take 7009 dis­
tinct values (see t ab le 1 be low) . We can, however, reduce considerably the
number of cases to he conside red by taking advantage of the symmetr ies of
the problem. Speci fically, we will show that by using appropriate changes
of coordinates we can res t rict our attention to norm alized momenta, which
we define as t hose wh ich satisfy the following conditions:

q, ~ q, ~ q, ~ q. ~ 0 and (q. = 0 or q, + q. < q, + q,). (5.1)

The full treatment of a collis ion is then as follows. (i) We make a change
of coordinates as required. This is equivalent to applying to the input state
an isometry r, belonging to G, such that the new momentum satisfies (5.1) .
(ii) We compute the collis ion by applying an isometry M which preserves
the momentum.. (iii) We come back to the initial coordinates by r-1 . In
other words, the isometry r-1Mris applied to the input velocities to ob tain
the output velocities.

We now define the isometry r. It consists of three steps:

1. IT one of t he q« is negative, we invert the sign of the corresponding
coordinate (we apply S.) . We are thus red uced to the case where all
q« are positive or zero .

2. We use the coordinate permutations PalJ to sort the q« in non-increa­
sing order. T hus, t he first half of (5.1) is already satisfied.
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3. If q. > 0 and q, + q. = q, + q" we apply E, . If q. > 0 and q, + q. >
q2 + Q3, we ap ply E 1 ; then, if the new q4 is negati ve, we app ly 8 4 , It
is not difficult to show that the new momentum satisfies (5.1).

There are 37 normalized momenta; it can be shown that no further
reduction of the number of cases is possible. The coordinates of the nor­
malized momenta are listed in table 1, columns 1 to 4. Column 5 is the
class (see below). Column 6 is the numb er T of momenta which reduce to
a given normalized momentum. The total of this column gives the total
numb er of momenta as 7009.

6 . Optimal isometries

We determine first the subgroup H of the isometries which preserve each
normalized momentum. Momenta which define the same subgroup H will
be said t o belong to the same class. A detailed stu dy shows that there
are 12 classes. They are enume ra ted in table 2. The first column is an
arbit rary identification number . The second column is the definition of the
class. The third column is the order of H [i.e., the number of isometries
wh ich preserve the momentum). (Note that the number r ap pearing in
t able 1 is the index of H in G, and therefore rlHI = IGI = 1152). The
fourth column is a generating set for H.

Next, for each class we compute w for each element of th e subgroup
H, using its matrix representation and the formu la (4.17). We note the
minimal va lue Wm.;n of w in H . The isometries for which w = Wm.in will be
called optimal. table 3 gives for each class the value of Wm.;n in column 2,
the number of optimal isometries in column 3, and the list of the optimal
isometries (written in normal form) in column 4.

'T . Recipe

We collect here as a recipe all st eps of a collision computation.

1. Compute the components qll q2, qs , q4, of th e momentum.

2. Change of coordinates:

(a) If q, < 0, apply the isometry 8, to the input state (and of course
also to the momentum) . P roceed in the same way for q2, qs, q4,.

(b) Apply p.P so as to have the q. in non-increasing order: q, ::0:
q, ::0: q, ::0: q. ::0: o.

(c) If q. > 0 and q, + q. = q, + q" ap ply E, . If q. > 0 and q, + q. >
q2 + e«. apply Ell and then eventually 84, so as to have q4 2 O.

3. Collision :

(a) Determine the class, using the definitions of t able 2, column 2.



Isometric Collision Rules for the FCHC Lattice Gas

0 0 0 0 12 1
1 1 0 0 10 24
2 0 0 0 11 24
2 1 1 0 6 96
2 2 0 0 10 24
2 2 2 0 8 96
3 1 0 0 9 144
3 2 1 0 3 192
3 3 0 0 10 24
3 3 2 0 5 288
3 3 3 1 2 192
4 0 0 0 11 24
4 1 1 0 7 288
4 2 0 0 9 144
4 2 2 0 6 96
4 3 1 0 3 192
4 3 3 0 7 288
4 4 0 0 10 24
4 4 2 0 5 288
4 4 3 1 1 576
4 4 4 0 8 96
5 1 0 0 9 144
5 2 1 0 4 576
5 3 0 0 9 144
5 3 2 0 3 192
5 4 1 0 3 192
5 4 3 0 4 576
5 5 0 0 10 24
5 5 2 0 5 288
6 0 0 0 11 24
6 1 1 0 7 288
6 2 0 0 9 144
6 2 2 0 7 288
6 3 1 0 4 576
6 3 3 0 6 96
6 4 0 0 9 144
6 4 2 0 3 192

Table 1: FeHe lattice: normalized momenta.

485
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~ Definition [TI'ITJ Generating set

1 ql - q, > q, > q. > 0 2 P12

2 ql=q, =q, >q. >O 6 PI'll P23

3 ql > q2 > qs > q. = 0, ql = q2 + qs 6 S. ,E1

4 ql > q2 > qs > q. = 0, ql f- q2 + q! 2 S.
5 Qt=Q2 >QS >Q.. =O 4 S4,P12
6 ql > q2 = qs > q4 = 0, ql = 2q2 12 S,j,P23 , 'E 1

7 ql > q, = q, > q. = 0, ql -I 2q, 4 S.,P23
8 Ql =Q2 =QS > Q.. = O 12 S..,P12,P23
9 ql > q, > q, = q. = 0 8 5., Ps..

10 ql =q, >q, =q. =O 48 54'Pl21 Pa. ,E1

11 ql > q, = q, = q. = 0 48 S"P2S,PS.
12 qv = q2 = qs = q.. = 0 1152 8.., Pl2, P23, ps. , E1

Table 2: FCHC lattice: the 12 classes and the corresponding sub­
groups H .

Opt imal isometriesm>n

1 1/2 1 Pa
2 1/4 2 P2SP12, P23PlS
3 1/4 2 S.E., S.E,
4 1/2 1 S.
5 1/3 1 S.Pl ,

6 1/4 4 8 ... Eh S4.E21 S"P23Eh 8"P2SE2

7 1/3 1 S.P"
8 1/ 4 4 P23P12, P2SP 13 1 S..P2S P12 1 S..P23P13

9 1/3 3 S..S31 SsPs,,, S..pu
10 1/6 6 8SPS. P 12 1 S..PU P12 1 8..83EI1

S..SSP,.PUE 1 1 S..SSE2 1 Ps4P12 E2

11 1/6 6 8.82P23 1 S.SSP23, Ss82 P24 ,

8.8sP24 , 8SS2P 34 1 S..S2P' 4

12 0 12 SSSlPS,P12, S.SlP,.P121 8 SS2PU P12 1 S.82P".P121
8281P2..P13 1 8.S1P2..PlS , Ss82P24P13 1 S..S SP24 P13 1

8 281P2SP14 1 8s81P2SF14, S4S2F23F141 S..SSP2SP14

Table 3: FCHC lattice: optimal isometries.
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(b) Choose at random one of the optimal isometries of table 3, col­
umn 4.

(c) App ly this isometry.

4 . Apply a change of coordinates which is the inverse of the change
made in step 2. Since all isometries Sell Pa ft , Ea are identical with
their inverses, this can be done simply in applying the same sequence
of isometries as in step 2, in reverse order.

8. Viscosity

Now that the collision rules have been fully specified, the viscosity can
be computed from (4.1) and (4.2). IJ.. depends on d: it is a polynomial of
degree 23 in d. The computation of the coefficients of this polynomial takes
about one hour on a VAX 785. Only the terms corresponding to normalized
momenta need to be computed; they are then multiplied by the coefficient
T given in the last column of table 1. Figure 1 shows Jl. as a function of
24d , which is the average number of part icles per node (full line).

The collision rules are invariant under duality- Le ., when particles are
replaced by "holes" (Si >-+ 1 - Si). Therefore, IJ..(d) = IJ..(1 - d). This
symmetry is apparent in figure 1. We note also that jl , is close to 1/2 over
a large interval of d values; this will be commented upon in section 9.

The Reynolds number in a lattice gas simu lat ion is [21

R = MloR. (8.1)

(8.2)

where M is the Mach number; 10 is the characteristic scale of the flow,
expressed in units of one link length; R. is given in the case of the FCHC
lat t ice by

_ ",1-2d1-IJ..
R. - 2v2--

d----.1- IJ..

F igure 2 shows R. as a functi on of 24d (full line). With the isometric
algorithm, the largest attainable value of R. is approximate ly 2 and is
reached for 24d '" 4.

9 . Random a lgor ithm

We describe now another algorithm for the computation of collisions, which
turns out to have properties very similar to the isometric algorithm. The
bas ic rule is very simple:

R ule. The output state is randomly chosen among all states which have
the same particle number and the same momentum as the input state.

This will be called the random algorithm. The conditions 1, 2, 4, 5, 6
(see introduction) are obvious ly satisfied; here, also, we have in fact detailed
balancing. Condit ion 3 is also satisfied since all permitted collisions to
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2' d

Figure 1: Viscosity index JJ4. as a function of the average number of
particles per node, 24d . Full line: isometric algorithm. Dashed line:
random algorithm. The kinematic shear viscosity of the FCHC lattice
is related to 1'. by: v = 1'./[6(1 - I'.)J ".

This will be called the random algorithm. The conditions 1, 2, 4, 5, 6
(see introduction) are obviously satisfied; here, also, we have in fact detailed
balancing. Condition 3 is also satisfied since all permitted collisions do
happen in the random algorithm, and in particular those of the isometric
algorithm.

Figures 1 and 2 show the viscosity index # 4. and the quantity R. for the
random algorithm (dashed lines) . The largest at t ainable value of R. is 1.74,
for 24d ex 4 .8. We note that here again "". is clos e to 1/2 over a large range of
values of d. A heuristic explanation can be given by estimating the quantity
(4.2) in the same way as in Section 4. When the number of incoming
particles is neither close to 0 nor to n, the number of permitted output
states is large. We may assume then that the output state is practically
un correlated with the input state. In estimating the quant ity (4.9) , we
therefore use the average value (4.5) for all p2 terms, obtaining

p'
Q = D ' (9.1)

Combining this with (4.12), we obtain

• D -1p(n -p)
(Q - Q) = ----n- n _ 1 (9.2)

and after substitution in (4.2):
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24 d

Figure 2: The quantity R., proportional to the Reynolds number, as
a function of the average number of particles per node, 24d. Full line:
isometric algorithm. Dashed line: random algorithm. The actual
Reynolds number R is related to R. by equation (8.1) .

or, summing on s':
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"'4 = 1 - ~ 2: p(n - p) d"-I(1 - d)"-P-I (904)
2 • n(n-l)

The number of input states for a given p is the binomial coefficient
n! / [p!(n - p)!]; therefore,

"', = 1- ~ 'f (n - 2)! d"-I(I_ d)"-p- l = ~. (9.5)
2 p~1 (p - 1)!(n - p - I)! 2

A more direct argument can be made, using the second-order tensors
Y.P, Y~p and the quantities "'1 to "', defined in 11OJ. If the input and output
states are uncorrelated, the quantity ECI E" Yat'Y~,8 vanishes on the average.
Then "', reduces to ("'1 + ",, )/ 2, which is 1/2.

In retrospect, then, the fact t hat JL" is close to 1/2 in the isometric
algorithm for most values of d might be an indication that in that algorithm
also the out put state is nearly uncorrelated with the input state (at least
as far as the second-order momentum is concerned ).

In both algorithms, t his vanishing corre lation means that the pa rt icles
lose all memory of their previous velocities at each collision. In other words,
the mean free path (insofar as it can be defined for a lat t ice gas, where
part icles do not preserve th eir individuality) is smaller t han one link length.

A prac t ical imp lementation of the random algorithm would req uire th at
one first computes an d stores tables of the states sorted by part icle number
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and momentum. The size of these tables can be reduced by cons idering only
the normalized momenta defined in section 5. The recipe consists then in
the same steps 1, 2, and 4 as in Section 7, and a different step 3 as follows:

3. Collision: Choose at random an output state among all those which
have the correct particle number and momentum.

We have described the random algorithm because its principle is very
simple and because of its curious similarity to the isometric algorithm.
In practice, the isometric algorithm is probably to be preferred, since its
implementation is less cumbe rsome and its performance is somewhat better.

Acknow ledgements

I am grateful t o Ur ie! Frisch for suggest ing this problem and for many
en lightening discussions . The final writing of this paper took place during
a stay at the California Institute of Technology as a Sherman Fairchild
Distinguished Scholar.

Appendix A . HPP lattice

We apply here the isometr ic algorithm to the HPP lattice. The four veloc­
ities are

(1,0), (0,1), (-1,0), to,- 1). (A.l )

The isometries form a group G of order 8. A generat ing set is formed by
the symmetry S with respect to the line y = 0 and the rotation R by an
angle 1r/2:

The elements of G are:

R = ( ~ -1)° . (A.2)

I,R,R2,R3
, S, RS,R2S,R3S. (A .3)

w is again defined by (4.7) . The HPP lat ti ce is not isotropic at fourth
order, and the equations (4.15) cannot be used; instead, we have

L C,~ Ci~ chci6 = 0 in all other cases.
i

(A.4)

We obtain

1 ( , , )w= 2 all + a 22 '

The values of w for the eight elements (A.3) are respectively

(A.S)
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lq, q,~

0 0 3 1
1 0 2 4
1 1 1 4

Table 4: HPP lat tice: normaliz ed moment a

~ Definition D!flJ Generating set I
1 q, -q, >O 2 RS
2 q, >q, =O 2 S
3 q, =q, =O 8 S,R

Table 5: HP P lattice: th e 3 classes and th e corresponding subgroups
H.

1,0,1 ,0, 1, 0, 1, 0.
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(A.5)

By using an appropriate change of coordin at es , we can reduce the problem
to normalized momenta satisfying

(A.7)

Tables 4, 5, and 6 ar e analogous to the tab les 1, 2, and 3 and show
resp ectively the three normalized mo menta , the defin iti ons of the three
classes, and the optimal isometries.

The transition rules ar e found to reduce to

(i,i +2) >-+ (1 +1, i + 3), (A.8)

in an obvious not ation. In all other cases, the veloci ties are unchan ged .
These are exactly the usual rules for the HP P lat tice.

~ Optimal isometries

1 0 1 RS
2 1 2 I, S
3 0 4 R, R', R S , R' S

Table 6: HP P lat t ice: optimal isometries.

Appendix B. FHP lattice

We apply here the isometric algor ithm to the FHP lattice. The six velociti es
are

(-1,0) ,
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0 0 3 1
1 0 2 6

3/2 ../3/2 1 6
2 0 2 6

Table 7: FHP lattice: normalized momenta.

~ Definition []![] Generat ing set I
1 ql > q2 > 0 2 RS
2 q, > q, = 0 2 S
3 q, = q,= O 12 S,R

Table 8: FHP latti ce: the 3 classes and the correspond ing subgroups
H.

(1,0) . (B .1)

The isometries form a group G of order 12. A generating set is formed by
the symmetry S with respect to the line y = 0 and the rotation R by an
angle "./3:

The elements of G are:

( ' -,>11" , )R= ~ (B.2)

I, R , R' ,R' , R" R', S ,RS,R'S , R' S,R' S, R'S (B .3)

The FH P lattice is isotropic to fourth order and we can use (4.15) and
(4.17), obtaining

w = ~[(a12 + a,,)' + (all + a,,)' + 2(a:, + a:,)! (B A)

The values of w for the 12 elements (B.3) are

1 11 111 11 1 1
1, :(' 4" ' 1, 4'4'2'2'2'2'2'"2" (B.S)

By using an appropriate change of coordinates , we can reduce the problem
to normalized momenta satisfying

(B .6)

Tables 7, 8, and 9 show respectively the four normalized momenta, the
definitions of the three classes, and the optimal isometries.
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~ Optimal isometries I
1 1/2 1 RS
2 1/2 1 S
3 1/4 4 R, R 2 , R 4 , R 5

Table 9: FHP lattice: optimal isometries .

The t ransition rules are found to reduce to
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(i , i + 3) >-> (i + l ,i + 4) or (i - l , i + 2),
(i,i+2 ,i+4) >-> (i+l,i+3,i+5) or (i , i + 2, i + 4),
(i - 1, i , i + 2) >-> (i - 2,i,i + 1),

(i + 1,; + 2,; +4,; + 5) >-> (i,; + 2, i + 3,i + 5)
or (i,i+l,i+3,i+4) . (B.7)

In all other cases, the velocities are unchanged. (7a) is the standard rul e for
head-on collisions. (7d) is t he rule for dual collisions. (7b) is the standard
rule for symmetric triple collisions, with one small difference: here the
probability that the veloci t ies are modified is only 1/2. Finally, (7c) is
the rule for the "head-on collisions with spectator". In all other cases, the
ve locities are unchanged. Thus, we recover the usual rules for the FHP
lattice , with one minor modification.
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