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Abstract. A new kind of cellular automaton (CA) model is intro-
duced in which binary value-configurations and the (conventionally
quiescent) underlying topological structure are dynamically coupled.
Topology alterations are defined by local transition rules analogous
to the value functions studied in conventional CA models defined on
fixed lattices. Preliminary investigation reveals a rich spectrum of
evolutionary behavior, including growth, decay, periodicity, and a re-
laxation to dynamic states with a stable effective dimensionality. The
model offers a unique arena in which to study the emergence of true
geometric self-organization and may provide the simplest approach
to modeling the dynamics of the many different varieties of random
cellular structures found in nature.

1. Imntroduction

Cellular automata (CA) are discrete mathematical models for systems built
up from a set of locally interacting components [1-4]. Among the many
interesting behaviors observed in these models is a dynamic propensity
for self-organization, in which highly ordered configurations at large times
appear to be insensitive to any initial randomness. The role that the latent
order of the underlying lattice geometry itself plays in shaping this globally
ordered site-value behavior is presently unclear.

It is with the desire to isolate the intrinsic self-ordering ability of local
processing rules in discrete systems that we introduce a structurally dy-
namic cellular automaton (SDCA) model system in which the topological
structure of the underlying lattice is dynamically coupled to the local site
value configuration. The coupling is defined to treat geometry and value
configurations on an approximately equal footing: The structure is altered
locally as a function of individual site neighborhood value-states and ge-
ometries while local site-connectivity supports site-value evolution precisely
as in conventional nearest-neighbor CA-models defined on random lattices.

In addition to providing a natural framework for a CA-like analysis of
the generation, transmission, and interaction of topological disturbances in
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the lattice, the model allows for the study of true geometric self-organization
and not merely geometric analogs such as organized space-time patterns of
value-configurations, which clearly owe their existence to a regularity of
structure of the background lattice. Immediate applications can be made
to simulations of crystal growth, pattern formation of random cellular struc-
tures [5], and neural network models incorporating a synaptic plasticity in
their dynamics [6]. More ambitiously, SDCA are seen to embody a nec-
essary property of truly self-modifying systems: The events themselves
are dynamically coupled to, and therefore continually modify, the spatial
arena on which their transformations are defined. In view of the recent
proposal that the topology and dimension of a discrete space-time may be
self-generated dynamic constructs [7], such systems could prove to be of
fundamental physical importance.

2. The model
2.1 Formalism

Conventional CA models are defined on particular lattice-networks, the
sites of which are populated with discrete-valued dynamic elements evolving
under certain local transition functions. Such a network with IV sites is
simply a general (undirected) graph G of size N and is completely defined
by the (N x N) connectivity matrix

2.1
0 otherwise. (@)

&__{1 if 7 and j are linked;
o

Using the graph metric function D(f,7)=minpaens|#links(i, j; path)], we
can write a general r-neighborhood CA value-transition rule f in the form

vt = fl{vj} |5 € 87 (i), (2.2)

where S%(i1) = { j | D(¢,5) < r} is the radius, r, graph sphere about
the site, 1. Extending the conventional dynamic arena, consisting of v{ €
{0,1}, i=1,..., N, to include the vertex-interconnectivity £;, our task is
to explore evolutionary properties of the more general system.

ot — Fz[{v'},{i‘}}
{ ¢+ = RK{h, {8, (2.3)

in which the changing value states and geometries are explicitly coupled.
The complete system at time, ¢, must now be specified by the state-vector

1G)e = |ob,--osvii {&D)- (24)

The time-evolution of |G) then proceeds according to the following transi-
tion rules: (i) value processors of the general form given above and familiar
from CA simulations and (ii) link processors, which can be divided into
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site couplers, linking previously unconnected vertices and site decouplers,
which disconnect linked points. Because the topology can be altered only
by either a deletion of existing links or an addition of links between pairs
of vertices 7 and j with D(z,5) = 2, the dynamics is strictly local.

To be more precise, we first restrict the general value-transition rule
Fy to (maximally symmetric) totalistic (T) and outer-totalistic (OT) type.
Since the underlying lattice is a fully dynamic object, |G) will, in general,
tend toward having a complex local geometry with an unspecified local
directionality. The most general rules which can therefore be applied are
those which are completely invariant under all rotation and reflection sym-
metry transformations on local neighborhoods. T'(OT) value rules are then
specified by listing particular sums {a} (outer-sums {ao}, {1} correspond-
ing to center site values 0 and 1 respectively) for which the value of the
center site becomes 1. Formally,

H-l = ¢’{a}(z lu 2V ) (2'5)

where
(I + a, a) — T
¢{ﬂ}(z 02) {a,zcu (:B, al) + (1 - (I) Ean 6(1; aO) «~— 0T,

and §(z,y) =1 if and only if z=y. Note that 3_; &,v} sums the values of

all sites 7 linked to ¢ at time ¢. The action on the state |G) is represented

by
¢?[a}|v)f = ]‘U;, i Hd = ¢{°’} Z ﬁlJ”_v’ U =3 v;\f) (26]

where we distinguish the operator ¢’ acting on the global value state from
the actual local transition function ¢ which transforms each site value.
Local geometry altering rules are constructed by direct analogy: For
any two selected sites ¢ and j, we restrict attention to site values of vertices
contained within a 1-sphere of either site, that is, to all k € S,(4,7) =-
51(7) U 81(7). Link operators, whose action on the state is represented by

decouplers : {ﬂ}| s (B ,ﬁf:’l 1,!;"-"', U )
couplers : w{z}[ﬂfj) = Byl s NI L (2.7)

either link or unlink two sites ¢ and 7 depending on whether the actual
sum of values in S;(7,j) matches any of those given in the {8} or {z} lists,
which completely define decouplers and couplers respectively.

In order to construct classes of rules analogous to the two types of value-
rules defined above, we partition the local neighborhoed into three disjoint
sets (figure 1): Si(7,7) =Vi; U 4;; U B;j, where

Vij = {faj}a
Ajj {k|k € Ci(i) N Ci(5)} where C,(i) = S1(i) — {i}, (2.8)
By R USG) = g — i

I
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Figure 1: Neighborhood partitioning. In the same way as outer sites
can be considered separately for value transitions, we may, for topol-
ogy transitions, distinguish between those sites belonging to both
i and j (A;;) and those belonging to one of the two sites but not
both (€ B;;). In this way, we obtain the analogous totalistic, outer-
totalistic, and an additional type called restricted totalistic.

The action of link operators is then conveniently expressed as a func-
tion of the sums within the individual partitions. Defining v;; = v; + v;,
@ij = Liea; Vky and bij = Ypep,. vk, we get

decouplers : qb?ﬁ} = y‘)i{jﬁ} (¥4, a5, by) where,
y {1-ié(z+y+20) ;i T
iy (2, y,2) = { {1 — Xy 8(z, Bus) 6(y + 2, B2) }i5 oT (2.9
{1 -3, 6(z,Bu) 6(y,Bax) 6(2,Bs)}bi; RT,
and couplers : w}ig} = wi{jg} (v, 243, bij) where,
y 6(D;;,2) T b(z+y + 2,6) T
wiy(2,9,2) = { 6(Ds;,2) Teb(z,€14) 6(y + 2,€2.) oT  (2.10)
5(D.'_.,'., 2) Tk 6(5! 51.*) 6(% 52.15) 6(21 Es,k) RT.

In the above expressions, RT stands for restricted totalistic rules which
maximally subdivide the local neighborhood. The inclusion of an &; in
the expressions for 1) assures that only those sites already linked can be
decoupled and the §(D;;,2) in the equations defining w are put in to make
sure that only sites separated by distance = 2 may be dynamically coupled.

The various type-specific sums appearing above are indexed with the
following conventions: (i) T-rules are defined by the k overall sums of values
in Sy(i, ) for which the particular action is to be taken. Example: Define ¢
by unlinking ¢ and j if the total sum = 1(=f,), 3(= 1), or 5(=ps.) Equation
9 then states that l:;-”=0 if and only if £;=1 and (v} =1, a;=3, bJ;=5).
(i) OT-rules are specified by giving k 2-tuples (81, F24), and (e, €24)s
where {1,k} labels the sum v; +v; and {2, k} labels the corresponding outer
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SUM = e, (5,5)-{,4} Vo (EXa.mple Link 7 and j if v; + v; = 0 and outer
sum = {3, 4}, so that w is defined by listing the two 2-tuples (g;; = 0,
€91 =3) and (€12 =0, €22 = 4.)
(iii) RT-rules are completely specified by giving the k 3-tuples of values (z =
v;+vj,y = sum in A, z = sum in B), for which the link operation between ¢
and j is to be performed. (Example: Define 1 by unlinking ¢ and j for the
following values of partitioned sums: (0,0,1), (0,0,2), (0,1,1), (1,1,1);
we then have that (8;,=0, f21=0, f5;:=1) , (f12=0, B22=0, fs2=2),
(B1,5=0, B23=1, fa3=1), and (f14=0, f24=1, fs4=1)

Global transition operators are obtained by applying individual value
and link operators to all sites and site-pairs in the graph G:

a{f"}'v) = H&ia}lv)a

igle) = Hv,b{ﬁ} and (2.11)
n(i)

fle = II o0
nn{ij)

where the products for ¥ and {} need to be taken only over nearest and
next-nearest pairs respectively. Given the full value-topology transition
rule I', defined by

Gl = (AEB)[C): = TIG),, (2.12)

the fundamental problem is to understand the generic behavior of accessible
graphs, G, emerging from all possible initial structures and value configura-
tions. We emphasize that the lattice fully participates in the dynamics and
that, in general, no embedding is implied—it is the abstract connectivity
itself whose evolution we are attempting to trace.

2.2 An example

The application of the rather cumbersome expressions defining transition
rules is in practice extremely straightforward, as we demonstrate with the
following example. Consider a graph G defined as a (3 x 3) lattice with some
distribution of values v = 1 at time = 1 (see figure 2). We are interested in
one global update of the system |G );=; — |G );=2 with rules specified by

(value) @py:  {eteotaisne = {2},
(topology) ‘I’{ﬁ} : {.B}outcr—tot. = {ﬂl,l i 2; ﬁ?,l = 3}! (2'13)
Qpy: {etouter—tor. = {(e11=1,821=4),(e12=0,€22=38}.

We evolve the system by systematically sweeping through:

1. All sites, setting v; =1 only at those 7 for which the sum of the values
at 7 and its neighbors is equal to 2 at ¢t =1. By neighbors of any point
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|G )e=1 |G =2

Figure 2: Sample dynamic update of a (3 x 3) lattice from ¢ = 1 to
t = 2, obeying a T-type value-rule with v*=! — ¥*=% = 1 for local sum
a = 2, and OT-type link rules: (i) link for {e;1 =1, €23 =4} and
{51,2 = 0, €2.3= 3}, (ll) unlink for {ﬂl,l = 2, 182,1 = 3}. Circled sites
indicate v=0; Solid sites have v=1.

i, we will always mean the set of vertices linked to i: (z,7) = (1,2),
(2,5), and (8,9), for example, are all neighbors at {=1. Writing out
a few value-changing terms explicitly, we find that

v = G+ o +uiT) =4(2) =1, and
vt = i+ uit + ol ol 4+ oY) = ¢(5) = 0. (2.14)

. All linked pairs of sites ¢ and j, removing those links only if the

2-tuple (a,b) = (2,3), where a = v;+v; and b is the sum of values
of the neighbors of 7 and 7 at t=1. For the points :=2 and j=5,
for example, we have (a,b) =(2,3), so that the link £35 is no longer
present in |G)=s:

B3 = B ol ol o o o)
$(2, 3) (1) = O. (2.15)

. All next-nearest neighbors ¢ and j, linking them only if the 2-tuple

(a,b) €{(1,4), (0,3)}. By next-nearest neighbor, we mean those pairs
which are themselves unlinked but which share at least one other
linked neighbor: (7,7) = (1,5), (2,8) and (7,9), for example, are all
next-nearest neighbors at ¢=1. For 1=1 and j=35, we find

w(v™ + o™ i 4+ T v+ viTY) 6(Dis, 2)

= w(1,4) (1) =1 (2.16)

I

£;=2

Notice that although £i5'=0 — £i5?=1, it is hidden by overlap with
the remaining links £55%=1 and £5?=1. For this reason, not all link
changes can always be observed directly in the following figures.
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Other sites and links are updated in precisely the same manner. Had the
link-rules been of totalistic type, only one sum would have to be considered:
the sum of the values of the points in question along with their neighbors’
values. Had they been, instead, of restricted totalistic type, three sums
would have to be considered: the sum of the values of the sites in question,
the sum of the values of their common neighbors (neighborhood A in figure
1), and the sum of the values of the points that are neighbors of one of
the considered points, but not of the other (neighborhood B in figure 1).
The final state |G);—; emerges after the above process has been applied
concurrently to all pairs, neighbors, and next-nearest neighbors in |G);=;.

2.3 Comments

(a) As defined above, I' consists of three operators acting simultaneously
on the state |G). More generally, one may prescribe any of ten pos-
sible time-orderings to the operators {1, ¥, and ®. That is, one may
specify certain intermediate state dependencies, so that, for example,
T4|G) = (NT)(®|G)) would in general be expected to yield results dif-
ferent from, say, I';|G) = (®(P|G))). While this paper solely con-
cerns the synchronous time ordering defined above, we do not expect
the qualitative results to depend critically on this choice. Particular
behaviors will be left to the sequel.

(b) A given rule I is completely defined by the set of sums {a}, {4}, and
{e}. Alternatively, by generalizing Wolfram’s encoding scheme for
value rules (8], we can conveniently summarize a chosen transition
rule by a vector-code

C = (clg], clp], elw])op, ~ where (2.17)
[z 7
C[Qs] = { zﬂn 22ao + 2“1 2(2d1+1) — OT, (2-18)
, 20 — T
cw,] ={ 5 28F2,1+P1k «— OT (2.19)
3 93(B2,k+afsk)+P1k « RT, and
£ 2% T
clw] = { Ty 2%earter +« OT (2.20)
Zk 23(62‘k+535,]¢]+‘1,k s RT,

where ¢ = maz{f;;}+1, b = maz{e;;}+1, and must be specified
only for RT-type topology rules. The I' in section (2.2) above, for
example, can be summarized by ¢[¢] = 2% =4, ¢[y] = 22312 =2048,
and ¢[w] = 28(4)+14.23(3) =8704. Note that ¥ and Q are chosen always
to be of the same type.

(¢) Computer simulations of these systems require that some measures be
taken to prevent possible memory overflows, such as would happen
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Rule type | ¢ P w
T a1 9% 22T
oT g2d+2 6(d-1) 23(2d-3)
RT — | 98(at+1)(2d-1) | 93(at+1)(24+1)

Table 1: Numbers of possible rules for each of the three types of
transition rules. d = maximum allowable degree and a = maximum
sum to be used from partition A;;. Example: For d = 5, we have
Ny = 4096, Ny = 224 ~ 2 x 107 and N, = 22! ~ 2 x 10%. We thus
have Ny = NyNy N, ~ 10'7 possible outer-totalistic type Is.

in cases either of pure coupling, where links are continually added
and none deleted, or in isolated regions of a graph where for a few
sites more neighbors are added than are allowed by memory. We thus
introduce working link transition rules

sy i o s d ! = 5
wlt DA
i wi —dord. < A=d
87 = i ¢l maz
o = { . b (2.22)

where d; = degree(i) (i.e. number of neighbors of 7). In other words,
make a sweep of the lattice, temporarily storing the candidates to
add and delete for each point. If, for any point 7, the updated degree
is greater than 6, then proceed with deleting the stored deletion-
candidates; otherwise, do not delete. Similarly, provided that the
updated degree is less than A, proceed with addition. Thus, it is
sufficient that one of two points allow a dynamic link change between
them for that change to be enacted. In the following, the complete
constrained dynamics will be quoted as 5'([:’?]. If constraints play no
role in the actual evolution of specific examples, they will be left out
of the definition.

(d) Because each dynamic update involves three separate types of process-

ing, the number of possible rules is extraordinarily large (see table
1). Unlike pure value transitions, however, the fraction of the total
number which yields interesting behavior (i.e., neither immediately
explosive, where the number of links increases without bound, nor
immediately degenerative, where an initial graph rapidly dwindles to
a few isolated links) appears to be manageably smaller.

(e) We point out that, though it is the intrinsic geometrical patterning

whose generic behavioral properties we are trying to deduce, one may
approach these systems from an alternative point of view: Maintain
the emphasis on unraveling the value configurational behavior, and
interpret the presence of [¥, 1] as background operators inducing non-
local spatial connectivities. Whereas the systems defined above are
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completely abstract entities, in that locality strictly defined by the
link structure, the alternative scheme would be to embed the dis-
crete networks in some specified manifold, and to study the effects of
dynamically allocated non-local communication channels.

3. Emerging patterns and behaviors

We first consider patterns emerging from simple value seeds starting from
ordered two-dimensional Euclidean lattices.! A single non-zero site may
represent a small local disturbance which then propagates outward, re-
structuring the lattice. With appropriately chosen I's, one can induce a
rich spectrum of different time-evolution behaviors. These range from sim-
ple value evolutions only slightly perturbed by very few concurrent link
changes to ones in which the initial geometry becomes radically altered.

Figure 3 shows the first five iterations of a system starting from a 4-
neighbor lattice with a single non-zero site at its center. The link structure
is given explicitly and the solid circles represent sites with v = 1. Notice
how the link additions follow the emerging corrugated boundary surface of
the value configuration. Remember that link additions are more than sim-
ple markers for appearances of particular local value configurations giving
rise to a structural alteration—their presence directly influences all subse-
quent value development in their immediate vicinity.

Figure 4 (in which values have been suppressed for clarity) shows the
continued development of this system. Though boundary effects begin to
appear by ¢ = 25, the characteristic manner in which this particular T
restructures the initial graph is clear:

1. there is a high degree of geometrical organization (the symmetry of
the initial state is trivially preserved by the totally symmetric I'),

2. the lattice remains connected,

3. the distribution of link changes made throughout the lattice remains
fairly uniform—i.e., there is an approximate uniformity in the prob-
ability of appearance of particular local value states which induce a
structural change,

4. link-lengths do not get arbitrarily large. Thus, for a system embedded
in the plane, communication channels remain approximately local;
the global pattern emerges as a consequence of local ordering. I's for
which link-lengths get arbitrarily large are also easy to find.

Some other varieties of behavior are shown in figures 5 and 6. Figures
5a and b are representative of the class of link rules for which the induced

1The graphical representation of developing one-dimensional systems, in which link
additions must be shown as arcs to avoid overlap with existing links, is needlessly confusing
and is not considered.



512 Andrew llachinski and Paul Halpern

t=3 t=4 =k

Figure 3: First five iterations of a system starting from a four-neighbor
Euclidean lattice seeded with a single non-zero site at the center.
The global transition rule I' consists of totalistic-value and restricted
totalistic-topology rules: C =(26,69648, 32904)(s,5 (defined in section
2.3, comment (b)). Solid sites have v = 1.
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Figure 4: Several further time frames in the structural evolution of
the same system whose first five iterations are shown in the preceding
figure. The values have here been suppressed for clarity. The bound-
aries of the original lattice it do not extend beyond the region shown
so that the development is strictly confined to a (31 x 31) graph.
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structural change is only minimal: The system evolves essentially as a CA-
system on a mildly perturbed underlying lattice. Other rules may have a
much stronger effect on the lattice and can significantly alter the manner
in which the pure value propagation proceeds in the absence of any link
operators.

Figure 5¢ shows an example of a link rule which accelerates the outward
propagation of the value configuration—compare the diameter of this pat-
tern to that in the earlier figures, both shown at equal times. The outwardly
oriented links which emerge from sites along the boundary surface become
conduits by which non-zero values rapidly propagate. Had the underlying
topology been suppressed in this figure and attention focused exclusively
on the developing value state, we could have interpreted the result as show-
ing an effective increase in information propagation speed, due to non-local
connectivities (see comment (e) in section 2.3).

Figure 5d, on the other hand, gives an example in which the link dy-
namics lags behind the value development: The boundary proceeds outward
essentially unaffected by changes in geometry which are confined to the in-
terior parts of the lattice (at least at this early stage of its development).

Figure 6 shows snapshot views of a few systems undergoing a slightly
more complex evolution. Figure 6b, for example, shows the the action of a
T in which the outward value propagation rapidly deletes most links from
the original lattice but leaves a complex—structurally stable—geometry at
the origin of the initial disturbance. Figure 6¢, on the other hand, gives a
typical state of a system whose global connectivity becomes progressively
more complicated.

A typical development of an initial state in which all sites are randomly
assigned v = 1 with prob = % is shown in figure 7. Notice the rapid de-
velopment of complex local connectivity patterns, the appearance of which
points to a geometrical self-organization.

In general, structural behaviors emerging from random value states un-
der typical I's can be grouped into the following representative types:

Type A which are characterized by a decay into structurally much sim-
plified final states in which most links have been destroyed so that
the graph G consists essentially of a large number of small local sub-
graphs.

Type B whose evolution leads to periodic but globally connected geome-
tries. Systems of this type arise either because of specific class-2
®s remaining unchanged by the coupling to the lattice or class-3 ®s
coupling with {¥, 2} in such a way as to induce a lattice structure
supporting a periodic state.

Type C which exhibit a prolonged growth in complexity. Defining (d) =
average degree = average number of neighbors per site and an effec-
tive dimensionality D, g.. = ratio of number of next-nearest to nearest
neighbors, both increase in value in Type-C systems and appear to be
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time = 10 (a) time = 10 (b)

time = 10 (c) time = 12 (d)

Figure 5: Snapshot views of four typical developing states starting
from a single non-zero site at the center of a four-neighbor graph. I's
are defined by the following codes: (a) OT —c[¢] = 1022 and RT -
coupler clw] = 16,b = 1, (b) T —c[¢] = 22 and RT — coupler c[w] =

32,b = 2, (c) OT —¢[¢| =1022 and (RT)—coupler clw]=8,b =1, (d)
Tvakie snd (OT)-topology rules: C=(682,19634061312, 133120)1z 8,
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Figure 6: Four more examples of states emerging from simple ini-
tial value seeds; (ab,c) start from four-neighbor graphs and (d)
from an 8-neighbor graph (= four-neighbor with diagonals). T's
are defined by the following codes: (a) T-value and RT-topology
C = (42,69648, 32904)(s3), (b) T-value and OT-topology ¢ =
(42,589952,8192)(28], (c) T-value and topology € = (42,128,4)[010,
(d) T — ¢[¢] = 682 and RT-topology rules defined explicitly by
‘I’(104),(114),(lu),(ms),(ns),(na) and 0(111),(215)-
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Figure 7: Evolution of a (35 x 35) lattice whose sites are initially
randomly seeded with v=1 with prob= %— The development proceeds
according to T-type value rule & and OT-type link rules specified
by code C = (84,36864,2048). The constraints are [§ =0, A = 10].
The appearance of localized substructures is a first sign of geometrical
self-organization.
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bounded only by imposition of an upper constraint A. Because the
site-value density responds to the statistically changing local neigh-
borhood structure, it is possible that what at first appears to be such
an explosive behavior, in fact, eventually leads to a more sedate, if
not entirely static, behavior for some larger (d) > A. Certainly, ®s
yielding p(s which remain fairly constant over a large range of (d)
(such as the ‘@, ’-rule), when coupled with link-rules which themselves
become progressively less active with increasing (d), may induce evo-
lutions leading to only mild changes within specific ranges of the local
structural parameters.

Type D which are remarkable rules whose action seems to lead to a sus-
tained global dynamics during which the value of D, g, remains al-
most constant. That is, particular combinations of ¥ and (1 can
be found which effectively induce a structural equilibrium; though
large numbers of link changes continue to be made so that the de-
tailed structure of |G) is changing, the average ratio of the number
of next-nearest to nearest neighbors stays approximately unchanged
over long periods of time. Simulations have, unfortunately, been run
for too short a time and on G containing too few sites to make a
conclusive statement. It is conjectured, however, that as N — co,
there will always exist sufficiently fine-tuned I's maintaining an aver-
age D g.. arbitrarily close to a desired value D*. Type- behavior, of
course, can always be artificially induced either by imposing severe
[6, A = §] constraints, or, as is typically the case for Type-C Ts, by
impeding growth with any desired A.

The evolution of systems starting from random initial value states is gen-
erally difficult to follow visually, particularly for I's inducing many struc-
tural changes, and must therefore be studied somewhat indirectly: one
charts the time-development with a record of selected statistical measures,
a few of which are shown in the succeeding figures.

Examples of each of the four types of system developments are shown
in figure 8. The initial structure in each case is a (35 x 35) four-neighbor
Euclidean lattice, so that D;zgg . ~ 2. Figure 8a gives an example of Type-A
behavior, in which a short period of initial growth is followed by a decay into
an essentially disconnected state; the final state is characterized by (d) < 1
and is stable. Figure 8b shows a system which starts from the same initial
state but whose T leads to a periodic structural state. Just the right number
of links have been deleted to permit regions with isolated activity to emerge.
Figure 8c shows Type-C evolution in which D.g,. steadily increases. The
apparent leveling-off at the end is due both to a decreased overall activity
level and the increasingly greater felt effects of a A = 10 constraint. The
system in figure 8d exhibits Type-D behavior, characterized by a continued
development within a relatively narrow interval of D.g... The evolution
here is almost pure (i.e. unconstrained; see figure 9) and is not an artifact
of strictly imposed dynamic conditions.
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In figure 9, we show the detailed development of the same Type-D sys-
tem defined in figure 8d. Notice how D,_g.. remains approximately constant
despite the rather large variations in (d) in figure 9b. In figure 9d, which
shows the fraction of all dynamic link changes which are constraint allowed,
we see that the dynamics are close to being pure for the first 100 iterations,
with about 90 percent of allowable transitions taking place thereafter. In
figure 9c, which gives the total number of link changes occurring at step n,
we see the activity level falling off; in fact, it soon settles to a more or less
constant ~ 20 changes. The long valley seen in figure 9b occurs frequently
in evolutions obeying suspected Type-D I's, and is a manifestation of the
local conflict existing between ¥ and (1.

Figure 10 exhibits the time development of a system whose effective
dimensionality maintains an almost constant value, but at the cost of a
much reduced purity of dynamics (figure 10c). I'’s tendency to increase local
complexity is overwhelmed by the imposed constraint condition specified
by [6 =0,A =8|. The activity, though stifled, remains at a high level
(figure 10b), with the total number of all link changes and the fraction
of creations relative to that total number oscillating within fixed intervals
for the duration of the displayed behavior. To more fully understand the
properties of this and other evolving geometries, it will become important
to carefully define structural correlation measures; one can, for example,
make a comparison of structural features with those existing in fully random
graphs, which can be obtained via a simple mean-field analysis in which all
local correlations are ignored [9].

In figure 11, we see the differences in evolution for systems obeying the
same I' but starting from a variety of initial structures. Since structure
changes depend primarily on D.g.., a qualitative similarity in behavior
should not be expected across a broad range of initial graphs. However,
as long as most of the initial lattice survives the structural randomization
without becoming disconnected, it is empirically found that many systems
will then tend towards having similar asymptotic states. Four-neighbor
graphs, for example, may evolve toward states with higher degree and/or
D,fec, while a three-dimensional hypercubic lattice may reduce its dimen-
sionality under the same I'. More detailed explorations for systems starting
from completely random states are presently being conducted.

4. Discussion

This paper has presented a preliminary phenomenological account of a new
class of structurally dynamic cellular automata. What distinguishes this
model from its precursors is the fact that the dynamics is all-inclusive: No
a priori fixed spatial dynamic arena is presupposed. Instead, the events
are themselves dynamically coupled to, and therefore continually modify,
the space on which on their transformations are defined. This conceptual
starting point may be of considerable theoretical interest to researchers
studying behaviors of truly self-modifying systems. Although the emphasis
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Figure 8: Time development of the effective dimensionality D,g..
for the four general varieties of behavior: (a) T-type I' defined
by € = (42,128,4), (b) T-type ®, and OT-type link rules given
by ¢ = (64,9216,1024), (c) T-type ® and OT-link rules-C =
(682,512,512)%1° and (d) T-type ® and RT-type link rules de-
fined explicitly by g € {(0,1,1),(1,1,0),(1,2,1),(2,3,3),(2,4,3)} and
E’E {(1,2,0), (0,1,03),(0| 2’ 1)’ (2| 2,4)}‘
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the development, both the number of changes and purity of dynamics
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Figure 10: Four measures for a Type-C system evolving according
to T-value and OT-link rules defined by € = (42,524288,65536).
The constraint condition plays an important role and is given by
[6=0,A=8]. Although only about 40 percent of all allowable changes
actually take place under this constraint (10c), the actual number of
link changes (10d) remains at a fairly high level throughout. The frac-
tion of link changes which are link creations ~ %, which is consistent
with a stable D, g...
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according to T-value and RT-link rules: C = (42, 69648, 32904) with
constraints [0,15]. Qualitative behavior, of course, depends critically
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has been primarily on unraveling the structural evolution of these systems,
the model can equally well be examined from either (a) the conventional
cellular automaton view, where the focus remains on value configurations
evolving on a dynamically responding spatial substructure, or (b) a global
configurational view, where the behavior of the entire dynamically self-
modifying state |G) is studied.

Although many important questions have not yet been considered—
for example, it would be interesting to study the effects of link-changes
and concomitant changes in effective information propagation speed on the
universal computation abilities possessed by particular value rules & on
fixed lattices—the qualitative picture of generic behavior is known. On the
simplest level, one finds that the self-organizing property of value transi-
tion rules survives the coupling to the underlying lattice to induce evolving
structural organization. In the most interesting cases, this organizing ten-
dency is enhanced when combined with link rule induced correlations, pro-
ducing geometries which are often of great complexity. Four broad types of
behavior have been noted, though none are as strictly categorical as those
found to well describe the qualitative behavioral classes of one- and two-
dimensional CA; in general, one finds a rich variety of individually distinct
developments.

Type-D systems—those capable of sustaining a prolonged dynamics
within a relatively small interval of an effective dimensionality—deserve
further study. As pointed out in the text, the simulations run so far have
been for too short a time (¢ < 1200) and on graphs which are too small in
size (N < 2500) to permit a conclusive statement to be made about limit-
ing behavior. Moreover, restrictions on computer memory did not always
allow observations of pure unconstrained dynamics to be observed. There
is evidence, however, supporting the conjecture that as N — oo, there will
always exist I's maintaining a desired D,.g.. for arbitrarily long periods
of time. If this proves true, we can then speak of D .g.. as an effective
order parameter in lattice systems capable of inducing a dynamically self-
generated dimensionality. In larger systems, one can speak of characteristic
length: scales over which more rigorously defined discrete dimensions D ;.
[11] attain stable values.

In a more detailed study of these systems, it will be important to ask
about global characterizations of behavior. If we consider a completely dis-
ordered initial state |G) where all sites take on values and all site-pairs are
linked with equal independent probabilities, the irreversibility of most I's
must induce increasing deviations from this initial statistical randomness.
In particular, one expects that the same sort of contraction which takes
place in the space of all value configurations under a majority of ®s in CA
models occurs in the much larger space of all possible labeled graphs G
when these simpler systems are coupled with the set {,{1}. Measures of
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deviation at each time ¢ is provided by a global state-entropy

s(t) = (N ;’1)_ 2 0(6) loz: 76, (4.1)

|G)}
where the sum is taken over all possible states |G), with probability p,(G)
of occurring at time {. Exactly how small a fraction of the set of all possible
structures is actually accessible through a typical T' presently remains an
unanswered question.
We mention three extensions to the basic scheme which may also be of
some interest:

1. Purely structural analogs of CA models, in which random initial ge-
ometries evolve according to transition rules which are functions only
of local topology. Sets of sites connected in a triangular fashion, for
example, may be made to contract to a single point, or two sites may
be linked if the numbers of sites in the locally partitioned neighbor-
hoods A and B (see figure 1) match a set of prescribed transition
values. Quiescent states would be explicit sets of local topologies re-
maining unchanged by the dynamics, say that of d-dim hypercubic
lattices. The dynamics of many real random cellular structures may
be modeled in this way.

2. Probabilistic transition rules I'. Instead of either coupling or decou-
pling sites with prob = 1 for specified neighborhood sums, relax the
definitions to span a larger set of possibilities. In the notation intro-
duced in section 2.1, we would go from prob [1/)(,!31,,82, Bs) :0]: 1 for
a particular 3-tuple defining an RT link deletion, to

prob[(B1, b2, ) =0]=p, 0<p<1. (4.2)

It is suspected that a critical-like behavior will emerge about specific
sets {p;} such that p. < pf will induce decaying behavior and p; > p¢
will induce asymptotically growing configurations.

3. More physically realistic models incorporating link lengths as addi-
tional dynamic parameters. The original structures may be discretiza-
tions of selected continuous manifolds. Various structural deforma-
tions may then be directly realized by these generalized structural au-
tomata. Link lengths may also be introduced as dynamic elements in-
ducing an asynchronization of local site and link transitions, whereby
a unique discrete signal transmission speed would become a funda-
mental parameter.

The most ambitious use of SDCA models resides in their possible ap-
plication to microphysical field theories. There have already been a few
attempts made to construct a cellular automaton-based microphysics [11,-
12,13], in which emerging physical complexity is due to some basic discrete
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local cooperative interactivity. Such attempts invariably start from the as-
sumption that in any finite volume of space nature can only process a finite
amount of information. T. D. Lee, among others, has recently advocated
that a random discrete space-time be seriously considered as fundamen-
tal [14]. It has also been proposed that the topology and dimension of
space-time be treated as dynamical constructs [7,15]. The present frame-
work allows for just such a dynamical self-structuring to occur, particu-
larly if Type-D systems turn out not to be artifacts of dynamics taking
place within a limited spatio-temporal arena. The microphysical view of
space-time which would emerge from such a picture would be one in which
a fundamentally discrete pregeometry continually evolves as a completely
amorphous structure but with a globally well-defined dimensionality. Par-
ticles would be introduced as locally persistent substructures (i.e. topolog-
ical solitons) with dimensionalities differing from the globally stable value.
String-like and other varieties of topological structures are very naturally
described in this framework. Although it is easy to imagine a topologically
deformed trail left behind gliders and other propagating value states in Con-
ways “Life” model starting on 8-neighbor lattices, for example, it remains
to be seen whether locally correlated propagating geometric substructures
actually emerge under more general conditions.

These and other intriguing possibilities, as well as the rich variety of in-
teresting behaviors already observed in the basic model, clearly recommend
its continued study.
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