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Abstract. Infin ite one-dimens ional cellu lar automata are st udied us­
ing information theory. The average informat ion per cell is divided
into cont ribut ions from different correlation lengths and random vari ­
ations (measure entropy). It is shown that the measure entropy is
no n-increasing in time for deterministic rules, and constant for ru les
which are one-to-one mappings of their first or last argument (almost
reversible rules). For probabilistic rules, there is no such general law I

but for almost reversible rules where the states are randomly shifted,
it is proven that the system evolves towards the maximally disordered
state, independent of initial conditions.

It is discussed how some of the information-theoretical concepts
are rela t ed to analogous conce pts in algorithmic informati on theory,
and an equality between algorithmic informat ion an d measure entropy
is proved .

Numerical an d analy t ical examples are given for specific rul es .

1. Introduction

Cellular automata have been used to simulate a variety of physical systems
[1], such as the mic roscopic mot ion in fluids [21, t he macroscopic concen­
trations in chemical self-organizing systems 131. the growth of crystals (4),
and abstract models for phase transitions [5,6]. Self-organizing systems
or dissipative structures (7,8J have the property of evolving into spatially
or temporally ordered states, but we do not know much about evolution­
ary criteria for such processes. The study of evolutionary rules and other
mathematical properties of cellu lar automat a may yield results which can
be applied to more specific (e.g. chemical) self-organizing systems. Investi­
gations of complexity measures and related concepts for cellu lar automata
have revealed interest ing properties of their spatial organization and tem­
poral behavior [9-141.

In algorit hmic informat ion theory, concepts for measuring structu re and
complexity are defined [151 which have th e advantage of being genera lly ap­
plicable, but they are usua lly not compu table. It will be shown th at these
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concepts are identical to or related to computable information-theoretical
measures [16] for infinite one-d imensional cellular automata at finite times.
An equality between algor ithmic information (Kolmogorov complexity or
Chaitin complexity) and measure entropy has been stated [17], and a re­
lation between these concepts has been proved for finite systems 1181. In
section 3, a proof of this equality is given for a system which is t he outcome
of an infinite stationary stochastic process.

T he second law of thermodynamics tells us that the entropy of a closed
system cannot decrease. In a one-dimensional cellu lar automaton, the sys­
tem can for most rules not be considered as closed in the thermodynam ical
sense. In a thermodynamical system, reversible microscopic ru les, which
may be influenced by noise, govern the t ime evolution of the system, which
leads to a maximization of the entropy. However , the rules which are
responsible for the time evolution in cellular automata are not generally
reversible. In cellular automata correlations are often built up and the
(measure) entropy decreases [91.

In a cellular automaton, the ra ndomness, expressed by th e measure
entropy, may (partially) be irreversibly transformed t o corre lational infor ­
mation when complex st ructures evolve. The system is either closed or
open with respect to random information (noise), giving deterministic or
probabilistic rules. When the system is influenced by noise, cor relations can
be destroyed leading to an increase of t he randomness. Only if the rules
are probabilistic we can have a "second law" for cellular automata, and in
section 4, it is shown that if an almost reversible ru le is influenced by noise,
the meas ure entropy increases unt il the system is completely randomized.

In sections 2 and 4, we apply concepts from informat ion theory [13,16,
19,20] to cellular automata. The average information pe r cell is divided
into contributions from different correlation lengths and random variat ions .
Laws concerning the change of measure entropy in time for d ifferent classes
of ru les are proven. In section 5, this is ap plied to num erical and analyt ical
examples for specific ru les. Complex long-range behavior can be understood
in te rms of the concepts presented in section 2.

2. Information-theoretical concepts for latt ice distributions

In this section, a summary of some concepts in [16] is given . Let p(k) be a
normalized probability distribution,

p(k) 2: 0

LP(k) = 1
•

(2.1)

and let Po (k) be a reference distribution which is positive everywhere,

p,(k) > 0
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I:>o (k) = 1 (2.2)
•

Then, the contrast (Kullback-informat ion, relative information) of P with
respect to Po (log denotes base two logarithm),

p(k)
K[po'p) = I:>(k) log -(k)

• Po
(2.3)

is the information gain when an a priori distribut ion Po is replaced by an a
posteriori distribution p.

The contrast has the property

(2.4)

whe re equality holds only if p and Po are identical.
Consider a one-dimensional discrete system with an infinite number of

lat t ice sites. Each site can be in eit her of two states: 0 or 1. (A highe r num­
ber of states can be handled by binary cod ing.) The total information per
site, one bit, can be decomposed into chemical, correlational, and textual
contrast. The chemical contrast is the informat ion due to an average den­
sity of zeroes and ones differing from 1/ 2. The corre lational contrast is the
amount of informat ion present in all corre lations within the system. The
textual contrast is the random information or, if the system is produced by
a language, the amo unt of information conveyed through the text [19,20j.
The textual contrast is identical to the measure entropy [101. (In th e theory
of dynamical systems, meas ure entropy (Kolmogorov-Sinai entropy ) is th e
mean rate of creation of inform ation in time [211, but here it is the spat ial
counterpart. )

Let (i 1 ••• im) be a certain sequence of zeroes and ones and Pm(i 1 • · · i m )

be the probability that a randomly chosen m- length sequence coincides
with (i 1 • • • i m ) . Suppose t hat the system is large scale homogenous, i.e.
the result of a stationary stochastic process, so t hat Pm (i1 ••• i m } is well de­
fined . Further, let p(i, ... im ) be t he estimated (maximum entropy method)
probability if correlations only up to m - 1 are known,

(2.5)

The chemical contrast keh is the contrast of mean concentrations P1 with
respect to the reference distribution plo) = {1/2, 1/2},

(2.6)

The correlational contrast kcorr can then be written as a sum of contribu­
tions from different correlation lengths ,
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(2.7)

where km is the contrast of Pm with respect to Pm,

(2.8)

The remaining part, 1- kch - keom is the textual contrast ktx [19,20], which
is an average over local textual contrasts [16], or the measure entropy S~,

where

8 m = - L: Pm(i.... im) log Pm(i• . . . im)
i1· ..im

(2.9)

(2.10)

(2.11)

The limes of D.Sm should be used for numerical estimates of the measure
entropy (2.9) since it converges faster than Sm/m. One can define a mean
correlation length m, where length is defined so that the distance between
adjacent cells is 1,

cc

iii = L m km H / kco rr
m::::l

and if it is multiplied with the correlational contrast, one gets

t] = mkcor r

(2.12)

(2.13)

which is the "effective measure complexity" defined by Grassberger [13]_
Numerical calculations of tlSm and TJ have been performed for different
cellu lar automaton ru les [13,141.

3. Algorithmic information theory

The concepts of correlational and textual contrast are closely related to
concepts in a lgorithmic information theory. The a lgorithmic information
H(am } of a sequence am of m zeroes and ones is defined as the minimal
program for a general-purpose computer that generates the sequence [15].
Consider an infin it e sequence aoo which is the outcome of a stationary
stochastic process and has sp > O. Let h(a",) be the average algorithmic
inform at ion per symbol of the sequence am, h(arn) = H(a...)/m' The cor­
relat ional part, including the chemical contrast, of the total inform at ion
is possible to describe, at least approximately, by a fin ite program, i.e.
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a finite amount of algorithmic information. However, since almost all se­
quences are "algorithmically random" f22J, t he textual contrast must either
be given exp licitly, if the exact sequence is to be generated, or be available
as the information in random numb ers , if it is enough that the probabil­
ities for all sequences are correctly generated. In both cases, the amount
of information needed is infinite-in average, sp per lat t ice site. T hus , for
almost all infini te sequences with sp > 0 we can conclude that the average
algorithmic information is equa l to the measure entropy,

(3.1)

We prove equation (3.1) by showing how to construct an algor ithm
with average lengt h h(a.. ) whic h generates the sequence am' T he algorithm
consists of one part wh ich is a code for the sequence am, and another
part wh ich serves as a decoder . We divide the sequence am into n- length
sequences (n <t: m), where each n-length sequence is denoted by a new
symbol rr, ~ E {~b ... ,'YNiN = 2n } , so that a new sequence fm,n of ~­

symbols is formed. Given the symbol d , the probability for the next symbol'i is the conditional probability p~b;) = P(p'i)/(P(p), where P(p'Yi) and
p(p) are the probabilit ies (defined as in section 2) for the sequences p'Yi and
P respect ively. The code words for the symbols ~i depend on the previous
sequence 13, and are chosen so that their lengths I~ b;) fulfi ll

- log p~ bi) ~ Ipb i) < - logp~bi) + 1 (3.2)

Since L 2- l pb i ) ~ 1, we know from cod ing theory (e.g. 1231) that there
exists an "instant aneous" code with the given lengths. In an ins tant aneous
code, no word is pr efix of another one so that the end of each word is
given by the word itself. This is imp ortant since the coding depends on the
prev ious symbo l {3. The average code word length I is

1= L P(p)LP~bi)l~b;)
fJ "to

Taking the average of the inequality (3.2), we get for the logarithmic terms

- L P(p)LP~bi) log p~bi ) = LP(p,i) log p(~)) =
fJ -u 11'7; P fJ'l.

where 8 1 and 8 2 are entropies defined as in equat ion (2.10) . To make the
algorithm self-delimiting, we add a prefix to each code word, which is one if
the present symbol is the las t one in the sequence r m ,n and zero otherwise .
Then, the average code length per symbol in am is 1m •• = (l + l )jn , and
the inequality (3.2) can be written
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- (AS, (r m.n) + 1) ::; Im.n < -(AS,(rm.n) + 2)
n n
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Writing the entropies as functions of the origina l sequenc e Qm , we get

if n , m -+ 00 as n <t:: m

The length of the decoder grows exp onentially with n and depends on the
distribut ions p,,(1'i), but is independent of the length m of Qm' Thus, if we
let m , n, log(m)/n --+ 00 , then 1m.. --+ h(a~) and Im •n --+ s. (~), which
gives equation (3.1)..

Chaitin 115) has proposed a definition of structure at different levels us­
ing algorithmic information theory as follows. Divide the sequence am into
sequences of length d, and let H.(am) be t he sum of the algorithmic infor­
mation of these sequences , where mutual information between disjoint se­
quences is not used. Thus, the difference AdH.(am ) = H.(am ) -H.-1(am)
measures the st ruct ure at level d, which corresponds to the contr ibut ion to
the correlat ional contrast from d-point distributions (2.8),

(3.3)

4. Information theory of cellular a u t omat a

Let us apply the information-theoretical concepts to the evolution of an
infinit e one-dimensional cellular automaton. The ext ension to higher di­
mensions is straightforward. The initial state is generated by a stochastic
stationary process giving spatially independent probabilities for all possible
sequences. Consider a rule R that depends on neighbors up to the finite dis­
tance r > O. A sequence of m + 2r sites with the state a m+ 2r = (i1_ r .. . im +r )

then determines the state in a sequence of m sites Pm = Rffl,(il-r'" iffl,+r) =
(it . . .im). The probabilit ies for sequences at times I and t + 1 are then re­
lated as

Pm(J3m;t + 1) = L TR(am+,,, Pm)Pm+2.( <>m+' . ;t)
a_+ 2r

which gives the entropy at time t + 1,

(4.1)

(4.2)

Sm(t + 1) = - LPm(Pm;t + 1) log Pm(Pm; t + 1) ::; Sm+2.(t) (4.3)
P.

The increase of measure ent ropy for one t imestep, Ats.(I) = s"(t+l) -s"(t),
then, is
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. 1 1
!Hs.(I) = lun (-Sm(t + 1) - --Sm+2,(I)) =

m_tx) m m + 2r

= lim (_ I_(Sm(1 + 1) - Sm+2,(I))+
m_tx) m + 2r

1 1
+ (- - --)Sm(t + 1)) :S 0

m m +2r
(4.4)

since, in the second line, the first term in the limes is negative or zero and
the second t erm goes t o zero as m --t 00. Thus, the measure entropy cannot
increase when a deterministic rul e is applied, a fact that has been observed
in numerous simulat ions [9,10]_

Assume that the rul e R is a one-to-one mapping of its last argument (a
one-to-one mapping of the first argument is treated analogously) ; i.e. , the
rule is of the form

R(i _, .. . i,) = i, + I(L, ... i, _,) mod 2 (4.5)

where f is a mapping from {O,I}2r to {O,I }. These rules are surject ive; i.e. ,
for all sequences 13m there is a sequence 0':"'+2rsuch that Rm (O':m+2...) = 13m, all
m . (IT f is a sum over (not necessarily all) elements in {i_r, ... , i r_ l , I}, R
is addit ive.) As before, we have that Rm(il_r . . . i m+r) = (il- .. jm) , but now
we also have an inverse rule Ii tha t gives th e state f]m = (i l +r ... i m +r ) at
time I, if the state '1" = (i 1_ , ••• i ,) at time I and the state f3m = (jl . . . jm)
at t ime t + 1 are known,

(4.6)

Thus , knowing the state at time t + 1, it is possible to reconstruct th e state
at t ime t , using only a finite amount of information (at most, 2r bits) at
time t . These rules are not reversible in the sense discussed in [9] , so we call
them almost reversible. The t ransfer matrix of (4.1) then has the properties

1 ~ L TR(O:m+2r, 13m) ~ 22r

Q'm +:l r

LTR(a..+2"f3m) = 1
PM

The difference in entropy between t ime t + 1 and t is

Sm(t + 1) - Sm+2,( t) = - L Pm(f3m, 1+ 1) logPm(f3m, t + 1)+
Pm

+ L Pm+2r(O:m+2r, t) log Pm+2r(O:m+2r, t) 2: - 2r
a m+:lr

where (4.7) is used. Thus,

(4.7)

(4.8)
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68.(t) ~ lim -- = 0

m-.oo m
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But we have already shown that .6.tsp (t ) ~ 0, and hence, for almost re­
versible rules (4.5),

(4.9)

These rules conserve randomness independent of init ial state.
Assume that the rule R at every site has the probabil ity q of mak ing

an error, i.e. the conjugate rule R = 1 - R is acci denta lly applied. The
probabilistic rule formed in this way is denoted by (R,q). Then, the change
in entropy for one time-step can be divided into one part coming from the
deterministic rule R, as in equation (4.4), and another part due to the noise.
The system is open to random information and, as will he shown below, the
influence of noise gives a non-negative contribut ion to the change in mea­
sure entropy. When the states in randomly chosen lattice sites are shifted,
the probabilities Pm (am ) for sequences am = (ii ' " im ) are transformed
accor ding to

Pm(am) = L Tm(am,Pm) Pm (Pm )
~-

The transfer matrix is

(4.10)

(4.11)

where H(am,{lm) is the Hamming distance between am and Pm (the number
of positions in which the sequences differ). Thus, the transfer matrix is
symmetric and normalized,

L Tm(am,Pm) = LT'~("m,Pm ) = 1
fim. am.

The entropy of Pm' then, is

".

~ - L Pm (Pm) log Pm (Pm) = S[Pml
~-

(4.12)

(4.13 )

where the unequality comes from equation (4.12) and the convexity of S .
If the entropy increase due to the noise f).Srwi8t: is written as

(4.14)

"-
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Determinist ic Probabilistic (R, q)
Not almost revers ible Ll.t8"(t ) ~ 0 -

Almost reversible Ll.ts"(t ) = 0 Ll.t8"(t) > 0

Table 1: The change of measure entropy in time for different classes
of rules.

we immediately see t hat Ll.S~;" vanishes only if Pm(am) = Pm(i3m) for all
am and Pm; that is, Pm= Pm = (1/ 2) m. For an almost reversible rule,
this means that the system evolves to the maximally disordered state with
spat ial entropy sl-J = 1 and chemical and correlational contrast kch = kc;orr =
o.

The results concerning the change of sl-J in time are summarized in table
1.

To find Ll.t~ (t) = ~(t + 1) - ~(t) for almost reversib le ru les, we write
equation (2.12) as

(4.15)

which together with equation (4.9) gives

Equations (4.3) and (4.8) then give the following limits for Ll.t~ (t) for almost
reversible rules.

Ll. t~ (t)
8 -1< - --<s

I-J - 2r - I-J (4.16)

It is easy to construct an example where LltT] (t) is negative, and a case
in which Grassberger's complexity T] increases is shown in section 5.

5. Examples and discussion

In this section, we consider rules that are depending on nearest neighbors
only. The rules are numbered according to Wolfram's notation [91.

The fact that 8" (t ) is time-independ ent for almost reversible ru les im­
plies that, starting with a completely random sequence with sl-J = 1, all
sequences will remain equally probable [9-13,24J. If an initial state without
correlations but with different densities of zeroes and ones, kch > 0 and
kc;orr = 0, is chosen , the measure entropy, sl-J < 1, will stay at the initial
level. The dynamics may, however, allow for changes between chemical and
different correlational contrasts.

For most rules, starting with sl-J = 1, the measure entropy will decrease
to a stationary level sl-J < I [IO} . In these cases, correlations are built
up, and random information is transformed to chemical and correlat ional
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Figure 1: The evolution of chemical and correlational contrast for rule
110. At each t ime, the chemical contrast and contributions to the cor­
relational contrast from sequences of length m ~ 6 are calculated and
drawn on top of each other. The contrasts are represented by different
grayness, from black for chemical contrast to light gray for correle­
ti ona! contrast from length 6. Initially, no correlations are pr esen t ,
but as the system evolves the correlational contrast increases , espe­
cially from lengths 5 and 6. 'The system approaches a pattern with
periodicity 14 in space and 7 in time. In the periodic state, the only
cont ribut ion t o the correlational contrast comes from sequences of
length m ~ 6. A system of 5000 lat t ice sites has been used.

contrast. An example of this is shown in figure 1, where ru le 110 (see figure
2) leads to an increase in correlat ional contrast . In some cases, it can be
shown that the rule at the stationary level simulates an almost reversible
rule--e.g., rule 182 simulates rule 195.

We have shown that if noise may influence the evolution and the rule
is almost reversible, the system reaches the maximally disordered state ,
independent of its initial state. This case is analogous to the time evolut ion
in thermodynamical systems. One examp le is the simulation of particle
motions in a fluid [21, if noise is added. Another example is found in a
study of phase transitions in two-dimensional stochastic cellular au tomata,
where an additive rule performing "turbulence" was observed [6]. For other
rules, however, a balance is reached between entropy increase due to noise
and entropy decrease due to irrevers ibility.

The evolution of t he almost reversible ru le 195 is studied numerically
to show the dynamical behavior. We choose an initial state which is un­
correlated with a density p = 0.1 of zeroes. Since this is an additive rule,
it is possible to find analytical expressions for probabilit ies of different se­
quences. For time steps t - = 2n(n = 1,2, . . .), the chemical contrast is
k", '" 0.320, and one finds that the only contribution to correlational con­
trast comes from correlation lengt hs which are multiples of the time t-
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Figure 2: The space-time pattern of rule 110 dearly shows how cor­
relat ions are built up. The periodi c pattern mentioned in figure 1 is
visible. (A system of 200 time steps and 400 lat tice sites was used.]

19], giving a correlational contrast kcorr ~ 0.211. Since the rule is almost
revers ible, the measure entropy is constant, sp ~ 0.469. In figure 3, the
evolution of chemical cont rast and m-sequence correlational contrasts are
shown for m = 2,3, . . . ,6. The distance between the level 1- 8/A and the
shaded contrasts below it corresponds to correlational contrasts of order
greater than 6. At the t ime steps t-, the chemical contrast is re lat ively
high and no correlations of lengths less than r" are present. The mean cor­
re lation length m(t' ), equation (2.12), is proportional to t' leading t o an
ever increasing 1], equation (2.13). At these t imes, if correlations of higher
order (~ t*) are neglected, the st ate can be regarded as an uncorrelated
(init ial) state, which explains t he self-similarity in the figure. Obv iously, the
probabilities p",(O:m.) do not converge in the time evolution, which has been
proven to be a general feature of additive ru les if p t 1/2 [241 . Because of
the self-similarity, we conjecture t hat , for almost all times as t -+ 00, there
is no correlational information from finite lengths. Although 8 11 < 1, the
system appears to be completely random.

In figure 4, it is illustrated how noise destroys the correlations, so that
a maximally disordered state is reached. Each t ime the ru le 195 is applied,
the probability for making an error is q = 0.01, giving a probabilistic ru le.
The initial state has the same properties as the initial state of the system
in figure 3, and a comparison between the figures reveals how sensitive the
correlations are to random perturbations. The space-time patterns created
by the deterministic and the probabilistic rule are shown in figure 5.

The two-dimensional space-time pattern of a one-dimensional determin­
istic rule always has measure entropy equal to zero, since it is sufficient to
specify the states in lattice sites near the border of a space-time rectangle
to achieve the state of the whole rectangle [101 .

The necessity of probabilistic rules for an increase of algorithmic infer-
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I k

Figure 3: The evolution of chemical and correlational contrast, as
in figure 1 (the distance that remains to level 1 - 8", corresponds to
the information in correlations of higher order), for the additive rule
195. Although the measure entropy is constant, information may flow
between different correlation lengths if the initial uncorrelated state
has a density of zeroes p differing from 1/2 (here p = 0.1). A system
of 2000 lattice sites has been used .

I k

.. ....,......... .:.,." ._ ..

Figure 4: If the evolution of figure 3 is modified by noise, the correla­
tions will be destroyed. Here, on average, the state in every hundredth
lat tice site is shifted.
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(a)

(b)

Figure 5: The space-time patterns formed by the rules of figures 3 and
4. In 5a, the determin istic rule is applied, and in Sb, noise is added.
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mation has been discussed by Bennet t [25J. This corresponds to equat ions
(4.4) an d (4.14) since the algorithmic informati on is equal to the measure
entropy, equa t ion (3.1) .
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