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Abstract. Many numerical methods for fluid flow simulation use
representations of the flow in terms of Lagrangian elements as opposed
to Eulerian fields. Such methods have considerable advantages when
they can be adapted to the physical situation in question. We show
examples of this for the case of generalized vortex methods applied
to stratified flows with sharp interfaces. We also discuss the notion of
chaotic advection, i.e., the feature that Lagrangian elements can have
chaotic motion even in Eulerian flow fields that are entirely regular.
We discuss the relation of “lattice gas” methods to these issues.

1. Introduction

The abstraction of a continuous flow field of a gas or liquid from the el-
emental collisions of particles obeying deterministic laws of motion is a
major achievement of kinetic theory and continuum mechanics. The result-
ing Eulerian field variables are used in most theoretical discussions of fluid
mechanical phenomena. When using them, one relinquishes following indi-
vidual elements of the fluid. Much as the fields of electromagnetic theory
exist without a charge or current to sample them, so does the Eulerian ve-
locity field of a fluid exist without associating specific velocities to labeled
particles.

The Eulerian representation has many advantages including, in general,
greater analytical tractability of the mathematical problems of fluid flow.
However, once a computer is going to be doing most of the mathematical
work, this consideration can become of lesser importance. Furthermore,
there are in many applications Lagrangian quantities that must be mon-
itored or calculated, and there are frequently difficulties in deriving such
data reliably from purely Eulerian specifications.

© 1987 Complex Systems Publications, Inc.



546 H. Aref, S. W. Jones, and G. Tryggvason

The physical issues have counterparts in numerical methods seeking to
exploit a Lagrangian representation of fluid flow. Sometimes a Lagrangian
method is ideally suited for a particular flow situation, because the essence
of the problem is the precise advection of some evolving flow feature. Ex-
amples include the recent, very successful implementations of generalized
vortex methods to sharply stratified flows [1,2]. We pursue this aspect and
show some state-of-the-art sample computations in section 3.

Lagrangian methods can appear a lot “noisier” than their Eulerian coun-
terparts. Amsden and Harlow while pursuing a hybrid Eulerian-Lagrangian
scheme, the “marker-and-cell method”, remarked on “the relative orderli-
ness of Eulerian representation over Lagrangian” [3]. This feature finds
further elucidation in the topic of chaotic advection [4]. The trajectories
of Lagrangian particles can be chaotic (in the technical sense of dynamical
systems theory) even though the underlying Eulerian flow is smooth and
regular. We pursue this in section 2.

This paper was prepared in connection with an interdisciplinary con-
ference on simulation strategies for large nonlinear systems, particularly
fluid flow. One of the main items discussed at this conference was the
idea of “lattice gas” or “cellular automaton” models [5]. (In the context
of fluid flow simulations, the former label conveys more information than
the latter, and from the point of view of semantics seems preferable.) The
lattice gas is a hybrid of the Eulerian and the Lagrangian representations.
The “gas” aspect implies a focus on discrete particles, i.e., the conventional
point of view in particle mechanics from which the Lagrangian represen-
tation is derived. The “lattice” aspect, on the other hand, immediately
implies associations with the Eulerian point of view. Exactly as kinetic
theory and continuum mechanics before them, current implementations of
lattice gas methods lead to a Eulerian representation at the “macro-level”
defining the continuum. In section 4, we comment on the relation of lattice
gas models to more conventional models in use for flow simulation, with
particular reference to the topics discussed in sections 2 and 3.

2. Chaotic advection

Although the field equation describing the advection and diffusion of a
passive scalar field 8 = 8(x, t) by a velocity field V = V(x,1), viz.

a0 N
at
is linear in @, the relationship between # and V is far from simple. Consider
the simplest case of no diffusion, x£ = 0. If we take 0(x,t) to be

0(x,t) = 0,8[x — x,(t)], (2.2)
we get from (2.1) that

V-Vo=kV (2.1)

dx,
dt

= V(x,t). (2.3)
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This is a system of ordinary differential equations. In three dimensions,
we have

9.:0 = u(xlh Yo, Za,t), (2'4)
go = ‘U(ﬂ:o, yoa zovt); (2‘5)
éa = W(Io, ya: zoyt)v (2‘6)

where (z,v,w) are the components of V. Clearly, equations (2.3) or (2.4-6)
are rich enough to admit chaotic solutions. In three dimensions, the Eule-
rian flow may even be steady, and chaotic particle motion can still occur
[6]. In two dimensions, time dependence is necessary for chaos. A partic-
ularly simple case is two-dimensional incompressible flow. Then, we have
a streamfunction ¥(z,y,t) and equations (2.4), (2.5) become Hamilton’s
canonical equations

3y oy

$='é;, y= 6:5'

(2.7)
Configuration space for an advected particle (z,y) and the phase space of
this Hamiltonian system coincide [4].

Several examples have now been studied numerically and analytically
in which chaotic particle orbits ensue in flows that are regular from the
Eulerian point of view [4,6,7-11]. In figure 1, we show stroboscopic Poincaré
sections for a simple model flow studied ré‘%:ent.ly [11]. The flow is two-
dimensional and consists of alternately switching on and off a fixed point
source and sink of opposite strengths. Furthermore, the fluid taken up at
the sink in a given stroke is reinjected at the source during its following
stroke. This simple pulsed flow results in a mapping of the plane onto itself.
If we think of the plane as a complex z plane, and if we choose the distance
between source and sink, a, as our unit length, this mapping, M : z — 2/,
is given by the equations

Z'= 1 —ig(—=z;:4), if |z—1| <A, (2.8)
2'= —1+¢(1—¢(—=2;iA);4), if |z—1| > A, (2.9)
and
A2 \1/2
¢(z; A} B (Z +1) (1 + m) § (2.10)

The single parameter A that appears in these expressions is the nondimen-
sional ratio Q7/wa®, where @ is the source strength and r the duration
of a stroke of either source or sink. Varying A varies the extent of the
configuration space susceptible to chaos (see figure 1, panels (a), (c), and
()

The distributions of iterates in the various panels of figure 1 contain all
the usual features of chaos in a Hamiltonian system. We note in particular
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Figure 1: Stroboscopic Poincaré sections for the pulsed source-sink
system studied in [11]. Panels (a), (c), and (d) are to the same scale,
panel (b) is 2 magnification of one of the “islands” in (a) (the second
from the right of the four island chain). Parameter A® is (a), (b) 0.5;
(c) L5; (d) 3.0.
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the “island chains”, which in this context are accessible to direct physical
observation (using a dye for example [13]). Figure 1b shows a magnification
of one of the islands seen in figure 1a (the second from the left). Repeated
magnifications of this type show additional structure on ever finer scales.
In the absence of diffusion, this hierarchy of structure extends to arbitrarily
small scales. Hence, just by flow kinematics a passively advected scalar can
probe length scales that are orders of magnitude smaller than those over
which the flow field itself varies. This aspect of advection is clearly captured
by a numerical method which tracks individual particles effectively, but
may be grossly miscalculated by methodologies that do not retain such
Lagrangian information.

Let us turn next to another feature of the flow structure seen in figure
1. It makes a profound difference whether a blob of scalar is captured by
an island or is in the “chaotic sea”. We have referred to this property
of chaotic advection as “sensitive dependence on initial conditions in the
large” [11]. This is illustrated in figure 2, where we show two circular blobs
of equal size, one started within an island of the period-4 chain seen in
figure 1a, the other just outside it. As time progresses, the confining effect
of the KAM curves bounding the islands is clearly seen. One circular blob
is advected from island to island within the chain. The other is distributed
throughout a large portion of the flow domain. Note that not too many
periods of the flow are necessary for substantial differences to be visible.
This type of effect must be expected for islands of all sizes in the hierarchy
seen in the Poincaré sections.

What this means in terms of an accurate computation of scalar ad-
vection is that errors in the distribution of the scalar in the far subgrid
resolution range of the flow field can amplify to errors on the order of fully
resolved scales (of the flow field) in times that are of the order of a few “large
eddy turnover” times. We conclude that computing Lagrangian data accu-
rately using anything but a Lagrangian method can lead to serious errors.
Diffusion of the scalar will ameliorate this situation, but has little to offer
if the objective is to track discrete particles.

3. Sharply stratified flows

Another topic where the Lagrangian flow representation has been useful is
in the numerical simulation of certain flows with abrupt changes in physical
parameters such as density or viscosity [1,2]. This success derives from the
kinematical fact that such discontinuities between immiscible fluids can be
represented instantaneously as vortex sheets. With time, the sheet deforms
due to the mutually induced velocities of its parts, and the vorticity evolves
according to the relevant circulation theorem.

Two cases in particular have received attention from this point of view:
stratified Hele-Shaw flow [2,14] and the finite amplitude Rayleigh-Taylor in-
stability [1,15]. In both cases, the basic Lagrangian entities can be taken to
be vortex elements along the interfaces. These elements carry an attribute
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Figure 2: Sensitive dependence on initial conditions in the large for
the pulsed source-sink system of figure 1 (a), (b). Two finite circular
regions are initialized close to one another. Three snapshots at later
times are shown. The particles in one disk remain together; those in
the other disperse. The origin of this difference in behavior is seen
by comparing panel (d) to figure 1(a). One disk was wholly within a
KAM island, the other entirely outside it.
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known as the circulation T'.

In two dimensions, the situation is again particularly simple. An inter-
face is then just a curve, and the incremental circulation, 6T, carried by an
infinitesimal element of such a curve of length §s can be written

6" = nés, (3.1)

where v = 7(s,t) is called the vortex sheet strength and is the basic new
quantity that enters the theory. The vortex sheet strength gives the vor-
ticity in the flow w = [0,0,¢(3x,t)] via the formula

s(x,8) = [ 7(s,8)6x — x(s,1)]dx, (3:2)

where x(s,t) = [#(s,t),y(s,t)] is the parametric representation in terms
of arclength s of the interfacial curve at time {. Relative to the model of
passive advection studied in section 2, two new features arise.

The first is that the velocity V now has a functional dependence on the
vortex sheet strength . This part of the problem is kinematical, i.e., the
dependence of V on + is (except for the boundary conditions) independent
of the physical situation. It can be expressed as an integral equation, usu-
ally associated with the name of Birkhoff, which simply inverts the relation

w=VxYV. (3.3)

The second new feature is that - itself obeys some equation of evolution.
This equation comes from the momentum equation for the fluid, and thus
is problem dependent.

The two particularly simple cases of weak stratification are worth high-
lighting. The first is stratified Hele-Shaw flow in the case where the flu-
ids have different densities but negligibly different viscosities. In terms of
nondimensional variables, explained in more detail elsewhere [2], the equa-
tion for « (in the absence of interfacial surface tension; see below) is

_ %
S 3s’
where y is the vertical coordinate of the interface (gravity is directed in the

negative y-direction). In terms of the incremental circulation 6I', equation
(3.1), the formula is

(3.4)

6T = by. (3.5)

The second case is weakly stratified Rayleigh-Taylor flow, where the density
difference between the two layers of superimposed fluid is slight. Scaling and
nondimensionalization in the so-called Boussinesq limit gives the equation

4T) _

. 3.6
a % (3.6)
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(The nondimensionalization is different in (3.5) and (3.6)).

For both problems (3.5) and (3.6), it is in general necessary to provide a
stabilizing mechanism for the smallest scales. In the absence of such “reg-
ularization”, both models have instabilities for a flat, horizontal interface
with growth rates which increase with decreasing wavelength. The nonlin-
ear extension of this feature can lead to a singularity forming in a finite
time even when the flow starts from a smooth initial condition such as a
sine wave [16,17].

A physically motivated regularization is to introduce interfacial sur-
face tension. This adds a term of the form Béx to the right-hand side
of equations (3.5) and (3.6), where B is a nondimensional version of the
surface tension, and « is the local interfacial curvature. For Hele-Shaw
flow, it appears that addition of surface tension is indeed sufficient to reg-
ularize the evolution. For Rayleigh-Taylor flow, computational experience
suggests that this is not the case. This can be rationalized since surface
tension is a dissipative mechanism with the dynamics (3.5) but a dispersive
mechanism for equation (3.6). Hence, perturbations will be damped out
by adding surface tension to equation (3.5) but will lead to capillary waves
when added to equation (3.6). For a weakly stratified Rayleigh-Taylor
interface, reliable simulations can be produced by introducing various nu-
merical regularization procedures in much the same way as can be done for
the Kelvin-Helmholtz roll-up of a vortex sheet [18,19].

We stress that equations (3.5) and (3.6) are simplified limiting forms.
For the general case of stratified Hele-Shaw flow, i.e., for fluids of differ-
ent viscosities as well as densities, the equation for « is a Fredholm inte-
gral equation of the second kind [2]. For the general case of the inviscid
Rayleigh-Taylor problem, i.e., for fluids of different densities, the equa-
tion for « is an integro-differential equation [1]. Numerical implementa-
tions of the simple models (3.5) and (3.6) are not much more difficult than
implementations of standard vortex methods for inviscid flow (where the
equation for 6I', by Kelvin’s circulation theorem, is that d(6I')/dt = 0).
Computational experience shows that the Hele-Shaw problem can be cal-
culated convincingly for arbitrary viscosity stratification [2], whereas the
Rayleigh-Taylor problem is well under control only in the Boussinesq limit
and in the limit where one fluid is replaced by a vacuum [1,15].

In figure 3, we show representative calculations of a subharmonic in-
stability of an interface in stratified Hele-Shaw flow (in both cases using
dynamics more complicated than the weakly stratified limit (3.5)). Two
cases are shown. In both cases, the bottom fluid is lighter and less viscous
than the top fluid. In the upper sequence, the bottom fluid is assumed
to have negligible viscosity compared to the top fluid. In the lower three-
panel sequence, the ratio of viscosities is 1:3. The interface initially was
perturbed by two waves, one at the most amplified wavelength (according
to linear stability theory for a flat interface), the other at three times that
wavelength. Although the shorter wave has a larger growth rate according
to linear theory, and alone would lead to three identical bubbles or “fingers”
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at long times, there is a nonlinear selection mechanism that comes about
from the interactions of the developing fingers. In the large amplitude limit,
the long wave modulation wins and only one bubble ensues. Thus, in figure
3, we see two effects. One is the sensitive dependence on initial conditions
for given flow parameters seen if either sequence in figure 3 is compared to
the three-finger evolution that would have taken place if the longer wave
were not present in the initial state. The other is the dependence for a
fixed initial state on global flow parameters, here the viscosity ratio. This
is seen by simply comparing the two sequences in figure 3 panel by panel.

In figure 4, we show stages in the evolution of a multi-wavelength ini-
tial perturbation to a Rayleigh-Taylor unstable interface in the Boussinesq
limit. The characteristic vortex pair “mushrooms” are clearly visible. At
large amplitudes, very complicated interactions take place among these
structures. At lower numerical resolution, the large scales of the flow struc-
tures are retained, but the intricate spirals in the roll-up are obliterated.
For some processes, such as mixing and chemical reactions, it is important
to have accurate information on these finer scale features.

Two points emerge from these examples that are in some ways quite
similar to those made in section 2. First, we have seen in figure 3 the
sensitivity at long times to modes present in the initial state even with very
small amplitudes. The longer wavelength perturbation to the flat interface
has an almost indiscernible amplitude relative to the shorter wavelength,
yet it dominates at late times. The qualitative physics of this is readily
understandable using standard ideas of mode competition and growth. A
numerical method that attempts to simulate this flow situation must resolve
such competition effects. For example, a method that introduces spurious
long-wave behavior would fail. In the second example, figure 4, we again
see the evolution of structure on much smaller scales than one might have
guessed from the initial state. The main issue here is the reliable prediction
of such structure for a given expenditure of computational resources.

4. Conclusions

We have given several examples where the flow physics suggests that a
Lagrangian representation is advantageous both theoretically and compu-
tationally. We have shown in these examples the delicate and sensitive
nature of the dependence of flow quantities at long times on small changes
in initial conditions. We have seen also examples of the more familiar sen-
sitivity to the values of global flow parameters, such as A in the pulsed
source-sink system or the viscosity ratio across the interface in stratified
Hele-Shaw flow.

The examples discussed in sections 2 and 3 were chosen in part because
they highlight areas where general-purpose numerical methods are likely to
have difficulties. Tracking such features as arbitrarily fine-grained, ramified
spatial structure or the competition between small differences in initial
amplitude of different wave modes required methods which do not introduce
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Figure 3: Growth of small amplitude subharmonic on a sharp interface
in stratified Hele-Shaw flow. The clearly visible wave is at the most
amplified wavelength according to linear stability theory. The low
amplitude wave has a much smaller amplitude. As the flow evolves,
the longer wave dominates and one finger emerges ahead of the other
two. In the upper sequence (a—), the bottom fluid has negligible
viscosity. In the lower sequence, the viscosity ratio between bottom
and top fluids is 1:3.
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Figure 4: A sequence of configurations of a weakly stratified, Rayleigh-
Taylor unstable interface computed by a generalized vortex method.
The initial perturbation was an arbitrarily chosen superposition of
waves. Highly convoluted, fine-scale structure emerges as the interface
evolves.
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numerical diffusion and for which fluctuations are extremely well controlled.
We are particularly concerned here about the potential of lattice gas models
of fluid flow in these respects.

Of the examples that we have discussed, the only one that has been
attempted by lattice gas methods (as far as we are aware) is the Rayleigh-
Taylor instability in the Boussinesq limit [20]. The results presented in the
last two panels of figure 4 appear to be well beyond the reach of lattice gas
methods and are, indeed, beyond what most general-purpose and many
special-purpose methods can achieve at the present time.

The chaotic advection examples are in principle so simple (“just kine-
matics”) that standard computational methods for fluid flows would con-
sider them an insult. However, they raise some very fundamental issues,
since they require explicitly the numerical simulation of chaotic orbits of a
simple dynamical system here given by the stroboscopic mapping. When
scrutinized at a fundamental level, this is a highly nontrivial task [21].

From an operational standpoint, the main problem facing lattice gas
methods seems to be the enhanced level of fluctuations from an artificially
amplified “microworld”. Would a lattice gas model of stratified Hele-Shaw
flow, for example, be able to reproduce the amplitude dependence demon-
strated in figure 37 Would it even retain the left-right symmetry? The
models of this general type that have been advanced so far, such as per-
colation models or “diffusion limited aggregation” [22], certainly do not
appear to have such sensitivity.

From a more general point of view, it seems to us that most special-
purpose algorithms for flow simulation attempt to incorporate a substantial
amount of flow physics. The generalized vortex methods provide an exam-
ple of this trend, but we might mention also other front-tracking methods
where the solution of a Riemann problem for each of a range of different
situations is included in a fairly general code framework [23]. Given a re-
quired level of detail and a general-purpose algorithm for fluid flow, it is
probably possible to find a situation where any reasonable implementa-
tion of that algorithm will fail to produce reliable answers. This provides
the impetus for seeking out special-purpose algorithms and methods. Con-
versely, new methodologies touted as “general” invariably define some range
of problems where they outperform competing methods. They survive by
exploiting and expanding that initial range of success. Lattice gas methods
must still establish such a niche for themselves.
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