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Abstract. Many num erical methods for fluid flow simulation use
representations of t he flow in terms of Lagrangian elements as opposed
to Euleri an fields. Such methods have considerable advantages when
they can be adapted to the physical situation in questi on . We show
exam ples of t his for the case of generalized vortex methods applied.
to strat ified flows with sharp interfaces. We also discuss t he notion of
chaotic advection, i.e., the feature th at Lagran gian elements can have
chaotic motion even in Eulerian flow fields that are ent irely regular.
We discuss the relation of "lattice gas" methods to these issues.

1 . Introduction

T he abstraction of a continuous flow field of a gas or liquid from the el­
ement al collisions of particles obeying deterministic laws of motion is a
major achievement of kin etic theory and cont inuum mechanics. T he result­
ing Euleri an field variabl es ar e used in most theoretical discussions of fluid
mechanical phenomena. Wh en using them, one relinquishes following indi­
vidual elements of the fluid. Much as th e fields of electromagnetic th eory
exist without a charge or current to sample them, so doe s the Eulerian ve­
locity field of a fluid exist without associating specific velocities to labeled
particles .

The Eulerian representation has many advantages including, in gen eral ,
greater analytical tractability of the mathematical problems of fluid flow.
However, once a computer is going to be doing most of the mathematic al
work, t his cons iderat ion can become of lesser importance. Furthermore,
there are in many applications Lagrangian quantities that must be mon­
itored or calcu lated, and there are freq uently difficul ties in derivin g such
data reliably from purely Eulerian specifications.
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The physic al issu es have counterparts in numerica l me thods seeking to
exploit a Lagrangian representation of fluid flow. Sometimes a Lagrangi an
method is ideally suited for a particular flow situation, because the essence
of the problem is the precise advec tion of some evolving How feature . Ex­
amples include the recent, very successful implementations of generalized
vortex methods to sharply stra t ified flows 11,21. We pursue t his aspect and
show some state-of-the-art sample computations in section 3.

Lagran gian methods can appear a lot "noisier" than t he ir E ulerian coun­
te rparts. Amsden and Harlow while pursuing a hyb rid Eulerian-Lagra ngian
scheme, the "marker-and-cell method" I remarked on "t he relative order li­
ness of Eulerian representation over Lagrangian" [3] . This feature finds
further elucidat ion in the topic of chaotic advection [4]. The trajectories
of Lagrangi an particles can be chaot ic (in the technical sense of dynamical
sys tems theory) even though the underlying Eulerian flow is smooth and
regular . We pursue this in section 2.

T his paper was prepared in connection with an interdisciplin ary con­
ference on simulation st rategies for large nonlinear systems, parti cularly
fluid flow. One of the main items discussed at this conference was th e
idea of "lattice gas" or "cellular au tomaton" models 15] - (In t he context
of fluid flow simu lations, the former label conveys more informat ion t han
the latter , and from the point of view of semant ics seems preferable.) The
lat t ice gas is a hybrid of the Eulerian an d the Lagrangian represent ations.
The "gas" aspect implies a focus on discrete particles, i.e., the convent iona l
point of view in par ticle mechanics from wh ich the Lagrangian represen­
tation is derived. The "latt ice" asp ect , on the ot her hand, imme diately
implies assoc iat ions with the Eulerian point of view. Exac tly as kinetic
theory and continuum mechanics before th em, current implementations of
latt ice gas methods lead to a Eulerian representation at the "macro-level"
defining the continuum . In section 4, we comment on the relation of latt ice
gas models to more convent ional models in use for flow simu lation , with
particular referen ce to the topics discussed in sect ions 2 and 3.

2. Chaot ic advection

Although the field equation describ ing th e advection and diffusion of a
passive scalar field 0 = O(x, t) by a velocity field V = V(x, t), viz.

ao + V . VO= "V'O (2.1)at
is linear in 8, the relationship between 8 and V is far from simple.
the simplest case of no diffusion, " = O. If we take O(x , t) to be

O(x , t) = O.5[x - x.(t)j,

we get from (2.1) that

dx; ( )d.t = V x.t .

Consider

(2.2)

(2.3)
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This is a sys tem of ord inary different ial equations. In three dimensions,
we have

(2.4)

(2.5)

(2.6)

where (u , u ,w) are the components ofV. Clearly, equations (2.3) or (2.4-6)
are rich enough to admit chaot ic solut ions . In three dimensions, the E ule­
rian flow may even be steady, and chaotic par ticle motion can st ill occur
{6}. In two dimensions, time dependence is necessary for chaos. A part ic­
u larly simple case is two-dimensional incompressible flow. Then , we have
a streamfunction Ib (x,v, t ) and equations (2.4), (2.5) become Hamil ton 's
ca nonical equat ions

. alb
x = ay'

. alb
v = - ax' (2.7)

Configurati on space for an advected particle (x ,y) and the phase space of
this Hamiltonian system coincide [4].

Several exam ples have now been studied numer ically and analyt ically
in wh ich chaot ic particle or bits ensue in flows that are regular from the
Eulerian point of view (4,6 ,7-11]. In figure 1 , ~e show st roboscopic Poincare
sect ions for a simple model flow studied recently [11]. The flow is two­
dimensional and consists of alternately switching on and off a fixed point
source and sink of opposite strengths. Furthermore, the fluid taken up at
the sink in a given stroke is reinjected at the sou rce during its following
stroke. This simple pulsed flow results in a mapping of the plane onto itself.
ITwe think of the plane as a complex z plane, and if we choose the distan ce
between so urce an d sink, a, as our uni t length, this mapping, .M : z --+ z',
is given by the equations

and

z'=
z' =

1 - i4>(-Z;iA),

- 1 + 4> (1 - 4>(-Z;iA); A),
if [a- 11 < A,

if Iz- 11 <': A,

(2.8)
(2.9)

(
A' )1/'

4>(z;A ) = (z+l) 1+ Iz+IJ' (2.10)

The single parameter A that appears in these expressions is the nondimen­
sional ratio Qr/ 1ra2, where Q is the source streng th and r the duration
of a stroke of either source or sink. Varying A varies the extent of the
config ur ati on space susceptib le to chaos (see figur e I , panels (a), (c), and
(d)).

The distributions of iterates in the various panels of figure 1 contain all
the usual features of chaos in a Hamiltonian system. We note in par ticular
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Figure 1: Stroboscopic Poincare sections for the pulsed source-sink
system studied in [111. Panels (a) , (e) , and (d) are to the same scale,
panel (b) is a magnification of one of the "islands" in (a) (the second
from the right of the four island chain). Parameter A2 is (a), (b) O.5j
(e) 1.5; (d) 3.0.
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t he "island chains" , which in this context are accessible to direct phys ical
observation (using a dye for example [131) . Figure 1b shows a magnification
of one of the islands seen in figure 1a (the second from t he left) . Repeated
magni fications of t his type show additional structure on ever finer scales.
In the absence of diffusion, this hierarchy of structure extends to arbitrarily
small scales. Hence, just by Bow kin em atics a passively advected scalar can
probe length scales that are orders of magnitude smaller than those over
which the flow field itself var ies. This aspect of advection is clearly cap tured
by a nume rical method which tracks individual particles effectively, but
may be grossly miscalculated by methodologies that do not retain such
Lagrangian information.

Let us turn next to another feature of the flow structure seen in figure
1. It makes a profound difference whet her a blob of scalar is captured by
an island or is in the "chaotic sea" . We have referred to this property
of chaotic advection as "sensitive dependence on initial conditions in the
large" [l1J. This is illust rated in figure 2, where we show two circular blobs
of equal size, one st arted within an island of the period-4 chain seen in
figure l a, the oth er just outside it . As t ime progresses, the confining effect
of th e KAM curves bounding the islands is clearly seen. One circular blob
is advected from island to island within the chain. The other is d istributed
throughout a large portion of the flow domain. Note that not to o many
periods of the flow are necessary for sub st an tial differences to be visible.
This type of effect must be expected for islands of all sizes in the hierarchy
seen in the Poincare sections.

What this means in terms of an accurate computation of scalar ad­
vection is that errors in the distribution of th e scalar in the far subgrid
resolut ion range of the Bow field can amplify to errors on the order of fully
resolved sca les (of th e flow field) in times that are of the order of a few "lar ge
eddy turnover" times. We conclude that computing Lagrangian data accu­
rately using anything but a Lagrangian method can lead to serious errors.
Diffusion of the scalar will ameliorate this sit ua t ion, but has little t o offer
if the object ive is to track discrete particles.

3. Sharply stratified flows

Another topic where the Lagrangian flow representation has been useful is
in the numerical simulation of certain flows with ab rupt changes in physical
parameters such as density or viscosity [1,2]_ This success derives from the
kinematical fact that such discontinuities between immiscib le fluids can be
represented inst antaneously as vortex shee ts . Wit h time, the sheet deforms
due to the mutually induced velocit ies of its parts, and the vorticity evolves
according to t he relevant circulat ion t heorem.

Two cases in particular have received attention from this point of view:
stratified Hale-Shaw flow 12,14J and the finite amplitude Rayleigh-Taylor in­
stability 11,151 . In both cases, the basic Lagrangian entities can be taken to
be vortex elements along the interfaces. These elements carry an attribute
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F igure 2: Sensitive depe nde nce on initi al condit ions in the larg e for
the pulsed source-sink syste m of figure 1 (a), (b). Two finite circular
regions are initi alized close to on e ano t her . T hree snapshots at later
times ar e shown. The particl es in one di sk remain t ogether ; t hose in
the ot her disperse . T he origin of th is difference in behav ior is seen
by comparing pan el (d) to figure l(a) . One disk was wholly within a
KAM island, t he other entire ly outside it .
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known as the circulation r.
In two dimensions, the situation is again particularly simple. An inter­

face is th en just a curve, and the incremental circulation, or, carried by an
infinitesimal element of such a curve of length os can be writ ten

Sf = -ibs , (3.1)

where "1 = ,(s, t) is called the vortex sheet st rength and is the basic new
qu antity that enters the theory. The vortex sheet strength gives the vor­
ticity in the flow w = [O,O,dx, t) ) via the formula

~(x, t) = ! "/(s ,t)S[x - x(s,t)]dx , (3.2)

where x(s,t) = [x(s, t ) , y (s, t )) is the parametric representation in t erms
of arclength s of the interfacial curve at time t . Relative to the model of
passive advection studied in sect ion 2, two new features arise.

The first is that the velocity V now has a functional dependence on the
vortex sheet strength '1. This part of the problem is kinematical, i.e ., the
dep endence of Von "t is (except for the boundary conditions) independent
of the physical situation. It can be expressed as an integral equation, usu­
a lly associa ted with the name of Birkhoff, which simply inverts the re lation

w=V' xv. (3.3)

(3.4)

The second new feature is that "t its elf obeys some equation of evolut ion .
This equat ion comes from the momentum equation for the flu id , and thus
is problem dependent.

The two particularly simple cases of weak stratification are worth h igh­
light ing. The first is stratified Hele-Shaw flow in the case wh ere the flu­
ids have different densities but negligibly different vis cosities . In terms of
nondlmensional variables , expla ined in more detail elsewhe re [21, the equa­
tion for "t (in the absence of interfacial surface tension; see below) is

ay
'"'f = as'

where y is the vertical coordinate of the interface (gravity is directed in the
negative y-direction). In terms of the incremental circulation of, equation
(3.1), the formula is

Sf = Sy. (3.5)

The second case is weakly stratified Rayleigh-Tay lor flow, where the density
difference between the two layers of supe rimposed fluid is slight . Scaling and
nondimensionalizat ion in the so-called B oussinesq limit gives the equat ion

d(Sr) _ t:

dt - "y . (3.6)
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(The nondimensionalization is different in (3.5) and (3.6)) .
For both problems (3.5) an d (3.6), it is in general necessary to provide a

stabilizing mechanism for the smallest scales. In the absence of such "reg­
ularization", both models have instabilities for a fiat, horizontal interface
with growth rates which increase with decreasing wavelength. The nonlin­
ear extension of this feature can lead to a singularity forming in a finite
time even when the flow starts from a smooth initial condition such as a
sine wave [16,17J.

A physica lly motivated regularization is to introduce interfacial sur­
face tens ion. This adds a term of the form B61t to the right-hand side
of equa t ions (3.5) and (3.6) , where B is a nondimensional vers ion of t he
surface tension, and It is the local interfacial curvature. For Hele-Shaw
flow I it appears that addition of surface tension is indeed sufficient to reg­
ularize the evolution. For Rayleigh-Taylor flow, computational expe rience
suggests that th is is not the case. This can be rationalized since surface
tension is a dissipative mechanism with the dynamics (3.5) but a dispersive
mechanism for equation (3.6). Hence, perturbations will be damped out
by adding surface tension to equation (3.5) but will lead to capillary waves
when added to equation (3.6). For a weak ly stratified Rayle igh-Taylor
interface, reliable simulat ions can be produced by introduc ing various nu­
merical regularization procedures in much the same way as can be done for
the Kelvin-Helmholtz roll-up of a vortex sheet 118,19J.

We stress that equations (3.5) and (3.6) are simplified limiting forms.
For the general case of stratified Hele-Shaw flow, i.e., for fluids of differ­
ent viscos ities as well as densities, the equat ion for "1 is a Fredholm inte­
gral equat ion of the second kind [2]. For the general case of the inv iscid
Rayleigh-Taylor problem, i.e., for fluids of different densities, the equa­
tion for ""f is an integro-differential equation [I]. Numerical implementa­
ti ons of th e simple models (3.5) and (3.6) are not much more difficult than
implementations of standard vortex methods for inviscid flow (where the
equation for of, by Kelvin's circulation t heorem, is that d(of) /dt = 0).
Computa tional experience shows that the Hale-Shaw problem can be cal­
culated convincingly for arbitrary v iscosity stratification 12], whereas the
Rayleigh-Taylor problem is well under control only in the Boussinesq limit
and in the limit where one fluid is replaced by a vacuum [1,15J.

In figure 3, we show representative calcu lations of a subharmonic in­
stability of an interface in stratified Hele-Shew flow (in both cases using
dynamics more complicated than the weakly stratified limit (3.5)). Two
cases are shown. In both cases, the bottom fluid is lighter and less viscous
than the top fluid. In the upper sequence , the bottom fluid is assumed
to have negligible viscosity compared to the top fluid. In the lower t hree­
panel sequence, the ratio of viscosities is 1:3. The interface initially was
perturbed by two waves, one at the most amplified wavelength (according
to linear stability theory for a flat interface), t he ot her at three times that
wavelength. Although the short er wave has a larger growth rat e according
to linear theory, and alone would lead to three identical bubbles or "fingers"
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at long times, there is a nonli near selection mechanism that comes abo ut
from the interact ions of the developing fingers. In the large amplitude limit,
the long wave modulation wins and on ly one bubble ensues . Thus, in figure
3, we see two effects. One is the sensitive dependence on initial conditions
for given flow parameters seen if either sequence in figure 3 is compared to
the three-finger evolution that would have taken place if the longer wave
were not present in the initial state. The other is the dependence for a
fixed initial state on global flow parameters, here the viscosity ratio. This
is seen by simply comparing the two sequences in figure 3 panel by panel.

In figure 4, we show stages in the evolution of a multi-wavelength ini­
tial perturbation to a Rayleigh-Taylor unstable interface in the Boussinesq
limit . The characteristic vortex pair "mushrooms" are clearly visible. At
large amplitudes, very complicated interactions take place among these
structures. At lower numerical resolut ion, the large scales of the flow struc­
tures are retained, but the intricate spirals in the roll-up are obliterated.
For some processes, such as mixing and chemical reactions, it is important
to have accurate information on these finer scale features.

Two po ints emerge from these examples that are in some ways quite
sim ilar to those made in section 2. First, we have seen in figure 3 the
sens itivity at long t imes to modes present in the init ial state even with very
small amplitudes. The longer wavelength perturbation to the flat int erface
has an almost indiscernible amplitude relative to the shorter wavelength,
yet it dominates at late times. The qualitative physics of this is readily
un derstandable using standard ideas of mode competit ion and growth. A
numerical method that attempt s to simulate this flow sit uation must resolve
such competition effects. For example, a method that introdu ces spurious
long-wave behavior would fail. In the second example, figure 4, we again
see the evolution of structure on much smaller scales than one might have
guessed from the initial state. The main issue here is the re liab le prediction
of such structure for a given expend iture of computat ional resources .

4. Conclusions

We have given several examples where the flow physics suggests that a
Lagrangian repr esent ation is advantageous both theoretically and compu­
tationally. We have shown in these examples the delicate and sensitive
nature of the dependence of flow quantities at long t imes on small changes
in init ial condit ions. We have seen also examples of the more familiar sen­
sitivity to the values of global flow parameters, such as A in the pulsed
source-sink system or the viscosity ratio across the interface in stratified
Hele-Shaw flow.

The examples discussed in sections 2 and 3 were chosen in part because
they highlight areas where general-purpose numerical methods are likely to
have difficulties. Tracki ng such features as arbitrarily fine-grained, ramified
spatial structure or the competition between small differences in initial
amplitude of different wave modes required methods which do not introduce
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Figure 3: Growth of small amplitude subharmonic on a sharp inte rface
in st ratified Hele-Shaw flow. The clearly visible wave is at the most
amplified wavelength according to linear stability theory. T he low
amplit ude wave has a much smaller amplitude. AB the flow evolves,
the longer wave dominates and one finger emerges ahead of the other
two . In the upper sequence (a-c) , t he botto m fluid has negligible
viscosity. In the lower sequence, the viscosity rat io between bottom
and top fluids is 1:3.
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Figure 4: A sequence of configurations of a weak ly strati fied, Ray leigh­
Taylor unstable interface computed by a generalized vortex meth od.
The initial perturbat ion was an arbit rarily chosen supe rpos it ion of
waves. Highly convoluted, fine-scale structure emerges as the int erface
evolves .
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numerical diffusion and for which fluctuations are extremely well controlled.
We are parti cularly concerned here about the potential of lattice gas models
of fluid flow in these respects.

Of the examples that we have discussed, the only one that has been
at tempte d by lat t ice gas methods (as far as we are aware) is t he Rayleigh­
Taylor instability in the Boussinesq limit [201 . The results presented in the
last two panels of figure 4 appear to be well beyond the reach of lattice gas
methods and are, indeed, beyond what most general-purp ose and many
spec ial-purpose methods can achieve at the present time.

The chaotic advection examples are in principle so simple ("just kine­
matics") that standard comput ational met hods for fluid flows would con­
sider them an insult . However, they raise some very fundamental issues,
since they require explici tly the numerical simulat ion of chaotic 'orbits of a
simple dynami cal system here given by the strobos copic mapp ing. When
scrutinized at a fundamental level, t his is a highly nont riv ial task [21J.

From an operational standpoint, the main problem facing lat tice gas
methods seems to be the enhanced level of fluctuations from an art ificially
amplified "microworld" . Would a lattice gas model of st ra t ified Hele-Shaw
flow, for example , be able to reproduce the amplitude dependence demon­
strated in figure 31 Would it even retain the left-right symmetry? The
mod els of th is general type that have been advanced so far, such as per­
colat ion mod els or "diffusion limited aggregation" [22], certainly do not
appear to have such sensit ivity.

From a more general point of view , it seems to us that most specia l­
purp ose algori thms for flow simulation attempt to incorporate a substantial
amount of flow physics . The generalized vortex methods provide an exam­
ple of this trend, but we might ment ion also other front-tracking met hods
where the solution of a Riemann problem for each of a range of different
situat ions is included in a fairly general code framework [23]. Given a re­
quired level of detail and a general-purpose algorithm for fluid flow, it is
probably possible to find a situation whe re any reasonable implement a­
tion of that algorithm will fail to produce reliable answers. This provides
the impetus for seeking out special-purpose algorithms and methods . Con­
versely, new methodologies touted as "general" invariably define some range
of problems where they outperform com peting methods. They survive by
exploit ing and ex panding that initial range of success . Lattice gas methods
must st ill establish such a niche for themselves.
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