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Abstract. In the simple case of one-dimension al flow between plate s,
we show t he effect of Galil ean non-i nveriance of th e usual hexagonal
lattice gas mode. Thi s effect leads to a distorted velocity profile when
the velocity exceeds a value of 0.4. Higher-order corre ctions to the
Navier-Stokes equa tions are considered in a discussion of th e num eri­
cal importance of th e distortion.

1 . Introduction

It was argued by Frisch, Hasslacher , and Pomeau [1] that a (two-dimensional)
hexagonal lattice gas model reproduces-upon coarse-graining-t he fluid
behavior described ordinarily by the Navier-Stokes equation . The signifi­
cance of this proposal is that it could lead to new ways to simulate fluid flow,
based upon simple binary arithmetic rather than high-precision floating­
point calculations.

A characteristic feature of lattice gas automata is the appearance of
higher-order corrections to the Navier-Stokes equation, once coarse-graining
is performed [2] . These correct ions are due to the discrete nature of both
coordinate and velocity spaces. Since t hey ar e manifestations of the discrete
lat t ice dynamics , t hey break Galil ean invari ance and show up as soon as the
fluid velocity is no longer negligibl e compared to the micro scopic velocity,
or, equiva lentl y, as soon as the Mach number (the ratio of fluid to sound
velocity) approaches one . This transonic regime is easily obtained in lattice
gases because here, the macroscopic fluid velocity is bounded by one, and
the sound velocity itse lftakes the va lue v, = 17/,fi ex 0.717. The transonic
regime can occur already at small Reynolds numbers, which is not normally
the case in compressible fluids.

It is our aim here to study how large the Mach number can actually be
(in the case studied) before effects due to the breaking of Galil ean invar iance
set in. In particular, in as simple a fluid flow as one-dimensional flow
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between two plates, effects due to those higher-order lattice gas cor rections
to Navier-Stokes show up at high enough velocity. This was pointed out
in the discussion of unsteady, one-dimensional flow in reference 3, an d the
demonstration and analysis of these effects is carried furthe r in this work.

It is not that we believe it is very useful to study these corrections
quantitatively. However, the case of one-dimensional fluid flow between
plat es is one of the simplest possible where Galilean invariance breaking
will simply manifest itself as a d istortion of the usual linear velocity profile
given in the beginning of a ll textbooks on fluid mechanics. Moreover, while
the linear profile is independent of fluid viscosity, the dist orted one will
depend on i t . Also, while there is no pressure or densi ty gradient in th e
"tex tbook" flow, a dens ity gradient perp endicular to the direction of flow
appear s in the lattice gas . This one-dimensional flow thus provid es a very
clear case where some physical consequences of Galilean non-invari an ce and
of higher-order corrections can be exh ibited an d discussed . Therefore, we
consider the demonstration of the presence of these corrections an d their
consequences to be the main po int of t his work, not the crude analytical
st udy which is on ly semi-quant ita t ive.

In sect ion 2, after br iefly reviewing the physical system and the lattice
gas model, we discuss the distortion of the velocity profile, the appear­
ance of a dens ity gradient, and the form of higher-order corrections to the
Navier-S tokes equation for the Bow considered. We summarize our results
in sect ion 3.

2. N u merical data and analy sis

The lat t ice gas model is the usual one [11 , with particles p ermanently mov­
ing on a two-dimensional hexagonal grid with coordinat ion numb er equa l
to six. These particles moreover undergo two- and four-particle and so­

' called three-particle symmetr ic collisions, all of which conserve energy and
momentum. The initial ra ndom distribution of particles corresp onds to the
same averag e numb er of particles in each of six possible direct ions at each
site , and therefore leads to zero mac roscopic velocity. The part icles are en­
closed [3] in a rectan gle of dimensions L = 84 an d L' = 240, where L is t he
wid th and L' the length. T he direction of length corresponds to the y-ax is,
and the perpendicular one is taken to be the z-axis, Period ic boundary
condit ions are imposed at top (y = L') and bottom (y = 0) of the
system. The boundary condition at z = L corresponds to no-s lip, where
particles bounce back along the incoming direction after hitting the wall.
At the left wall (x = 0), boundary conditions are taken to be specular.
As in reference 3, a tangential inst ability is int roduced at x = 0 which
creates a flow in the positive y direction by permitting some particles that
norm ally would reflect on t he wall going from top to bot t om to bounce
back into t he dir ect ion of increasing y . We have checked that our results
are insensi tive t o how t he inst abili ty is created, another way being to st art
from no-slip boundary cond it ions at z = 0 and introduce a bias toward



Galilean Non-Invariance in Lat tice Gas Flow 755

increasing y by allowing some part icles to reflect specularly. In reference 3,
the main object of study was how the instability propagates into the system
with time, and it was shown that in the obtained steady state the expected
linear ve loc ity profile uS/('x) is obtained, except for distortions at small :z;

and high velocity. This steady state is the starting point of the present
investigation.

In figure 1, th e ve loc ity profile t.' lI (x) is shown as a functi on of th e frac­
tional dist ance in the direction per j cndicular to the How. The macroscopic
average of density and velocity is done over cells of width 6 (in the lattice
units) and length 200, afte r checking th at the flow is y indepen dent and
the velocity component in th e x direction is negligible. The density is 1/3.
The pro file is linear for large z , the linear part extrapolating at x = 0 to
a maximum allowed velocity of .1312 = 0.866. For small x, the velocit y
profile is rounded off with an effect ive intercept of 0 .53 at x = O. This
distortion, moreover, extends over half of the width.

Further study shows on one hand that the round-off' disappears at small
velocity, and on the other that it extends over larger absolute distances
when the width of the system is increased, scaling approximately with the
system width (d. figure 2). It cannot therefore be a result of gas slip
velocity at the left boundary (x = 0) of the rectangular box in which the
fluid flows.

In figure 2, the data are shown for two different widths L = 84 and
L = 156, every thing else being equal. As mentioned, the rounding-off of
the velocity profile occurs in both cases, from x = 0 to xlL ex 0.5, the
linear part extrapolat ing to " ,(0) = 0.866. (The data for .the syste m
L = 156 do not fall exactly on top of those for L = 84; however, one must
not forget that the larger system is less one-dimensional than the smaller
one, the length of the system (L' = 240) being the same in both cases). The
fact that t he velocity profile depends on the ratio x/Lis a characteristic of
the linear profile (see below). The data of figure 2 show that this remains
true through the region of rounding off.

In figure 3, data are shown for the system of width L = 84, which cor­
respond to different maximum velocities at x = O. The data demonstrate
that when this velocity drops below 0.4, the rounding-off mostly disappears
and the full linear profile is recovered. A small effect, presumably due to
gas slip velocity, remains close to x = O.

The distortion cannot be due to gas slip velocity, and we concl ude that
what is seen goes beyond the usual fluid description of the Nav ier-Stokes
equation. The distortion shows up as soon as the velocity reaches a value
of 0.4, which corresponds to a Mach numbe r of OA.y'2 = 0.56 . However,
it disappears for small enough velocities. Clearly, Galilean invariance can
only be restored if the fluid velocity is sufficiently small compared to the
unit microscopic velocity . This was already pointed out for the discrete
velocity model in reference 4.

In the tex tbook case where one of the plates, say the left plate, moves
with velocity U, the linear profile (with respect to the choice of axes of
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Figure 1: Velocity profile (open dots) u(x) ss ull (z) of the flow between
two plates corresponding to t he maximum instability on the left plate,
as a function of xlL , where L = 84 is th e width of the system. (T he
length of the system is L' = 240.) The straight line, which is a fit for
xlL > 0.5, intersects the velocity axis at .../3f2 = 0.866, the maximu m
velocity in the y direction.
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F igure 2: Velocity profile u(x) == u~ (:e ) as a fun cti on of x[L, where
the open dot s correspond to a syst em of width L = 84 (t he same as in
figure 1), and the full dots to a system of width L = 156. The length
L' = 240 is the sa me in both cases and the st raight line is the same
as in figure 1.
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Figure 3: T he velocity profiles u(x) = uu(x) for a system of width
L = 84 and length £' = 240, of de creasing maximum velocity. Cu rve 1
is t he same as in figure 1, wit h its st raight line of int ercept 0.866;
curve 2 has lower maximum velocity, with a corresponding st raight
line of intercept 0.6. For curve 3, where t he max imum velocity is
about 0.4, the straight line has approximately the same intercept .
T he respective st raigh t lines fit the profile for x/L closer and closer
to zero as the maximum velocity is lowered.
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figure 1) is given by

u(x) = U(l- i),

759

(2.1)

(2.2)

where u is the compo nent of velocity in the y direct ion. This is a solution
of the Navier-Stokes equation:

d'uv- =o
dx'

with the appropriate boundary conditions (v denotes th e kinematic viscos­
ity ). Noti ce th at th e velocity profile, express ion (2.1), is independent of v.
The linear shape of the profile is the same as long as the relat ive velocity
of the two plates is U. However, from the distorted profile of figure 2, one
can tell at which plate tangential flow occurs; this is a sign of Galilean
invariance breaking .

Let us now assume that the distort ion of the ve locity profile can be
represented by corrections to the usual Navier-Stokes equations. The form
of higher-order corrections, both in the convective and viscous part of the
Nav ier-Stokes equations, is given in reference 2. Because of the symmetry
of one-dimensional flow, only correct ions to the viscous term appear in our
case . To lowest order in the ve locity, they are of the form

and (
du ) '

U dx .

(2.3)

(2.4)

Adding these to the right-hand side of equation (2.2) preserves the u ---+ - u
symmetry of the equation, which remains a property of th e flow in figure 2.
The term in u'(d' u/ dx') leads to a velocity- dependent kinematic viscos­
ity. Replace this by an effective Veff average d over ve locity and cons ider
the influence of term u(du/dx )2, which plays a more impo rtant role . The
extended Navier-Stokes equation reads:

d
2
u _ ~ u (du)'

dx2 - veff dx'

whe re a measures the strength of the extra term. (The profile now depends
on viscosity.) This can be written as (in obvious notation)

"~ = ~ uu'=~(U2)' .
u' veff 2veff

The so lut ion of t his equat ion is related for a < 0 to the error funct ion w(u)
[5}. An exp ans ion to the lowest orders in velocity gives the solution

u +~u' = U (1 - -='-) ,
OVolf L

where we have written a = - I a I. Obviously, to even approach a descrip­
tion of the round -off in figure 3, a must be taken negat ive, the US term
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(2.5)

compensating for the difference between the measured u and the extrapo­
lated velocity profile. An estimate of I" I / 6vef[ from the curves in figure 3
leads to a value between 1 and 2 for curve 1 (intercept U = 0.866) and
between 1 and 1.5 for curve 2 (intercept U = 0.6). T his is not really satis­
factory. However, the error on the coe fficient is large since it is related to
that of 1/u3

. Moreover, if the effective viscosity increases with u , the spread
in values is reduced. (The same result is achieved if fifth-order terms in the
velocity add to the third-order ones. ) The point is, however, not a detailed
numerical study of these higher-order terms, but the realizati on that for
high velocities (Mach number greater than 0.56) they are very import ant ,
because I ex 1 turns out to be of order 6vefIo

Our last remark concerns density. To the same order"(order u2) in
which there are corrections to the Navier-Stokes equation, there appears a
correction to the pressure [21. The pressure becomes

where p is the density and c(2) is a density dependent coefficient, equal to
1 when the average density is 1/3(' ). Thus, although there is no contribu­
tion from pressure to equat ion (2.3), one now obta ins a transverse density
gradient from dp/ dx = 0, namely (with c(') = 1)

dp(l _ U') = I!..'!:.-u'
dx 4 4dx'

where u = u,,(x). As long as U z is small compared to u", and it is , the
equat ion of continuity cont inues to be satisfied. This density gradient is
seen in the data. Excluding the two points closest to the plates where
the density is always smaller, the density drops continuously from small x,
where it is 0.3541, t o high x, where it is 0.3243. A fit to the data with
formula (2.5) works well unti l one gets close to x = 0, where the dat a
rises faster than the numbers given by the fit, indicat ing as in the previous
discussion of the velocity profile the need for even higher-order corrections
in velocity.

3. Summary

We have shown how at large fluid velocity (Mach number above 0.56),
the lattice gas automaton fails to reproduce the linear velocity profile of
one-dimensional flow between two plates. We interpret th is as a sign of
Galilean invariance breaking due to the discrete nature in coordinate and
veloci ty space of the hexagonal lat t ice gas mo del of fluid mechanics. Higher­
order corrections to the Navier-Stokes equations are introduced and their
numerical importance estimated by comparison with the observed effects.
The appearance of a density gradient in the direct ion transverse to the flow
is discussed.
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