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1.
1.1

Abstract. The shear viscosity of a lattice gas can be derived in
the Boltzmann approximation from a straightforward analysis of the
numerical algorithm. This computation is presented first in the case of
the Frisch-Hasslacher-Pomeau two-dimensional triangular lattice. It is
then generalized to a regular lattice of arbitrary dimension, shape, and
collision rules with appropriate symmetries. The viscosity is shown
to be positive. A practical recipe is given for choosing collision rules
so as to minimize the viscosity.

Introduction

Goal

Tor computational efficiency, the collision rules in a lattice gas automaton
should be chosen so as to make the shear viscosity as small as possible [1].
For a given set of rules, the viscosity can be estimated through numerical
simulations [2,3]. It would be much more convenient, however, to have an
explicit formula through which the viscosity could be computed directly
from the lattice rules. Here, I present such a formula, which is applicable
when the following conditions are satisfied:

1,

6.

there is a single population of particles (all velocities have the same
modulus);

. the lattice and the collision rules are “sufficiently symmetrical”, in a

sense which will be made more precise below (section 3);

. the Boltzmann approximation is valid (the probabilities of arrival of

particles at a node from different directions can be assumed indepen-
dent);

. the system is not far from isotropic equilibrium (low Mach number);

. the only quantities conserved by collisions are the number of particles

and the momentum; and

the collisions satisfy semi-detailed balancing.

It can be shown from the formula that the viscosity is always positive.
Moreover, from the structure of the formula, one can derive a simple rule
for the optimization of individual collisions.

© 1987 Complex Systems Publications, Inc.
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1.2 Method

The formula will be derived by a straightforward analysis of the lattice
rules; apart from the basic definition of shear viscosity, nothing is borrowed
from the classical theories of fluid dynamics or statistical mechanics. The
derivation consists of the following steps:

1. Define a steady, homogeneous state, with linear shear velocity field.
2. Write equations for collisions.

3. Write equations for propagation.

4

. Solve these equations to determine the detailed structure of the steady
state.

5. Compute the momentum flux and the viscosity.

In order to show the argument more clearly, the computation is first pre-
sented in detail for a simple case: the triangular lattice introduced by Frisch,
Hasslacher, and Pomeau [4] (FHP lattice). The five steps are described in
sections 2.1 to 2.5, then the computation is generalized to arbitrary lattices
in sections 3.1 to 3.5.

1.3 The FHP lattice

We recall briefly the definition of the FHP lattice. We consider a plane
triangular lattice, populated by particles. At any given time, a particle is
in a given node and has a velocity pointing towards one of the six neighbor
nodes, with a given modulus ¢. At a given node, no two particles can
have the same velocity (exclusion principle). Evolution proceeds in two
alternating phases: (i) collisions: particles arriving at a node “collide” and
may change their velocities, according to definite collision rules; and (ii)
propagation: each particle moves to the next node in the direction of its
velocity. Several variations are possible concerning the collision rules; here
we will use the original rules as defined in [4], i.e. only binary head-on
collisions and triple collisions (see also [1], figures 4a and b). Note that
each collision preserves the number of particles and the momentum. Note
also the overall symmetry of the rules: they are invariant under any rotation
or symmetry which preserves the lattice.

1.4 Notation

The velocities are ¢; = (i1, ¢i2), with £ = 1 to 6 (figure 1). The position
of a node is x = (z1,%2). N;(x) is the probability of a particle arriving at
node x with velocity c;. (In general, N; should depend on time as well as
on position; here, however, we will limit our attention to a steady state).
N/(x) is the probability of a particle leaving node x with velocity c;. We
will use physical units rather than dimensionless units in order to avoid
any ambiguity in the use of the final formula: [ is the link length, 7 is
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Figure 1: The six velocities of the FHP lattice.

the propagation time, and m is the mass of a particle. Thus, the velocity
modulus is ¢ = I /7, and the number of nodes per unit area is f = 2/(v/31?).

2. Computation of the viscosity for the FHP lattice
2.1 Steady state
The gas density is
6
p(x) = frm3_ Ni(x). (2.1)
i=1

We will consider a homogeneous state: p(x) has a constant value p.
In the simplest case of an isotropic velocity distribution, all N; are equal
to the same constant value d:

i

Ni(x) = 6fm d. (2.2)
We will consider a state which does not differ too much from isotropy:

Ni(x) = d + vi(x), Ni(x) = d + vi(x), (2.3)
with

vi(x),vi(x) < 1. (2.4)
We have

6
> wi=o0. (2.5)
i=1

All computations will be made to first order in the ;.
The mean velocity u at a node x is defined by

6
pu(x) = fm Yy Ny(x)e:. (2.6)
=1
We will consider a state in which u is a shear flow:

uy = T!Eg, Ug = 0, (27]
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Figure 2: Deviations from equilibrium at seven neighboring nodes.

where T is a given constant. The steady state is thus defined by two
constants, p and T. Our objective is to compute its detailed structure, i.e.,
the values of the N;(x).

It seems natural to assume that each v; is also a linear function of z,:

vi(x) = kizz + €, (2.8)

where the k; and ¢; ( = 1 to 6) are 12 constants to be determined. The
interpretation of the constants k; is straightforward. Figure 2 represents
the velocities at seven neighboring nodes. The central horizontal line cor-
responds to z; = 0: the mean velocity is u = 0 as shown by equation (2.7).
Therefore, we do not expect any systematic first-order deviation from equi-
librium on that line. In the upper horizontal line, z, is positive, and the
mean velocity u has a positive horizontal constant. Therefore, we expect
an increase of the populations N; for the velocities ¢ = 1, 5, 6 lying in the
right half-plane, and a decrease for the velocities 1 = 2, 3, 4 lying in the left
half-plane, as indicated by the + and — signs (which are the signs of the ;).
In the lower horizontal line, we have the opposite effect. For any particular
velocity c;, then, we have a linear variation of v; with the ordinate z,.
The interpretation of the ¢; terms is more subtle; they result from the
combination of shear and propagation. Consider the situation one prop-
agation step after figure 2. The central node receives an under-average
number of particles along directions 1 and 4, and an over-average number
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Figure 3: Shear-induced anisotropy.

along directions 2 and 5 (figure 3). Thus, a shear-induced anisotropy is
created. This anisotropy is represented by the ¢; terms.

Substitution of equation (2.8) in the mass and momentum equations
(2.1) and (2.6) gives three equations for the ¢;:

6

[ 6
z =0, Z €¢cy =0, E €ciz =0, (2'9)

i=1 i=1 i=1
and three equations for the k;:

6

6 6
¥ h=0; -3 eak=04dT - eak=0: (2.10)

=1 =1 i=1

These equations are not sufficient to determine the ¢ and the k;. To
complete the determination, we must write that the state of the system is
invariant under collisions plus propagation. So we first establish equations
for these two mechanisms.

2.2 Collisions

In this section, we consider a given node x; to simplify, we will omit the
coordinate x and write N; for N;(x), etc.

A particular collision is defined by an input state, defined as a subset
of the n velocities, and an output state, similarly defined. The input state
is conveniently defined by a collection of n numbers:

8= (81, .. 4588), (2.11)

where s; = 1 if velocity c; is present in the input state, s; = 0 otherwise.
Similarly, we define

8 =(8)...,8L) (2.12)

for the output state. We write a collision as C = (s;s'). Each collision C
has an associated probability, which we write

A(C) or  Als;d). (2.13)
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Figure 4: Example of a collision.

As an example, for the collision represented on figure 4, we have
s = (0,0,1,0,0,1), s'=(1,0,0,1,0,0), (2.14)
and the associated probability is, under the classical FHP rules:
A(0,0,1,0,0,1;1,0,0,1,0,0) = A(s;s') = 1/2. (2.15)

It will be convenient to formally define a collision for all s and &', even
if the collision rules do not provide for any actual transition from s to s';
in that case, we simply write A(s;s’) = 0. There are 2° = 64 possible
input states s, and 64 possible output states s'. Therefore, A(s;s') can be
written as a 64 X 64 matrix. In this way, the whole set of collision rules
is neatly encoded into a single matrix. It is a very sparse matrix: most
cases correspond to forbidden transitions, i.e. A4 = 0 (in particular, all
cases where the number of particles or the momentum of s and s' do not
agree). Note also that for an input state s which does not change, there is
A(s;s') = 1for &' = s, and A(s;s') =0 for ' # s.

The sum of all A corresponding to a given input state s must of course
be 1; so for any s we have

Z:A(s;s') =1 (2.18)

We will assume that the symmetric relations are also satisfied, i.e. for any
i ;
s', there is

S A(s;s") =1. (2.17)

This is called semi-detailed balancing.
In what follows, we will frequently have to sum over all collisions, and
we will use the various notations

LAF=3 3 A()[)F =

rr
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1

1
AL, o0y W5 B gy B s (2.18)
8,=0 36=0 ;'lz(] o, =0
where ¥ is any expression.
For any given collision (s;s') with non-zero probability, the number of
particles p and the momentum q must be preserved. In other words, if
A(s;s") # 0, then

8 8
p=) s=p=3 4 (2.19)
i=1 =1
and
6 6
q= Z sic;=q = Z sic;. (2.20)
= =1

We use now the Boltzmann approximation and we write that the prob-
ability of an input state s is

f[ N7 (1— Nj). (2.21)

=1

Therefore, the probability of having a particle with velocity ¢; in the output
state is:

6
N =3 siAT] NjF(1 — N;)%, (2.22)
c i=1

If we sum the probabilities of all input states which contain ¢;, we obtain
N;:

6
Ni=3 s I N/ (1— N;)- (2.23)
s j=1
or, using equation (2.16)
6
N;=3 s;AT] Nj(1 - N;)' . (2.24)
c j=1
Therefore,
6
N,-' == N,‘ = Z(S: b 3.‘)A II N;i (1 - Nj)l_'i. (2.25)
c i=1

If p = 0, there is s; = s; = 0 for all ¢, and the corresponding term in the
right-hand side of equation (2.25) vanishes. Similarly, the term correspond-
ing to p = 6 vanishes. Therefore, we will consider in equation (2.25) and in
all subsequent equations (which derive from it) that the summation is to
be made only on collisions with
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1<p<n-—1. (2.26)

Substituting N; = d + v, N{

! = d+ v}, and developing to first order in
the v;, we obtain

]

vi—y = (st —8)AdP(1-d)*? |14 E — d)y;| .(2.27)

351
The first term can be written, using equations (2.19), (2.16), and (2.17)

EsAdp 1—d 6"’ ZsAd"(l— df =

S sdr' (1 —d)f ' -3 s dP(1— d)*F. (2.28)

This vanishes since the two terms represent the same summation. Using
also equation (2.5), we obtain the fundamental collision equation:

6
v — ;= Z(s: - s;)Ad"“l(l —d)*? Es_.,-u_.,-. (2.29)
c =1

As an example, consider the case i = 1. s} — s; is different from zero in
six cases:

= (1,0,0,1,0,0), s' = (0,1,0,0,1,0), p=2, A=1/2
s=(1,0,0,1,0,0), &'=(0,0,1,0,0,1), p=2  A=1/%
s=(0,1,0,0,1,0), & =(1,0,0,1,0,0), p=2  A=1/%
s=(0,0,1,0,0,1), &' =(1,0,0,1,0,0), p=2  A=1/%
s=(1,0,1,0,1,0), & =(0,1,0,1,0,1), p=3, A=1I;

s =(0,1,0,1,0,1), 8 ={1,0,1;0,1,0), p=3, =1,

(2.30)
Therefore, the collision equation is
V- = %d(l —d)3 (v + vs + vs + Ve — 201 — 214)
+d* (1 — d)*(va + va+ v — 1 — V3 — Us5) (2.31)

The other equations (¢ = 2,...,6) are deduced by rotation of indices.
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2.3 Propagation

The probability of arrival of a particle at a node equals the probability of
leaving the previous node:

Ni(x + 7e;, t + 7) = Nj(x,). (2.32)
Since we assume a steady state, this equation reduces to
Ni(x + re;) = N (x). (2.33)

Substituting the expressions (2.3) for N and N' and using (2.8), we obtain
the fundamental propagation equation:

vi(x) - V(x) = ~rhica. (2.34)

2.4 Computation of the steady state

Combining the collision and propagation equations, (2.29) and (2.34), and
substituting (2.8), we obtain a set of six equations:

6
> (st —8:)AdP (1 — d)* P > si(kiza + €;) — Thicia =0
[+] j=1
(t=1,...,6). (2.35)
We use now these equations, together with equations (2.9) and (2.10),

to determine the steady state. We consider first the terms proportional to
T, in equation (2.35), which give six equations:

1
Ed(l = d}s(kg + ks + ks + kﬁ S 2k1 — 2]64)

+d*(1 — d)%(ky + kg + ks —ky — ks — ks) =0 (2.36)

and five similar equations deduced by circular permutation. This is a set of
linear homogeneous equations. But in fact, there are only three independent
equations, because of the conservation of mass and momentum. Therefore,
equation (2.36) has non-zero solutions, which have the general form

ki = Ko + Kici + Kzeiz (2.37)

where Ky, K;, K; are arbitrary constants. Making use now of equation
(2.10), we find that the K; are uniquely determined and the k; are

o 2O (2.38)

We remark that k; is proportional to the horizontal component of ¢;; this
agrees with the intuitive description of figure 2.1.

We consider next the terms independent of z; in equation (2.35), which
give after substitution of the solution (2.38):
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1
Ed(l = d)s(é'g + €5 + €3 + €5 — 2£1 = 264)

2drT

+d2(1—d)2(£2+E¢+Eﬁ—61—63—65)— ‘:2

C11C12 — 0 (239)

and five similar equations. These are six linear inhomogeneous equations.
Again, there are only three independent equations. Combining with equa-
tion (2.9), we have a system of six independent equations to solve.

It will be helpful to inquire into the physical meaning of equation (2.39).
Figures 2 and 3 showed that propagation produces a deficit of particles in
directions 1 and 4 and an excess in directions 2 and 5. Thus, it tends to
produce an anisotropy in the ¢;. On the other hand, since the collision rules
are symmetrical, they should tend to damp out any anisotropy. Thus, the
first two terms in equation (2.39) represent the damping of the anisotropy
by collisions, while the last term represents the excitation of the anisotropy
by propagation. The equation is satisfied when these two processes are in
equilibrium.

This suggests the following conjecture: the equilibrium anisotropy, rep-
resented by the ¢;, should be proportional to the excitation term in equation
(2.39):

€ X —C;1Ci2. (2.40)
Looking at figure 1, we see that this can be written

€ = —¢, €3 = €, eg =0,
€4 = —¢, € = ¢, =0 (2.41)

where € is a constant. The equations (2.9) are satisfied. Substituting into
equation (2.39), we find that the conjecture is true: the equations are
satisfied if we take

il iy (2.42)

2v/3¢?

and the solution is

€ = ‘—@(1 T d)"scuc,-z. (243)

The steady state is thus completely determined. It is given by equations
(2.3), (2.8), (2.38), (2.43):

2dT 27T %
N; =d+ c—zc;ltg = EF(I e d) 86;16,‘2. (2.44}
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Figure 5: Computation of the momentum flux across a segment

(shown as a dashed line).

2.5 Momentum flux

In view of the spatial periodicity of the lattice, it will be sufficient to com-
pute the horizontal momentum @ transferred downwards across a horizontal
segment of length I, situated above a node x, during one propagation time
7 (figure 5). The shear viscosity n is then defined by

Q =nTir. (2.45)

Contributions to @ come from four possible particle motions, corresponding
to velocity directions 1, 2, 4, 5, as indicated on the figure. For instance,
there is a probability Ny(x) that a horizontal momentum mecy will be
transferred downwards, etc. Summing these contributions, we obtain

Q p—
m[N4(x)c41 + N}‘,(X)C51 = Nl(x + Tcl)Cn ol Nz(x + TCg)Czl]. (2.46)

Equating this to equation (2.45) and substituting the values (2.44) found for
the steady state, we finally obtain the shear viscosity for the FHP lattice:

g 1 1
s [Izd(l —d° §] ' (247)

The first term agrees with the result derived for small d in reference 5.
Good agreement is found with the numerical simulation of reference 2.

3. Computation of the viscosity for a general lattice

We generalize now the computation to arbitrary lattices (subject to the
conditions stated in the introduction).
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We call D the number of space dimensions (D = 2 for the FHP lattice).
Thus, the position of a node is x = (z1,...,zp). We will use Greek letters
a, f3, ... for subscripts representing coordinates; a summation on one of
these subscripts will implicitly run from 1 to D. We call n the number of
velocities (n = 6 for the FHP lattice). We will use Latin letters ¢, j for
subscripts representing velocities; a summation on one of these subscripts
will implicitly run from 1 to n. The velocities are ¢;, with components c;,.
The definitions of N;, N/, I, r, and m given in section 1.4 are unchanged.
The velocity modulus is still ¢ = /7. The quantity f is now defined as
the number of nodes per unit volume; it is proportional to [=?, with a
numerical coefficient which depends on the lattice geometry.

We specify now the symmetry requirements of the lattice. For the pur-
pose of the present paper, we will only need to specify symmetries for the
set of n velocities V = {¢y,...,¢,}.

1. The set V must be isotropic to fourth order. By this, we mean the
following. For a given integer r, we define a tensor of order r

Bay.ar = Z Ciay -+ - Cia, - (3.1}
i

We require that up to order r = 4 these tensors are isotropic (i.e.,
their components are invariant in any rotation of the coordinate axes).
As is easily shown, the tensors are then given by [6]:

B, =Zcia:0$
i

ncz

BaB = Zciuciﬂ = F‘saﬁ;

Bagy = Y. 6iaCigCiy =0,
3

4
nc
Bapy = D _ CiaCipCinCi = m(&:a% +6a18p¢ +8as 64) (3-2)

where 8,5 is the Kronecker symbol.

2. All velocities should be in a sense interchangeable. This is formalized
as follows. We call G the group of the isometries of the D-dimensional
space which map V on itself. Then, for any two velocities ¢; and c;,
there exists an isometry of G which maps c; on c;.

3. We consider now a particular velocity ¢;. In addition to the symme-
try around the origin, expressed by (1) above, the set V must also
exhibit a definite symmetry around ¢;, which we now specify. First,
we decompose each velocity c; as



Viscosity of a Lattice Gas 775

¢; =¢j +¢iL, (3-3)

where c;) is parallel to ¢; and c;, is perpendicular to ¢;. We call G;
the subgroup of G consisting of all isometries in which ¢; is invariant.
For a given j, consider the set V}; of all velocities ¢z(;) which can be
obtained from ¢; by an isometry I € G;. Their parallel components
are equal:

CIi@) = Sl (3.4)

The symmetry condition will be that the set of perpendicular com-
ponents cy;), is isotropic to second order in the hyperplane perpen-
dicular to c;.

To translate this condition into equations, it will be convenient to
temporarily redefine the coordinate system in such a way that the
z, axis is parallel to ¢;. We have then ¢;j = (¢;1,0,...,0), ¢;1 =
(0,¢52,...,¢jp), and the condition is

Lrea; 1i)e = 0, (et =2....D)

gisia y 35
EIEG,— CI(7)aCI(i)8 = RJ&!B: (aaﬂ = 21 ey )a ( }

where R is the same for all @, . (Note that we have summed over
the isometries I € G; rather than over the elements of V;;. This is
easily shown to be equivalent. Consider the subgroup Gj;; of G; made
of the isometries which leave ¢; and ¢; invariant. For any velocity
¢ € V;j, the isometries which map c¢; into ¢, form a left coset of Gy;;
their number is |Gy;|. Thus, summing over I € G;, we obtain each
velocity the same number of times).

The constant R can be computed as follows. We call 6;; the angle
between ¢; and c;. Then,

CI(j)1 = €51 = €COS 6,':' (3.6)
and

D

E c_fr(j)a = ¢?sin® 6;;. (3.7)

a=2

Summing over I € G; and using (3.2b), we obtain

= |G"|'I(:2 Si]'l2 e.',j .

" D-1

(3.8)
Finally, we specify the symmetry requirements for the collision rules.
They are quite simple:

4. Collision rules must be invariant under any isometry of G. In other
words, for any collision (s;s') and for any isotropy I € G, there is
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A[I(s); I(s")] = A(s; §), (3.9)
where I(s) has the obvious meaning.

These conditions are satisfied by the FHP lattice, and also by the face-
centered-hypercubic lattice (FCHC) introduced by d’Humiéres, Lallemand,
and Frisch [7,1]. For the HPP lattice [1,8-10], however, relation (3.2d) is
not satisfied.

3.1 Steady state

Equations (2.1) to (2.6) are still valid, with 6 replaced by n. For an isotropic
velocity distribution, instead of (2.2) we have

Ni(x) = nfLm =d. (3.10)

We consider a state in which the mean velocity field is an arbitrary
linear function of the position x: instead of equation (2.7), we postulate
the more general form

e =3 Tapzp (a=1,...,D). (3.11)
B

The T,g are the components of a tensor, which is the velocity gradient:

_ Ouq
- 3'.!:5'

Tap (3.12)

v; is then assumed to be also a linear function of coordinates: instead of
equation (2.8), we have

v; = Ek.‘p.’f.p + € (3.13)
B

where the k;s and the ¢; are constants to be determined.
The equations (2.9) and (2.10) become

Y &=0, Y €cia =0, (3.14)
and

Z: k,'p = 0, E C.'ak.'g = ndTag. (3.15)

Note that o and f# can take all values in these equations. Thus, equation
(3.14) represents a total of D + 1 equations, and equation (3.15) represents
a total of D(D + 1) equations.
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3.2 Collisions

The collision equation is almost the same as equation (2.29), the only dif-
ference being that 6 is replaced by n:

vi—y; = (s — )AL —d)" P siv;. (3.18)
c i

3.3 Propagation
The propagation equation (2.34) becomes

vi(x) — vi(x) = —7 z KiaCiae (3.17)

3.4 Computation of the steady state

Combining these equations and substituting (3.13), we obtain a set of n
equations:

Zc:(si —8)AF (1 -4~ ZS;(; kipzp + €) — 73 KiaCia =0

(#=15505:n)- (3.18)

Considering first the terms linear in x, we obtain a set of Dn linear homoge-
neous equations for the k;5. Mass and momentum are conserved; we assume
that the collision rules have been so chosen that there is no other conserved
quantity. Then, only D(n — D — 1) of these equations are independent, and
solutions have the form

kip = Kﬂﬂ + Z Kaﬁcl'ﬂ! (3‘19)
a

where the Kog and K,p are arbitrary constants. Using the relations (3.15)
and the symmetry conditions (3.2), we find that these constants are uniquely
determined and the k;z are

Dd
e Z ciaTaﬁ- (3‘20)

Substituting equation (3.20) in equation (3.17), we obtain

"D g (3.21)

vi(x) — v

Summing over 7, and taking into account the conservation of particle num-
ber, we obtain

3 L=, (3.22)
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Thus, the tensor T,s cannot be entirely arbitrarily chosen: its trace must
be zero. This is a consequence of the fact that the density has been assumed
constant in space and time.

We consider next the terms independent of x in equation (3.18). We
obtain a set of n linear inhomogeneous equations:

d
Z(s: = s;)AdP‘l(], - d)ﬂ—P—l ESJ-EJ' - % ZZTaﬂc‘ﬂqﬂ =0
c 7 @ B

(i=1,...,n). (3.23)

Only n — D — 1 of them are independent. Combining with equation
(3.14), we have a system of n equations to solve for the n unknowns ¢;.
It might seem at first view that this system cannot be explicitly solved in
the general case. However, we can again conjecture that the anisotropy
(represented by the ¢;) is proportional to the propagative excitation, i.e.,
that

i _ATDd

Z ; Ta.gC“aC".s (3.24)

2
where A is a constant. It turns out that the conjecture is true and that
(3.24) is indeed a solution of the equations, with A given by
1 _— D ' -1 n—p—1 2
X = -mz(s.- = Si)AdF (1 = d) ES,‘ COos 9.‘,‘, (325)
¢ i

where ¢ is an arbitrarily chosen direction and 6;; is the angle between ve-
locities ¢; and ¢;. A detailed proof of this result is given in Appendix A.
The steady state is now fully determined. It is given by equations (2.3),
(3.13), (3.20), and (3.24):

Dd rDd
N;=d+ = Z Z T,,pc.'a:l:g — A_c?- Z zTaﬁciaCiﬁ- (3.26)
a B a f

The non-dimensional factor A has a simple physical meaning. We define
the post-collision anisotropy terms € by

U'! = Ek"ﬂIﬁ + E:-. (3'27}
B

From equations (3.21) and (3.24), we deduce

E; = (1 = A)% ZZTapcl‘ac,'ﬂ, {3.28)
a B

or

e (1 = i) 5 (3.29)
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In other words, collisions damp a fraction 1/X of the anisotropy.
We remark also that equation (3.26) can be written

Dd
Ni =d G o c—z Z z Taﬁc;,,(:np - ATC"p), (330)
a g

which could lead to an interpretation of A as a mean-free path, expressed
in link lengths.

3.5 Momentum flux

We compute the momentum flux across a “surface” of dimension D — 1, of
measure o, centered in x, perpendicular to a unit vector v. This surface
is assumed to be large in relation to link length: ¢ > [P~1. Links parallel
to ¢; which cross the surface correspond to destination nodes which lie in
a volume o7c¢; - v. The number of these nodes is o7 f¢; - v. The average
position of a destination node is x + 7¢;/2; therefore, the probability of
existence of a particle on a link crossing the surface is on the average

Ni(x + -;-m.') = Nfx) + %rc.- CUNy = Ni(x) + 5ki e (3.31)
according to equation (3.13). (Note that this could be written more sym-
metrically: [Ni(x) + N/(x)]/2.) Thus, the number of particles crossing the
surface in the direction v during the time 7 is

orf(c;-v) [N.-[x) - %‘rk,- . c.—] : (3.32)

Each particle carries a momentum mec;. Finally, we sum on ¢ and we divide
by 7 and o to obtain the desired flux per unit surface:

f ch.—(c.— -v) [N,-(x) - %‘rk,— . c.-] ! (3.33)

Taking for v the axis directions, we obtain the components of the tensorial
flux:

F,,; ] fmz.c;.,c"; [N,’(X) + %Tk,- -. c.-)] . (3.34)

We substitute the values of N; and k; given by equations (3.26) and (3.20):
Py =

fm Z‘: CinCig [ Z E TaptiaZp — £ ()\ - —) E Z Tap(:,ac‘p] ;

(3.35)

Using equations (3.2) and (3.10), we obtain
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Fy=

pc? pre? 1
D13 (A - 5) g Zﬁ: Tap(Bapbos + GanyOp; + basbpy)  (3.36)

or, using equation (3.22):

Fopy = e e (A= 1) T,
Fpo= #2520 -3) (Tu+Tn)  (1#9). (3.37)

Equation (3.37b) shows that the shear velocity is

T62
n=(1’;—+2) A—%). (3.38)

Note that the kinematic viscosity n/p can be interpreted, as in classical
gases, as the product of the particle velocity ¢ by a mean-free path. This
mean-free path equals the link length [ = 7¢ multiplied by the dimensionless
constant (A —1/2)/(D + 2).
Substituting equation (3.25), we obtain the explicit formula
D-1 1

2
pre
= ——1(3.39
" D+2 DEC(S,' == s:-)AdP‘l(l . d)"_p_l Ej 85 cos? 9{5 2] ( )

1 in this formula is an arbitrarily chosen direction.

4. Minimization of the viscosity

We show now that the formula (3.39) can be written in a different way,
involving a sum of squared quantities. As a consequence, the viscosity
is always positive. The new formula provides also a practical recipe for
choosing collision rules which minimize the viscosity.

The right-hand side of equation (3.25) is independent of the chosen 1.
We can therefore sum over ¢ and divide by n:

Z AdP7i (1 —d)~ P! z(s; —sl) Z sjcos® ;. (4.1)

x
A{D

This can be written

P = ppe e AP - g
Yi(si — 8) I 85 La CiaCia Lp CipCip
= (D—?)nc‘ EC Adp_l(l - d)n—p—l Ea Eﬁ (42)

i(si — si)ciacip Lj SjCiatip-

We define
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chﬁ = Z 8iCiaCig: (4.3)

i
The tensor X,p is the second-order momentum of the input state. Note
that it is symmetrical: X5 = Xjp,. Similarly,

aﬁ = Es iCialig (4.4)

is the second-order momentum of the output state. Equation (4.2) becomes

1 D . n—p-
3 =D O 5 AT AT L 2 e = Ko Ko
c a

(4.5)
The trace of X,p is

P, SO sict =Y sic? = pet. 4.6
o DI I AN P (46)

We split X,z into isotropic and anisotropic parts:
2

pe
Xaﬂ = Faaﬁ + Ya,@' (4.7)
The tensor Y,z has a null trace:
N ¥ =0 (4.8)
Similarly, we write
pe? '
s = D bas + Yap- (4.9)

Substituting into equation (4.5) and going over to the more detailed
collision notation (see equation (2.18)), we obtain

; (D — 1)nc4 ZZA (85 8')d~ 1(1 - )u_?_l ZZ(Yaﬁ ;,B)Yaﬁ-

We introduce the quantities
M= T DS AN - T D,
; o (_fwzzAcs;s')dp-lu—d)ﬂ-P-lggxf;fs, (a10)
o= ZEA (581 (1 — —Hz“;;(nﬁ—sf;ﬁ)”,

1)net 5

Hy = 4—(1) ‘—Dl)n(f Z:?A(s;s’)dpki(l — d)nﬂpfl Zﬁ:g(y"‘ﬁ i Y;ﬂ)z_

Equation (4.10) can be written
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1

3 = B pat+ 2ps, (4.11)
or

1

X S+ a2 (4.12)
i1 and p, are computed in Appendix B; their values are simply

1
H1 = H2 = 5 (4.13)

From equations (4.12) and (4.13), we then have

L. 4.14)
oy —Hs=1—pa (4.
Substituting in equation (3.38), we obtain
2
pTC Ky
_ y - 4.15
"= 20+2) 1—n (4325}

k3 and u4 cannot be negative, as shown by their expressions (4.11c) and
(4.11d). Therefore, from equation (4.15):

0<p <1 (4.186)

It follows that the viscosity n is positive of zero. 4 is a dimensionless
number, lying between 0 and 1, which characterizes the viscosity of the
lattice gas; it might be called the viscosity index.

The limiting case p4 = 1 corresponds to an infinite viscosity. It requires
us = 0, or, as shown by equation (11c), ¥}, = Y,p for all collisions: the
second-order momentum must be invariant in collisions. This happens in
particular in the trivial case where there are no proper collisions (i.e., the
velocities remain unchanged during the collision phase).

The other limiting case, g4 = 0, is more interesting: It corresponds to
zero viscosity. For this, we must have for every collision:

Yop + Y 5 =0. (4.17)

This rule has a simple geometrical interpretation. Let us call total state
the sum of the input and output states; the rule is then: for every collision,
the second-order momentum of the total state must be isotropic. (Note
that “sum” is taken in the algebraic sense: if a velocity exists both in the
input and in the output state, it must be counted twice in the computation
of the second-order momentum). A collision which satisfies this condition
will be called a perfect collision.

In practice, not all collisions can be perfect. In particular, when there
is only one velocity (p = 1), the output state is necessarily identical to
the input state since the first-order momentum must be conserved. On
the other hand, the second-order momentum is anisotropic. The quantity
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(4.18) is non-zero. We can therefore strengthen our result: The viscosity is
always positive.

We remark that for any input state with p = n/2 (i.e., with exactly one
half of the incoming links occupied by particles) a perfect collision rule can
be devised as follows:

1. Take the dual of the input state (i.e. replace particles by “holes” and
vice versa);

2. Effect a symmetry with respect to the origin. In other words, call o(z)
the index corresponding to the opposite velocity (ie., c,4) = —¢;);
then, the rule is: s',(.- = 1 — ;. It is easily seen that the number
of particles and the first-order momentum are preserved, while the
second-order momentum of the total state is isotropic. For instance,
in the FHP lattice, we obtain the rules for triple collisions shown in
figure 6. In the first two cases, the velocities are unchanged. The
third case is the “head-on collision with spectator” [11].

In order to minimize the viscosity, one must first sort the states into
subsets according to particle number and momentum, and then pair the
states so as to minimize the quantities (4.18). Roughly speaking, each col-
lision should replace the input state by an output state whose second-order
momentum is as much as possible “symmetrical with respect to isotropy.”
Work is in progress to apply this recipe to the four-dimensional, 24-velocity
lattice gas proposed by d’Humiéres, Lallemand, and Frisch [1,7]. Present
results indicate that this fine-tuning of the collision rules can lower the
viscosity by a factor between 3 and 4 with respect to a collision algorithm
in which the output state is randomly chosen (among all states having the
same particle number and momentum as the input state). More generally,
it seems likely that the larger the number n of velocities, the more closely
the limit 7 = 0 can be approached.

Appendix A.

We prove here that equation (3.24), with A given by (3.25), is a solution of

the equations (3.14) and (3.23). The first part is simple: using equations

(3.2) and (3.22), we immediately find that the equations (3.14) are verified.
We introduce the abbreviated notation

Qi =Y. TapCiatis- (A.1)
« B

Substituting equation (3.24) in (3.23), we find that the equations to be
satisfied are

Qi= '\%:(5-' — §)AdP(1 _@"_’_lzsiqi

(F=1..c5m): (A.2)
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Figure 6: “Perfect” rules for triple collisions in the FHP lattice.
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We consider now a particular value of 7, and the subgroup G; of G consisting
of all isometries in which ¢; is invariant. We divide the collisions into
equivalence classes according to the following rule: two collisions belong to
the same class W if there exists an isometry of G; which maps one into the
other. More precisely, two collisions (s;s') and (3;3') belong to the same
class if there exists an isometry I € G; which maps s into § and s' into 3'.

We decompose now the sum over collisions in equation (A.1): we sum
first over the members of each class W, and then over the classes:

Q=AY 3 (si — AP (1 - d)““’“Zs_,Q, (A.3)

W CeWw

Because of symmetry assumption (4) (see beginning of section 3), A is
constant inside a class W. s;, s}, p are also constant inside a class, and
therefore equation (A.3) can be written

Q=AY (s — AP (1—d)" "1 ) Y 5;Q;. (A4)

CeWw j

Consider a particular class W and a particular collision C* = (s*; s?"™*) €
W. We call G} the subgroup of G; made of isometries which leave C* in-
variant. For any collision C € W, the isometries which map C* into C form

a left coset of GY; their number is |G}| = |G;|/|W|. So, instead of summing
on collisions in W, we can sum on isometries in G;:
w
> 7(0)= 21 5 707 (A5)
Cew |G | IeG;

where ¥ is an arbitrary function. Thus, equation (A.4) becomes

w
— AZ(S, — 8})AdPTH(1 —d)* P Ll > >8R (A.8)
|G | IeG; j
We have used here the fact that each input velocity of C is the image of
an input velocity of C*. Substituting equation (A.1) in the right-hand side
and changing the summation order, we have

Qi= A%(sa-—snfid’“(l—d)“"' :le 28 ZZTaﬂ Z er(gaci()s-(A-T)

We take a coordinate system such that the z; axis is parallel to ¢;. Then
¢r(;n = €1 and equation (A.7) takes the form

Q= A3 (s~ ) A& 1~ PGS

[Tuc,:lG | + ¢ E Tig ) c1i)s
g=2  I€G;



786 Michel Hénon

+ei Z Tar D erj)a+ Z E Tap )., cr(;)acr(a)ﬂ] (A.8)

IeqG; a=2 f= IeG;

Using equations (3.5), (3.6), and (3.8), we obtain

Qi= ALw(si —s})AdP (1 — )P W |T; 85
[Tucz cos?6;; + T2, Tmc—-%‘%l (A.9)

or, using equation (3.22)
Qi =

o Deos? 0 — 1

e (A.10)

AD (si — s AFPTH 1 —d)" P WY sjTue
w i

Summing over all collisions C* € W, dividing by |W|, and dropping the
asterisks, we obtain

Q=
20.. —
A Z(S.‘ e Sz)Adp_l(l == d)n_P_l Z 28_{1‘1162-‘9(:—05—'?:;—];. (All)
w CeW j D=1
From equation (A.1), we find
Qi =Tue’, (A.12)

We can then divide both sides by @; and we obtain

L= Ao A= A ,Eﬁil—. (A.13)
3 =

We remark that the temsor T, has entirely disappeared: the equation
(A.13) depends only on the collision rules. As a consequence, because of
symmetry assumptions (2) and (4) (section 3), this equation is the same
for all directions ¢. The conjecture is verified, and we have found a solution
for the probabilities N;.

The rightmost term 1/(D—1) in equation (A.13) can be deleted because
it gives a null contribution; this is easily seen by summing over . We obtain
then for A the equation (3.25).
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Appendix B.

We evaluate here p; and p; defined by equations (4.11a) and (4.11b). g,
does not depend on s'; therefore, its value is, according to equation (2.16):

2 2
H1 = _—2(D —Dl)n.c4 Z’: @‘1(1 - d)n-p—l gzﬂ:[xaﬁ - %6”] —
D

-1t 2 I

STRER) [ SHANEN)
- ST
2 (cm"‘ﬂ = —5aﬁ) 5,“\ (C:ac:ﬁ 5uﬂ) Z.: sis;d 1 ({BAy)" 7.

i
If 1 = j, the sum over s is
Yo sd M1 —d)r Pl = Z z s;dP (1 —d)* P71, (B.2)
s 2;=0 sn=0

or, using p = 3 &k:

31 1—-51 8n 1 e TR B.3
i DILA L S ED e R S
(the sum over s; gives d; the sums over s; for k # ¢ give 1).
If i # j, the sum over s in equation (1) is
d
i85 =1 — g s T B.4
2 5 dep (1 d) o d, ( )
by a similar computation. Equation (1) becomes
D
= N ECETHH IO
2(D — 1)nct s s —d % i
c? et
(c;mc.',s -5 mﬁ) (cjmcjﬁ == Bﬁaﬂ)- (B.5)

The summations over 17 and 7 can also be written

(ETmry) (B6)

i g=i

The second term vanishes, and there remains
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D c? 2
H1 = mg ;Z(Ciacip = '5605) . (B7)

For a = 8, the sum over ¢ is, using equation (3.2):

2 4 4 4
4 5¢ 2 A 3nc _ne
;‘"’*“ *5 Z‘: %t "D =Dtz D (B.8)
and for a # f:
4
3 3 ne
;cmcip = —D(D s 2)- (B.g)

Finally, we sum over « and f, and equation (B.5) reduces to

1
Hi = "2". (B.].O)
We consider now the quantity p,. It is independent of s. Using the assump-
tion of semi-detailed balancing (2.17), we can sum over s and eliminate A.
A computation similar to the above one gives then

Hz = 5 (B.ll)
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