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Viscosity of a Lattice Gas

Michel H enon
C.N.R.S., Observatoire de Nice, France, B.P. 139, 06003 Nice Cedex , France

Abstract. The shear viscosity of a lattice gas can be derived in
th e Boltzmann approximat ion from a straightfor ward analysis of th e
numerical algorithm. Thi s computat ion is presented first in the case of
the Friech-Hasslacher-Pome au two-dimensional triangular lattice. It is
then generalized to a regular lat t ice of arbitrary dimension, shape, and
collision rules with appropriate symmetries . The viscosity is shown
to be positive. A practical recip e is given for choosing collision rules
so as to minimize th e viscosity.

1. Int roduction

1.1 Goal

For computational efficiency, the collision rules in a lattice gas automaton
should be chosen so as to make the shear viscosity as small as possible [1].
For a given set of rules, the viscosity can be estimated through numerical
simulations [2,3]. It would be much more convenient, however, to have an
explicit formula through which the viscos ity could be computed directly
from the lattice rules . Here, I present such a formula , which is applicable
when the following conditions are sat isfied:

1. there is a sing le population of particles (all velocities have the same
modulus);

2. the lattice and the collision ru les are "sufficiently symmetrical", in a
sense which will be made more precise below (section 3);

3. the Boltzmann approximation is valid (the probabilities of arrival of
particles at a node from different direct ions can be assumed indepen­
dent) ;

4. the system is not far from isotropic equilibrium (low Mach number) j

5. the on ly quantities conserved by collisions are the number of particles
and the momentum; and

6. the collisions satisfy semi-detailed balancing .

It can be shown from the formu la that the viscosity is always positive.
Moreover, from the structure of the formula, one can derive a simple rule
for the optimization of ind ividual collisions .
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1.2 Method

The formula will be derived by a straightforward analysis of the lat t ice
rules; apart from the basic definition of shear viscosity, nothing is borrowed
from the classical theories of fluid dynamics or statistical mechan ics. The
derivation consists of the following steps:

1. Define a steady, homogeneous state, with linear shear velocity field.

2. Write equations for collisions .

3. Write equations for propagation .

4. Solve these equations to determine the det ailed structure of the steady
state.

5. Compute the momentum flux and the viscos ity,

In order to show the argument mo re clearly, t he computat ion is first pre­
sented in de tail for a simp le case: the triangular lattice introduced by Frisch,
Hasslacher, and Pomeau [41 (FHP lattice). The five steps are described in
sections 2.1 to 2.5, then the computation is generalized to arbitrary lattices
in sections 3.1 to 3.5.

1.3 The FliP lattice

We recall briefly the defin it ion of the FHP lat t ice. We cons ider a plane
t riangular lattice, populated by part icles. At any given t ime, a particle is
in a given node and has a velocity pointing towards one of the six neighb or
nodes, wit h a given modulus c. At a given node, no two particles can
have the same velocity (exclusion principle). Evol ut ion proceeds in two
alte rn at ing ph ases: (i) co1lisions: particles arriv ing at a node "collide" and
may change their velocities, according to definit e collision rules; and (ii)
propagation: each particle moves to the next node in the dire cti on of its
velocity. Several variations are possibl e conce rn ing the collision rules; here
we will use the original rules as defined in [4J, i.e. on ly binary head-on
collisions and triple collisions (see also II ], figures 4a an d b) . Note that
each collision pr eserves the number of particles and the momentum. Note
also the overall symmetry of the rules: t hey are invari an t under any rotation
or symmet ry which preserves the lattice.

1.4 N ot a tion

The velocities are c, = (Cil,Ci2)' with i = 1 to 6 (figure 1). The position
of a node is x = (Xl, 2:2) ' Ni(X) is the probability of a particle arriving at
node x with velocity Ci . (In general, N j sho uld depend on time as well as
on posit ion; here, however, we will limit our attent ion to a steady state).
N!(x) is the pr oba bil ity of a particle leaving node x with veloc ity c;. We
will use physical uni ts rather th an dimensionl ess units in order to avo id
any ambiguity in the use of the final formula: I is the link length, T is
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Figure 1: The six velocities of the FHP lattice.
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the propagation time, and m is the mass of a particle. Thus, the veloc ity
mo dul us is c = liT, and the number of nodes per unit area is I = 2/ (..;3 1' ).

2 . Computation of the viscosity for the FHP lattice

2 .1 Steady state

The gas density is

s
p(x) = [rn LN;(x).

i = l

(2.1)

We will cons ider a homogeneous state: p(x) has a cons tant value p.
In the simplest case of an isotropic veloc ity distr ibut ion, all Ni are equal

to the same constant value d:

P
N;(x ) = -1- = d.

6 m
(2.2)

We will consider a state which does not differ too much from isotropy:

N;(x) = d + v;(x ),

with

v; (x), vax) ¢: 1.

We have
6

LV; =0.
i=l

N;(x ) = d + vax), (2.3)

(2.4)

(2.5)

All computations will be made to first order in the Vi _

The mean veloc ity u at a node x is defined by

6

pu(x) = [rn.L N;(x)c;.
i=I

We will consider a state in which u is a shear flow:

(2.6)

U 2 = 0, (2.7)
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Figure 2: Deviations from equilibrium at seven neighboring nodes.

where T is a given constant. The steady state is thus defined by two
constants, p and T . Our objective is to compute its detailed structure, i.e ,
the values of the Ni(x ).

It seems natural to assume that each Vi is also a linear functi on of X2:

(2.8)

where the ki and 'i (i = 1 to 6) are 12 constants to be determined . The
interpretation of the constants ki is straightforward. Figure 2 represents
the velocities at seven neighboring nodes. The central horizontal line cor­
responds to x, = 0: the mean velocity is u = 0 as shown by equat ion (2.7).
Therefore, we do not expect any systematic first-order deviation from equi­
librium on that line. In the upper horizontal line, %2 is positive, and the
mean velocity u has a positive horizontal constant. Therefore, we expect
an increase of the populations Ni for the velocities i = 1, 5, 6 lying in the
r ight half-plane , an d a decrease for t he velocities i = 2, 3, 4 lying in t he left
half-pl an e, as indicat ed by the + and - signs (which are t he signs of the Vi) '

In the lower horizontal line, we have the opposite effect. For any particular
velocity c. , then, we have a linear variation of Vi with the ordinate %2'

The interpretation of the f i terms is more subtle; they result from the
combination of shear and propagation. Consider the situation one prop­
agation step after figure 2. The central node receives an under-average
number of part icles along directions 1 and 4, and an over-average number
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along directions 2 and 5 (figure 3). Thus, a shear-induced anisotropy is
created. This anisotropy is represented by t he f, terms.

Substitution of equation (2.8) in the mass and momentum equations
(2.1) and (2.6) gives three equat ions for the <;:

6

L£' =O,
'=1

6

L E,CH = 0,
,=1

6

LE,Cj2 = 0 ,
,=1

(2.9)

and three equations for the 1<;:

6

' L c;,1<; = 6dT,
i=1

6

Lc;,1<; = O.
i =1

(2.10)

These equations are not sufficient to determine the fi an d the k,. To
complete the determination, we must write that the state of the system is
invariant under collisions plus propagat ion . So we first establish equations
for these two mechanisms.

2.2 Collisions

In t his section, we cons ider a given node Xi to simplify, we will omit the
coordinate X and wr ite Ni for Ni( x), etc.

A particular collision is defined by an input state, defined as a subset
of the n velocit ies, and an output state, similarly defined. The inp ut state
is convenient ly defined by a collection of n numbers:

(2.11)

where s, = 1 if velocity c, is present in the input state, Si = °otherwise.
Similarly, we define

for the output state. We write a collision as C = (8;S') .
has an assoc iated probability, which we write

(2.12)

Each collision C

A(C) or A(s ;s'). (2.13)
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As an exam ple, for the collision represented on figure 4, we have

s = (0,0 , 1,0,0, 1), 5 ' = (1,0, 0, 1, 0, 0) , (2.14)

and the associated probability is, un der t he classical FHP rules:

A(O, 0, 1,0,0,1; 1, 0,0,1, 0, 0) = A(s; s') = 1/2. (2.15)

It will be convenient to formally define a coJIision for all sand S' , even
if the collision rules do not provide for any actual transition from s to 5';
in that case, we simply write A(s; 5') = O. There are 26 = 64 possible
input states 5, and 64 possi ble output states s' . Therefore, A(s;s') can be
written as a 64 X 64 matrix. In th is way, the whole set of collision ru les
is neatly en code d into a sing le mat rix. It is a very sparse matrix: most
cases correspon d to forbidden t ransitions , i.e. A = a (in particular, a ll
cases whe re the number of particles or the momentum of sand s' do not
agree). Note also that for an input state s which does not change, there is
A(s;s' ) = 1 for s' = s, and A(s ;s') = 0 for s' l' s,

The sum of all A corresponding to a given input state s must of course
be L; so for any s we have

LA(s;s') = 1.
.'

(2.16 )

We will assume that the symmetric relat ions are also satisfied, i.e. for any
5', there is

LA(s;s') = 1.
•

(2.17)

This is ca lled semi-detailed balancing.
In what follows, we will frequently have to sum over all collisions, and

we will use the various notat ions

L A1 = LL A(J;f') 1 =
C f f'
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(2.18)

where 1 is any expression.
For any given collision (s; s') with non-zero probability, the number of

particles p and the momentum q must be preserved. In other words, if
A(s;s') # 0, then

and

• •
p = 2::Sj = p' = E8~,

i =1 i=1

• •
q = 2:: s .c, = q' = L S~Ci .

i = 1 i=1

(2.19)

(2.20)

(2.21)

We use now the Boltzmann approximation and we write that the prob-
ability of an input state S is

6

IIN;'(l - N;)' - ·i.
;=1

Therefore, the probability of having a particle with velocity c, in the output
state is:

•
N! = '" lA IIN~i (l - N' )' - ' i'L.J, , , .

C ; = 1

(2.22)

If we sum the probabilities of all input states which conta in CiJ we obtain
Ni :

6

N; = L S' II N;'(l - N;)Hi
- ;=1

or , using equat ion (2.16)

6

N, = L s,A II N;'(l - N;)Hi.
C ;=1

Therefore,

6

N! - N; = L(S: - s,)A II N;'(l - N;)' -·i.
C ;=1

(2.23)

(2.24)

(2.25)

If p = 0, there is Si = .s ~ = 0 for all i ; and the corresponding term in the
right-hand side of equation (2.25) vanishes. Similarly, the term correspond­
ing to p = 6 vanishes . Therefore, we will consider in equat ion (2.25) and in
all subsequent equations (which derive from it) that the summ ation is to
be made only on collisions with
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(2.26)

Substituting Ni = d + Vi, N: = d + 11: , and developing to first order in
the Vi , we obtain

v; - Vi = L(S: - si)AdP(l- d)6-
p [1+ d( ~ d) IJs; - d)V;] .(2.27)

c 1 ,=1

The first t erm can be wr itten, using equations (2.19) , (2.16), and (2.17)

L s:Ad" (1 - d)6- p' - L siAd' (l - d)6-p =
c c

L S:d"( l - d)' -P' - L Sid'( l - d)'-p .

"
(2.28)

This vanishes since the two terms represent the same swnmation . Using
also equation (2.5) , we obta in the fundamental collision equation:

,
v; - Vi = L(s: - s;)A d' - ' (l - d)' -P L s;v; .

C ;=1
(2.29)

As an example, consider the case i = 1. s~ - Si is different from zero in
s ix cases:

s = (1,0,0, 1,0,0) , 5 ' = (0,1 ,0,0,1 ,0), p =2 , A = 1/2;

s = (1,0,0,1 ,0,0) , 5' = (0,0,1,0,0,1) , p =2, A = 1/2;

s = (0,1 ,0,0, 1,0) , 5 ' = (1,0,0,1 ,0,0) , p =2, A = 1/2;

s = (0,0,1,0,0,1) , 5 ' = (1,0,0,1,0,0) , p =2, A = 1/2;

s = (1,0,1 ,0,1,0), 5' = (0,1 ,0, 1,0,1) , p = 3, A = 1;

s = (0,1,0,1 ,0,1), 5' = (1,0,1,0, 1,0) , p = 3, A =l.

(2.30)

Therefore, the collision equation is

v; - v. = ~d(l - d)'(v, + v, + v, + 1'6 - 21', - 21',)

+d' (l - d)'(v, + v, + v, - v. - v, - v,) (2.31)

The other equations (i = 2, . . . , 6) are deduced by rotation of indices.
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2.3 Propagation

The probability of arrival of a particle at a node equals the probability of
leaving the previous node:

N;(x + TCi , t + T) = N!(x, t ).

Since we assume a steady state, this equat ion reduces to

Ni(x + TCi) = N!(x) .

(2.32)

(2.33)

Substituting the expressions (2.3) for N and N' and using (2.8), we obtain
the fundamental propagation equation:

v;(x) - rJ,(x ) = - Tkic" . (2.34)

2.4 Compu t a t ion of the steady state

Combining the collision and propagation equat ions , (2.29) and (2.34) , and
subst ituting (2.8) , we obtain a set of six equations:

•
L(s: - si)Alr'(l - d)S-P L S;(k;x, + <i) - Tkic" = 0
C i=1

(i= 1, ... ,6) . (2.35)

We use now these equations , together with equations (2.9) and (2.10),
to determine the steady state. We consider first the terms proportional to
X 2 in equation (2.35) , which give six equat ions:

id(l - d)'(k, + ks + k, + k. - 2k, - 2k.)

+d' (l - d)' (k, + k. + ko - k, - k, - ks) = 0 (2.36)

and five similar equat ions deduced by circular permutation. This is a set of
linear homogeneous equations. But in fact, there are only three independent
equat ions, because of the conservatio n of mass and momentum. Therefore,
equation (2.36) has non-zero solutions, which have the general form

(2.37)

where Ko, K h K 2 are arbitrary constants. Making use now of equation
(2.10) , we find that the K, are uniquely determine d an d the ki are

2dT
k; = -,Cil' (2.38)

C

We remark that ki is proportional to the horizontal component of cr; this
agrees with the intuitive description of figure 2.l.

We consider next the terms independent of X 2 in equat ion (2.35), which
give after substitut ion of t he solut ion (2.38):
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~d(l - d)'«, + <, + ea + <, - 2<. - 2<,)

'( ) '( ) 2dTT+d 1 - d €2 + €. + €6 - fl - ea - es - --,-Cllel2 = 0
c

(2.39)

an d five similar equ at ions. These are six linear inhomogeneous equat ions.
Aga in, there are only three independent equ ations. Combining with equa­
t ion (2.9) , we have a system of six independent equ at ions to solve.

It will be he lpful to inquire into the physical meaning of equat ion (2.39).
F igures 2 and 3 showed that propagation produces a deficit of p ar t icles in
direct ions 1 an d 4 and an excess in directions 2 and 5. Thus, it tends to
produce an anisotropy in the f i . On the ot her hand, since the collision rules
are synunetrical, they should tend to damp out any anisotropy. Thus, the
firs t two terms in equa t ion (2.39) represent the damping of the anisotropy
by collis ions, while the las t term represents the excitation of the anisotropy
by propagation . The equation is sat isfied when these two processes are in
equilibrium.

This suggests the following conj ect ure : the equ ilibr ium anisotropy, rep­
resented by the fi , should be proportional to the excita t ion term in equat ion
(2.39) :

(2.40)

Looking at figure 1, we see that this can be written

(2.41)

where e is a const ant. The equations (2.9) a re sa t isfied . Substituting into
equation (2.39), we find that the conjecture is true: the equat ions are
sa t isfied if we take

TT
, = --;;;-(1 - d)- '

2y3 c2

an d the solution is

(2.42)

2TT _,
<, = - 3c' (1 - d) CilC" , (2.43)

T he steady state is thus completely determined. It is given by equat ions
(2.3) , (2.8), (2.38), (2.43):

2dT 2TT _,
M" = d + - C"IX, - - (1 - d) C"'C "' (2.44)

I c2 I 3c2 I I '



Viscos ity of a Lattice Gas

Figure 5: Computation of the momentum flux across a segment
(shown as a dashed line).

2.5 Momentum flux
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In view of the spatial periodicity of the lat t ice, it will be sufficient to com­
pute the horizont al momentum Q t ran sferr ed downwards across a horizontal
segment of length I, situated above a node x , during one propagat ion time
T (figure 5) . The shear viscosity ~ is then defined by

Q = ~TIT. (2.45)

Contributions to Q come from four possible particle motions, corresponding
to velocity directions 1, 2, 4, 5, as indicated on the figure. For instance,
there is a probability N 4 (x ) that a horizontal momentum mc,,! will be
t ransferred downwards, etc . Summing these contributions, we obtain

Q =

m[N. (x)C41 + N,(X)C51 - N,(x + TC,)Cll - N,(x + Tc,)c"l. (2.46)

Equating this to equat ion (2.45) an d substituting the values (2.44) found for
the steady state, we finally obtain the shear viscosity for t he FHP lattice:

[
1

- TC 2

~ - P 12d(l - d)' (2.47)

The first term agrees with the result derived for small d in reference 5.
Good agreement is found with the numerical simulation of reference 2.

3. Computation of the viscosity for a general lattice

We generalize now the computation to arbit rary lattices (subject to the
conditions stated in the int roduction).
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We call D the number of space dimensions (D =2 for the FHP lat t ice).
Thus, the position of a node is x = (Xb '" ,XD). We will use Greek letters
Q: , fJ, .. . for subscripts representing coordinates ; a summation on one of
these subscripts will implicitly run from 1 to D. We call n the number of
velocit ies (n = 6 for the FHP lattice) . We will use Latin letters i , i for
subsc ripts representing velocit ies; a summation on one of these subscripts
will implicitly run from 1 to n. The ve locities ar e Ci, with components Cia '

The definitions of N i , N], I, T, and m given in sect ion 1.4 are unchanged .
The velocity modulus is still c = tlr , The quant ity f is now defined as
the number of nodes per unit volume; it is proportional to l - D, with a
numerical coefficient which depends on the lattice geometry.

We spec ify now the symmetry requ irements of the lat ti ce. For the pur­
pose of the prese nt paper , we will on ly need to specify symmetries for the
set of n velocit ies V = {Cit . . . . c.},

1. Th e set V must be isotropic to fourth order. By this, we mean the
following. For a given integer r, we define a tensor of or der r

B a l ... a , = L Cio l • •• Cia,'

i

(3.1)

We require that up to order r = 4 these t ensors are isotropic (i.e. ,
their components are invariant in any rotation of the coordinate axes) .
A1; is easily shown, the te nsors are then given by 161:

where 6ap is the Kronecker symbol.

2. AU velocities should be in a sense interchangeable. This is formalized
as follows. We call G the group of the isometries of the D-dimensional
space which map V on itself. Then, for any two velocities c, and c;,
there exists an isometry of G which maps c, on c;.

3. We consider now a particu lar velocity c.. In addition to the symme­
try around t he origin, expressed by (1) above, t he set V must also
exhibit a defini te symmetry around c., which we now specify. F irst ,
we decompose each velocity c; as
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C; = c;11+ c; J. ,
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(3.3)

where c;11 is par allel to c, and C; l. is perp endicular to c. . We call G j

the subgroup of G consist ing of all isomet ries in which c, is invari ant.
For a given i, consider the set Vi; of all velocities crw which can be
obtained from c; by an isometry I E Gi • Their parallel components
are equal:

(3.4)

The symmetry condition will be that the set of perpendicular com­
ponents CI(;) l0 is isotropic to second order in the hyperplane perpen­
dicular to c..
To translate this condi t ion into equat ions, it will be convenient to
t emporarily redefine the coordinate system in such a way that the
Xl ax is is parallel to c. . We have then c;1I = (C;bO, . .. , O) , C;l. =
(O,C;2"" ,C;D ), and the condition is

E/EGt cIUla = 0,
E /EGt CIU)aCl(;)fI = R6afl '

(£l =2, .. . ,D),
(£l,p = 2, ... ,D) , (3.5)

where R is the same for all a, p. (Note that we have summed over
the isometr ies I E Gj rather than over the elements of Vi;. This is
easily shown to be equivalent . Consider the subgroup Gi; of Gi made
of the isometries which leave c, and c; invarian t . For any velocity
Cot E Vi;, the isometries which map c; into Cot form a left coset of Gi; ;

their number is IGi;l. Thus , summing over I E Gi , we obtain each
velocity t he same number of t imes) .

The constant R can be computed as follows. We call 9;; the ang le
between c, and c; . Then,

CI(;)l = C;l = C cos (Ji;

and

D"" ,., "L- c1U)a = C am Ui ;·
a=2

Summing over IE Gi and using (3.2b), we obtain

R = IG; [c' sin' 9;; .
D- l

(3.6)

(3.7)

(3.8)

Finally, we specify the symmetry requirements for the collision rules.
They are quite simple:

4. Collision rules m ust be invariant under any isometry of G. In other
words, for any collision (s;5') and for any isot ropy l EG, there is
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AII(s ); I (s'li = A(s ;s'},

where 1(s) has the obvious me aning.
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(3.9)

These conditions are satisfied by the FHP lattice, and also by the face­
centered-hypercubic lat t ice (FC HC) int roduced by d''Humieres, Lallemand,
and Frisch [7,11 . For the HPP latt ice 11,8-101, however, relation (3.2d) is
not satisfied.

3.1 Stead y state

Equations (2.1) to (2.6) are st ill valid, with 6 replaced by n. For an isotropic
velocity distribution, instead of (2.2) we have

p
N;(x ) = - f- = d.

n m
(3.10)

We consider a state in which the mean velocity field is an arbitrary
linear function of the position x: instead of equation (2.7), we postulate
the more general form

(a = 1, ... ,D). (3.11)

The TaIJ are the components of a tensor, which is the velocity gradient:

(3.12)

Vi is then assumed to be also a linear function of coordinates: instead of
equation (2.8)' we have

1/i = L: kilJxlJ + Ei
P

where the kiP and the fi are constants to be determined.
The equations (2.9) and (2.10) become

(3.13)

LEi = 0 , (3.14)

and

(3.15)

Note that a and {3 can take all values in these equations. Thus, equation
(3.14) represents a total of D + 1 equations, and equat ion (3.15) represents
a tot al of D(D + 1) equat ions.
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3.2 Collisions

The collision equat ion is almost the same as equat ion (2.29), the only dif­
ference being that 6 is replaced by n:

v; - Vi = L)s~ - si)AdP-1(l - dt-p
-

1L Sj Vj .

c ;

3.3 Propagation

The propagation equa t ion (2.34) becomes

Vi(X) - 1I;(x) = - T L kiaCia'

•

(3.16)

(3.17)

3.4 Computation of the steady state

Combining these equations and substituting (3.13), we obtain a set of n
equat ions:

I)s: - s,)AdP- 1 (1 - d)"-·-l L silL k;~:z;~ + f;) - T Lk,. c,. = 0
C j fJ a

(i= 1, ... .n). (3.18)

Considering first the terms linear in x , we obtain a set of Dn linear homoge­
neous equations for the kiP' Mass and momentum are conserved; we assume
that the collision rules have been so chosen that there is no other conserved
quant ity. Then, only D(n - D - 1) of these equat ions are independent, and
solutions have the form

kiP = K OIJ + L K apCia,

•
(3.19)

where the KOIJ and KaIJ are arbitrary constants. Using the relations (3.15)
an d the symmetry conditions (3.2) , we find that these constants are uniquely
determined and the kiP are

Substituting equation (3.20) in equation (3.17) , we obtain

v,(x) - v:(x) = - T~d L LT.~c;.c;~.
c • ~

(3.20)

(3.21)

Summing over i , and taking into account the conservation of particle num­
ber, we obtain

LT•• = 0.
•

(3.22)
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Thus, the tenso r T aP cannot be entirely arbitrarily chosen: its trace must
he zero. Th is is a consequence of the fact that the density has been assumed
constant in space and time.

We cons ider next the terms independent of x in equation (3.18). We
obtain a set of n linear inhomogeneous equations:

"(' ) - 1( )n--l " rDd " "L.J s, - s, AdP 1 - d P L" S;f; - - ,- L- L" Ta/JCiaCilJ = a
C i C Q IJ

(i = 1, ... ,n). (3.23)

Only n - D - 1 of them are independent . Combining with equat ion
(3.14), we have a system of n equations to solve for the n unknowns f j.

It might seem at first v iew that this system cannot be explicitly solved in
the general case. However, we can again conjecture that the anisotropy
(represented by the Ej) is proportional to the propagat ive exci tat ion , i.e.,
that

rDd
" = ->.-,- L L T.pc;.c;p

o • p
(3.24)

where >. is a constant. It turns out that the conjecture is true and that
(3.24) is indeed a solution of the equations, with .\ given by

1 D
- = -- " (s · - s'.)Ad"-1(1 - d)n- p-l" s, cos' 9..
.\ D - 1 La - , 7 1 _,,

(3.25)

(3.26)

where i is an arbitrarily chosen direction and Oij is the angle between ve­
loci t ies c, and Cj . A detailed proof of this resu lt is given in Appendix A.
The ste ady state is now fully determined. It is given by equations (2.3),
(3.13), (3.20), and (3.24) :

Dd rDd
N; = d + - , LLT.pc,.xP- >'-,-LLT.pc,.c,p.

cop C Cl fJ

The non-dimensional factor .\ has a simple physical meaning. We define
the post-collision anisotropy terms <by

v; = L: kifJxp + f~.
P

From equations (3.21) and (3.24), we deduce

rDd "-: = (1 - >.) -,- L L. T.pc,.c,P,
C • P

or

(3.27)

(3.28)

(3.29)
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In other words, collisions damp a fraction 1/). of the anisotropy.
We remark also that equat ion (3.26) can be written

Dd
N, = d+ - , LLT.~C;.(x~ - >'TC;~),

C • ~
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(3.30)

which could lead to an interpretation of A as a mean-free path, expressed
in link lengths.

3 .5 Momen t um flux

We compute the momentum flux across a "surface" of dimension D - 1, of
measure 0, centered in x , perpendicular to a unit vector v . This surface
is assumed to be large in relation to link length: 0 >- l D - l. Links parallel
to c, which cross the surface correspond to destination nodes which lie in
a volume OTCi . v. The number of these nodes is 01 f c, . v . The average
position of a dest inat ion node is x + 1Cd2j therefore, the probability of
existence of a particle on a link crossing the surface is on the average

1 1 1
Ni(X + 2"TC;) = N;(x ) + 2"TC; . 'lN; = Ni(x ) + 2"Tk; . c., (3.31)

according to equation (3.13). (Note t hat t his could be written more sym­
metrically: [N;(x ) + N!(x)Jl2 .) Thus, the number of particles crossing the
surface in the direction v during the time T is

UT ftc; . v) [N;(X) + ~Tki . Ci] . (3.32)

Each particle carries a momentum mCi . Finally, we sum on ~ and we divide
by 1 and 0 to obtain the desired flux per unit surface:

f m LC;(c; -v) [N;(x) + ~Tk; . -l
,

(3.33)

Taking for v the axis directions, we obta in the components of the tensorial
flux:

F" = f mL c;,c;, [Ni(X) + ~Tki .- C;)].
,

(3.34)

We substitute the values of N; and k, given by equations (3.26) and (3.20) :

F "I£ =

(3.35)

Using equat ions (3.2) and (3.10), we obtain
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F "I! =

Michel Honon

or , us ing equ ation (3.22):

(3.36)

F"'f"f =

F"t! =

Ei!... _ 2pr c:l (>. _ 1) T.
D D+2 2 "J'H

-gf, (oX - t) (T" + T,, ) h # ,) . (3.37)

Equation (3.37b) shows that the shear velocity is

_ p T C' (oX _ .!:)
'7 - (D + 2) 2' (3.38)

Note that the kinematic viscos ity TJ /p can be interpreted, as in classical
gases, as the product of the particle velocity c by a mean-free path . This
mean-free path equals the link length I = T C mult iplied by the dimensionless
cons t ant (A - 1/ 2)/{D + 2) .

Substituting equat ion (3.25), we obtain the explicit formula

_ p TC' [ D - 1 _ .!:] (3 39)
'7 - D + 2 D ~c(s, - sDAd' '{1 - d)n- p ' ~; s; cos' 0,; 2 . '

i in this formula is an arbitrarily chosen direction.

4. Minimization of the viscosity

We show now that the formula (3.39) can be writt en in a different way,
involv ing a sum of squared quantities . As a consequence, the viscosity
is always positive. The "new formula provides also a pract ical recipe for
choosing collision rules which minimize the v iscos ity.

T he righ t-hand side of equation (3.25) is indep endent of the chosen i.
We can therefore sum over i and divide by.n:

.!: = D " AdP-'(l _ d)n-p-l "{s' _ s'.) " s, cos' 0... (4.1)
>. (D - l)n La 7' I 7 1 I}

This can be written

t = (D ~)n,' ~c AdP-
1 (1 - d)n-p- l

L:i (S i - si) L:j Sj L:a CiaCj a L,8 Ci,8Cj,8

= (D-~)n,' ~c AdP-
1 (1 - d)n-p-l~" ~~

L:i (Si - Si)CiaCi,8 L j SjCja Cj ,8_

We define

(4.2)
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(4.3)

The tensor X aP is the second- order momentum of the input state. Note
that it is symmetrical: X aP = X fJa . Similarly,

(4.4)

is the second-order momentum of the output state . Equation (4.2) becomes

1 D
"' = (D _ ) • L:Adp-l(1- d)"-p-l L:L:(XaP - X~p)XaP'
1\ Inc c afJ

(4.5)

The trace of Xap is

"'x - "' ''' ' -'" ' - ,L...J aa - L...J L...J Si Cja - L...J Si C - pc •
a a i

We split X afJ into isotropic and anisotropic parts :

pc'
X aP = ]]oaP + YaP'

The tensor YafJ has a null trace:

L: Yaa = O.
a

(4.6)

(4.7)

(4.8)

Similarly, we write

/ pc
2

,
X aP = ]]Oap + Yap' (4.9)

Substituting into equation (4.5) and going over to the more detailed
collision notation (see equation (2.18)) , we obtain

1 D
"' = (V _ ) • L:L:A(s;s')d"-'(1 - d)n-

p
-' L:L:{YaP - Y~p )YaP '

A I n c " , afJ

Equation (4.10) can be written
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or
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(4.11)

1
I = 31'1 + 1'2 - 21'"

JLl and #2 are computed in Appendix B: their values are simply

(4.12)

(4.13)

(4.14)

1
1'1 =1'2 = 2'

From equations (4.12) and (4.13), we then have

1
2>' = 1'3 = 1 - 1',.

Substituting in equation (3.38), we obtain

pTC2 #4
'I = 2(D + 2) 1 _ 1',' (4.15)

J.Ls and J.L, cannot be negative, as shown by their expressions (4 .11c) and
(4.11d). Therefore, from equation (4.15):

o~ 1', ~ 1. (4.16)

It follows that the viscosity f7 is positive of zero. P,4 is a dimensionless
number, lying between a and 1, which characterizes the viscosity of the
lattice gas; it might be ca lled the viscosity index .

T he limiting case P.f = 1 cor responds to an infin ite viscosity. It requires
/13 = 0, or, as shown by equat ion (He), Y~,8 = Yatt for all collisions: the
second-order momentum mu st be invariant in collisions . This happens in
particul ar in the trivial case where there are no pr oper collisions [i.e., the
velocit ies remain unchanged during the collision ph ase) .

T he ot her limit ing case, 1J.4 = 0, is more interesting: It corresponds to
zero viscos ity. For this, we must have for every collision:

Ya~ + Y~~ =O. (4.17)

This ru le has a simple geometrical inte rpretation. Let us ca ll total state
the sum of the input and output states; the ru le is then: for every coIlision,
the second-order momentum of the total state must be isotropic. (Note
that "sum" is taken in t he algebraic sense: if a veloc ity exists both in the
input and in the output state, it must be coun ted twice in the computation
of the second-order moment um). A collision which satisfies this condition
will be called a pe rfect collision .

In practice, not all collis ions can be perfect. In particular, when there
is only one velocity (p = 1), the output state is necessarily identical to
the input state since the first-order momentum must be conserved. On
the other hand, the second-order momentum is anisotropic. The quantity
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(4.18) is non-zero. We can therefore strengthen our result: The viscosity is
always positive.

We remark that for any input state with p = n/2 (i.e., with exactly one
half of the incoming links occupied by particles) a perfect collision rule can
be devised as follows:

1. Take t he dual of the input state [i.e. replace particles by "holes" and
vice versa);

2. Effect a symmetry with respect to the origin. In other words, call u(i)
the index corresponding to the oppos ite velocity [i.e., C<1(i) = -c;) j

then, the rule is: s~(i) = 1 - 8i . It is easily seen that the number
of particles and the first-order momentum are preserved, while the
second-order momentum of the tota l state is isotropic. For instance,
in the FHP lattice, we obtain the rules for triple collisions shown in
figure 6. In the first two cases, the velocities are unchanged. The
third case is the "head-on collision with spectator" [11].

In order to minimize the viscosity, one must first sort the states into
subsets according to particle number and momentum, and then pair the
states so as to minimize the quantities (4.18). Roughly speaking, each col­
lision should replace the input state by an output state whose second-order
momentum is as much as poss ible "symmetrical with respect to isotropy."
Work is in progress to apply this recipe to the four-dimensional, 24-veloc ity
latti ce gas proposed by d'Humie res, Lallemand, and Frisch [1,7). Present
results indicate that this fine-tuning of the collision rules can lower the
viscosity by a factor between 3 and 4 with respect to a collision algorithm
in which the output state is randomly chosen (among all states having the
same particle number and momentum as the input state ) . More generally,
it seems likely that the larger the number n of velocit ies, the more closely
the limit 71 = 0 can be ap proached.

Appendix A.

We prove here t hat equation (3.24), with >' given by (3.25), is a solution of
the equations (3.14) and (3.23). The first part is simple: using equations
(3.2) and (3.22) , we immediately find that the equations (3.14) are ver ified.

We introduce the abbreviated notation

(A.l)

Substitut ing equation (3.24) in (3.23), we find that the equations to be
satis fied are

Q, = >. 2)s, - sDAd"- l( 1 - d)"-p- l L s;Q;
c ;

(i =I, .. . ,n). (A.2)
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Figure 6: "Perfect" rules for triple collisions in the FHP lattice.
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We consider now a particular value of i, and the subgroup G, of G consisting
of all isometries in which c, is invariant. We divide the collisions into
equivalence classes according to the following rule: two collisions belong to
the same class W if there exists an isometry of Gi which maps one into the
other . More precisely, two collisions [s; s') and (Sjs') belong to the same
class if there exists an isometry lEG, which maps S into s and s' into s'.

We decompose now the sum over collisions in equation {A. I): we sum
first over the members of each class W , and then over the classes:

Q, = xL L [s, - s:JAtP-'(1 - d)"-'-' L SjQj.
W Cew ,.

(A.3)

(AA)

Because of symmetry assumption (4) (see beginning of section 3), A is
constant inside a class W. Si, S~, P are also constant inside a class, and
therefore equation (A.3) can be written

Q, = ~L(s, - s:JAr'(I- d)n-.-. L LSjQj.
w cew ,.

Consider a particular class Wand a particular collis ion C· = (s· i sprime.) E
W. We call G; the subgroup of G, made of isometries which leave C· in­
variant. For any collision C E W , the isometries which map C· into C form
a left coset of G; ; their number is IG; I = IG.I/ IWI. SO, instead of summing
on collisions in W , we can sum on isometries in G,:

L f tC) = II~ II L ! [I(C') ],
CEW I l EG,

where T is an arbitrary function. Thus, equat ion (AA) becomes

(A.5)

Q. = xL(s. - s:JAdp-1 (I - d)"-'- ' II~II L L sjQ I(j) . (A.6)
W I lEG; j

We have used here the fact that each input velocity of C is the image of
an inp ut velocity of C'. Substituting equation (A.I) in the right-hand side
and changing the summat ion order, we have

Q. = ~L(s' -S:JAd'-'(I-d)"-'-lll~11 L sj L LT.p L CI(; ).cI(j)P.(A.7)
w ,,. a fJ tea,

We take a coordinate system such that the X l axis is parallel to c.. Then
CI(; )' = Cj ' and equation (A.7) takes the form

D

[Tllc;. IGd+ Cj ' L T.p L CI(j)P
fJ= 2 leG;
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D D D

+ C; ' L:T•• L: CI[;). + L:L:T.p L: CI (; ). CI (;) P] '
01=2 l EG; a =2 fJ =2 l EG,

Using equat ions (3.5), (3.6), and (3.8), we obtain

or , using equat ion (3.22)

Q, =

Michel Henan

(A.8)

(A.9)

Summing over all collisions C' E W, dividing by IWI, and dropping the
aster isks, we obtain

Q, =

),"(8' _ 8~)Ad"-1(I _ d)n- p - . " " 8 .T c,Dcos' 0,; - 1
£- 11 LL1 11 D -l'
W C€W i

From equation (A.I) , we find

We can then divide both sides by Q, and we obtain

(A.H)

(A.I2)

(A.I 3)

We remark that the tensor Ta !3 has entirely disappeared: the equation
(A.I3) depends only on the collision rules . As a consequence, because of
symmetry assumptions (2) and (4) (sect ion 3), this equation is the same
for all directions i. The conjecture is verified, and we have found a solution
for the probabilities N,.

The rightmost term I /(D -I) in equat ion (A.I 3) can be deleted because
it gives a null contribution; this is easily seen by summing over i. We obtain
th en for), the equ ation (3.25).
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Appendix B.

We evaluate here 1'1 and 1', defined by equations (4.11a) and (4.11b) . 1'1
does not depend on s'; therefore, its value is, according to equation (2.16):

1'1 = 2(D~1)nc.~trl(1 -d)n-p-l~~ [Xnr~6n~r =

D Ld'-1(1 -drp-1LL
2(D - Ilnc' , n ~

[L S; (C;n C;~ - ~ 6n~)][L Sj ( CjnCjr ~ 6n~) ]. ,
D

2(D - l lnc' ~~

L (C'nc;r ~ 6a~) L (CjaCjr ~ 6a~) ~ S'Sjtrl((lEH.~)"-P-l. ,
If i = i , the sum over s is

1 1

Ls,dP- 1(1 - d)n-p- l = L " . L s;d'- I(l- d)"-P-l . (B .2)
' 1=0 'n =O

or, using p = L .i: S.i::

1 1 1 1
-;-;c---;c L d"(l - d)H•. . . L d"(l - d)I- ' ,S, = - (B.3)
d(l - d) ,,=0 ,.=0 1 - d

(the sum over s, gives d; the sums over S.i: for k 'I i give 1).
If i 'I i , the sum over s in equation (1) is

L s.s _d'-1(1 _ d)n-p-l = _ d_
, ' J 1 - d '

by a similar computation. Equation (1) becomes

D ( 1 d)1'1= . L L - L L +- L L
2(D - l )nc a ~ 1 - d 'j=' 1 - d , i't- '

The summations over i and j can also be writt en

Th e second term vanishes, and there remains

(B.4)

(B.5)

(B.6)
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D (C' )'
fJ-1 = 2(D _ l )nc' ~~~ c;ac;p - D 6aP .

For a = P, t he sum over i is, us ing equation (3.2) :

Michel Henan

(8.7)

c2 cot 3nc4

~cta-2D~C;a+ nD' = D(D+2 )

an d for CY. # /3:

nc'
D"

(B.8)

(B.9)

(8. 10)

F inally, we sum over ex and {J, and equation (B .5) re duces to

1
fJ-1 = 2" .

We cons ide r now the quantity P,2' It is indep en den t of 8. Using t he assump­
t ion of semi-detailed balancing (2.17) , we can sum over s and eliminate A.
A computation similar to the above one gives t hen

1
fJ-' = 2". (8.11)
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