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A b stra ct . Lattice gas automata have been recently proposed as a
new technique for the numerical integration of the two-dimensional
Nav ier-Stokes equation. We have accurately tes ted a stra ightforward
var iant of the original model, due to Fr isch, Hasslacher, and Pomeau,
in a simp le geometry equivalent to two-dimensional Poiseuille (Cha n­
nel) flow dr iven by a uniform body force.

The momentum density profile produced by this simulation agrees
well with the pa rabolic pro file predicted by the macroscopic descrip­
t ion of the gas given by Frisch et al. We have used the simulated
flow to com pute t he shea r viscosity of the lat tice gas and have found
ag reement with the results obtained by d 'Humieres et al. 110] using
shear wave re laxation measurements , and, in t he low density limit ,
with theoretica l predictions obtained from the Boltzmann description
of the gas [171 .

1. lutroduction

In a now classic paper, Frisch , Hasslacher, and Pomeau [1] proposed a new
te chnique for solving t he two-dimensional Navier-Stokes equat ion based on
the implementat ion of a lattice gas automaton. Their original idea has
rece nt ly been exte nded to two-dimens ional binary fluids, two-dimensional
magnetohydrodynamics, three-dimensional Navier-Stokes, and ot her inter­
est ing problems [41.

T wo-dimensional lat t ice gas ·automata have been described in great de­
ta il in reference 3. We will therefore give only a very shor t descript ion of
the model in order to define the nomenclature used.

Lat tice gas automata are based on the construction of an idealized mi­
croscopic world of par ticl es living on a lat t ice. T he part icles can move on
the lattice by "hopping" from site to site. In the specific examples consid­
ered in this pape r, we allow only hops from a site to its nearest neighbors
(a particl e may also remain stationary at its current site ) and we ind icate
t hese moti ons with the vectors Ca . T he COl are traditionally interpreted
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as the momenta of the particles. (We are using the lattice spacing, the
"mass" of a particle, and the simulation time step as fundamental units .)
To simplify even further, we suppose that there cannot be more than one
particle with a given momentum at a given site. The population at each
site can then be represented by an 1+1 element binary vecto r, {Ja(i)},
where I is the number of nearest neighbors and x is the label of a lattice
site . We can now define the microscopic number densi ty

/i(i) =I: f" (Xj
a

and the microscopic momentum density

a

(1.1)

(1.2)

The time evolution of the gas is produced by the effect of two alternatin g
steps: the "hopping" phase we described above and a coll ision phase. In the
latter, the {fa} of each site are transformed according to a set of collision
rules. The rules can change from site to site or from time step to time step,
but in any case they will conserve the microscopic densiti es pand § on each
site.

It is possible to construct macroscopic densities from pand 5by averag­
ing in space and time over appropriate regions . The time evolution of the
macroscopic number and momentum densities , p and 9, can be expressed,
in the appropriate limit, in terms of the conservat ion laws

a,p + a,g, 0,

Btgi + BjTtj = 0,
(1.3)
(1.4)

(where Latin indices now denote Cartes ian coordinates ). It should be noted
that we express the above densities in units of mass and momentum per
unit area rather than units of mass and momentum per lattice site , as used
by ot her authors (for inst ance, [9,10]). We completely ignore all the math­
ematical difficult ies implied in t he derivati on of equations (1.3) and (1.4)
131, but we note that p and if in equations (1.3) and (1.4) are intended to
be small perturbations from the equilibrium state, g = 0 and p = constant.

The structure of the stress tenso r Ti; reflects the symmetries of the un­
derlying lattice. Frisch et aI. have shown that a hexagonal lat ti ce possesses
sufficient symmetry to obtain the right structure for Tt;. By this we mean
that up to higher derivatives and O(g' ), it is possible to write

Ti ,. =

A(n)g;g; + p(n ,g' j"i; - v (n)(a;g; + a,gi - ,,;;a,g,) - €(n)";;a,g, , (1.5)

where the quantities II and € can be interpreted as transport coefficients
whi le A (which equals 1 for standard Navier-Stokes) arises from t he absence
of Galilean invariance for the lat t ice gas 13,131. In the limit of incomp ress­
ible flow, equations (1.3) and (1.4) together wit h the constitutive relation
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(1.5), can be rescaled to the incompressible Navier-Stokes equat ion [3).
Thus, we can interpret t his lat t ice gas as an analog computer capable of
solving th e two-dimensional incompressible Navler-Stokes equat ion.

Note that nowhere is there an attempt to simulate the microscopic be­
havior of a real fluid. Lattice gas au tomata are qu ite dist inct from molec­
ular dynamical simu lations [201. Whi le bot h kinds of simulations seem to
produce the expected macroscopic behavior for the fluid (in the sense of giv­
ing the expected constitutive relat ions for the mac roscopic curr ents), they
represent two completely differen t approaches to th e problem. Molecular
dynamical simulations attempt to faithfully model the microscopic behav­
ior of a real fluid, while latti ce gas automata extract only the minimal
microscopic proper ti es required to obtain the desired mac roscop ic behavior
15-7 ).

This suggests two interesting paths of research. The first, more techni ­
cally oriented, concerns how well the results obtained from this new tech­
nique agree with real fluids, while the second concerns the more profound
question of the connection between the microscopic and macroscopic as­
pects of many body systems [211. In this paper , we principally address
technical questions: the quantitative accuracy of the const itut ive relation,
equation (1.5), in a particular simple example, and the comparison of the
effective kinematic viscosity measured in our steady non-equilibrium simu­
lation with the values obtained by shear wave relaxation methods.

2. The simulation model

The object of our simulation is a steady forced flow between two walls with
no-slip boundary cond itions. We are simulating a steady flow because it
allows us to obtain good accuracy in the measurements of p and 9 by ex­
tensive t ime averaging. We are simulating a channel with null velocity at
the walls because for weak forcing (low Reynolds number), the 9 profi le
is expected to be a parabola and there is a simple relation between the
maximum g, th e forcing level, an d kinematic viscosity v . The actual sim­
ulation setup described below is conceptually very different from a direct
imp lementation of a no-slip boundary channel flow but, as we will show )
gives the same parabolic momentum pr ofile.

The simulation system we have employed is a model of forced two­
dimensional Po iseu ille flow [13,22- 241 . The sys tem is a hexagonal lat t ice
with an equal number of rows and columns (figure 1). Not e that the system
width, W , is ,;3/2 times the length, L, due to the unequ al row and column
spacings. The flow is forced by adding momentum in the posit ive x direction
to the system at a constant ra te: After each t ime step, we randomly select
a lattice sit e and, if possible , apply one of the microscopic forcing rules
described in figure 2. Each successful application of a forcing rule adds one
unit of momentum to the system. The forcing process is repeated until the
desir ed amount of momentum has been transferred to the gas; frac tional
amounts of momentum to be added to the system are accumulated across
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Fig ure 1: The simulation model. The walls AA' and BB' are joined
by periodic boundary conditions while "Mobius strip" boundary con­
ditions (see text) are used to connect the AB and A'B' walls. The
representative lattice site shown in the upper right-hand corner illus­
tra tes the orientation of the underlying hexagonal lattice.

time steps until they sum to an amount greater than 1, at which time one
addit ional unit of momentum is added to the gas . The resul t of th is process
is a constant body force app lied to the gas uniformly -across the width and
len gth of the channel.!

T he forc ing leve l employed in the present work varies from 0.3 to 2.8
uni ts of mo ment um per t ime step. Within this range, the resulting flow is
steady whe n averaged over a period of the order of a few diffusion t imes ,
L'lv. For a ste ady flow, t he equat ions for the forced flow [22,31 become

o = a, g,
a,(>.g,g,) = - alP+ a,(va,gl) + t.

(2.1)
(2.2)

where 1= (f,O) is the average force per unit area.
The two walls perp endicular to the flow, AA' and BB' in figure 1, are

mapped onto each other by periodic boundary conditions. The walls paral­
lel to the flow, AB and A'B', are mapped onto each other by "Mobius strip"
boundary conditions. This boundary condition can be described as a tw~
step process whereby particles crossing the boundary have their position

IThe actual forcing scheme is slightly more complicated since it must compensate for
inhomogeneity in the momentum and number densities due to the macroscopic 80w (see
[l1D. The forcing algorit hm randomly selects a lattice row and column and then searc hes
along the row until it finds a site where a forcing ru le may be successfully applied. The
program ter minates if no forcing operation can be performed on a selecte d row. Th is
guarantees that forcing opera tions will be uniformly distr ibuted across th e width of the
channel, despit e variations in the mass and momentum densit ies.
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Figure 2: Forcing rules . The four pai rs of diagrams represent t he
micr oscopic forci ng rules used in the simulation. The black symbols
indicate occupied states while the ou tline d symbols indicat e vacant
st ates. States not indic ated in a diagram may be either filled or va­
cant. Each forcing operation adds one uni t of momentum in th e x

direction.
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(2.3)

and velocity reflected with respect to the line 00' and then standard peri­
odic boundary conditions are applied. The alternative to the Mobius strip
boundary would be the use of no-slip boundary conditions, for instance,
random scattering of the particle impinging on the walls . Both boundary
condit ions dissipate the momentum injected into the gas by the uniform
body force, but the no-slip cond ition creates a layer at the boundary (a
Knudsen layer [14]) whose thickness is of the order of a mean-free path.'
Since the mean-free path for our model is typically about 5 lattice spacings
and the system is only 32 latt ice rows in width, Knudsen layers along both
the upper and lower boundaries would significantly distort the Poiseuille
flow momentum profile.

The combination of a uniform body force directed in the pos itive :r:
direct ion and vanishing fluid velocity along the upper and lower boundaries
gives rise (through equations (2.1) and (2.2)) to a parabolic momentum
density profile

g.(y) = (~r(Y' - (~ )' ),
with g, = °and

1FW
9max = 8" Lv (2.4)

where we have neglected the corrections O(9% (aIl9%)2) due to variation of p
across the width of the system (see (111) and y is measured from the axis
of the channel. We extract this momentum profile from the simulation by
averaging the microscopic momentum density in time and along the latt ice
rows (lines of constant y).

At this point, we note that the flow which develops in the channel is
equivalent to that obt ained by ap plying to a system of lengt h L and width
2W, with periodic boundary conditions in both directions, the "square
wave" force field

l'(x,y)

/'(x,y)

= (1,0)

= (-f,O)

forO :S y < W,

fOT W :s y < 2W.

(2.5)

(2.6)

We have verified this correspondence by comparing simulation results from
runs employing Mobius strip boundary conditions wit h runs using square
wave forcing (see figure 3). Both types of fiow exh ibit long wavelength
instab ilities related to the existence of inflection points in the momentum
profile at y = °an d y = W . The crit ical Reyn olds number given by lin­
ear stability analysis for infinitely long channels (Kolmogorov flow [15,16])
is quite small, Re~r ~ 1.11, but a finite length-to-width ratio increases
Re~r ' The part icular length-to-width ratio used in our simulat ion, 1/ -13,

2The Knudsen layer is caused by the matching between the artificial particle distribu­
tion imposed by this kind of boundary condition and the non-equilibrium particle distri­
butions imposed by the macroscopic How in the bulk.
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(3.1)

appears t o be stable even for the largest Reynolds number obtainable in
our simulation (::::: 50), as was suggested by the linear stability analysis of
the problem.

3 . R esults

In this sect ion , we will occasionally refer t o mass density in number of
part icles per site n ,n = (..;3/2)p, instead of number of particles per unit
area, Pi this is don e for notational convenience. Figure 4 shows a typical
momentum profile obtained from our simulation. T he average number of
particles per site in this run is n = 2.1, the syst em dimensions are W =
16..;3 and L = 32 (corresponding to a 32 x 32 lat t ice), an d we have used the
model-II collision rules described in reference 3. The pr ofile was obt ained
by averaging the microscopic momentum density 5in the direction parallel
to the flow and on one million iterations. The gIl component appears to be
due entirely to statistical noise; it is small: max Ig, (y)/ gmaxl < 0.01 , where
gmax is gz at the center of the channel.

The solid line represent a parabola fitt ed to the simulat ion results which
are shown as symbols. The fit is very good; if we define

e(y) = Ig,(y) - h(y)1
g,(y)

where h(y) is the fitt ed parabola, then max le(y)1 < 0.0 1 over the cent ral
region of the parabola (roughly the 26 centermost rows).

The result quoted above can be improved by incr easing the number of
t ime steps on which the simulat ion in figure 4 is averaged. However, im­
provements obtained by averaging are limited by systematic deviations from
a parabolic profile which can be reduced only by decreasing the amplitude
of g. These syst ematic deviations are du e to high er-order terms, 0(g 4) ,
neglected in equation (1.5) , and to the presence of a term proportional to
g2 in the expression, derived in [1,2,3]; for the pressure p, see [11].

We can use equat ion (2.4) to relate the maximum measured velocity to
the applied force. This pe,rmits us to define an effective kinematic viscosity

1 FW
v =----.

8 Lgmax

In figure 5, we plot the measured vasa function of the red uced density for
a set of simulations using the model II collision rules of reference 3, The
system used for the measurement was 32 x 32, and th e forcing level was
very weak, so that the typical Mach number, defined as the ratio between
the speed of sound and the hydrodynamical velocity, 9/ p, is approximate ly

'" 0.1.
In the same figure , we compare our viscosity measurement s with data

obtained by relaxation measurements [101 . The errors bars for the lat ter
set of data are set at about 3 percent of the actual measured viscosity [12],
while the errors on our data set are about 1 percent and ar e not indicated.
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- 0.1 0 0. 1

Figure 3: Mobius strip bound ary conditions versus square wave forc­
ing. The symbols represent the x momentum density profile for square
wave forcing (see tex t) with periodic bound ary conditions in both di­
rections. Th e solid line is a parabolic fit to the momentum density
profile obtained using Mobius st rip boundary conditions on a system
half as wide . Both simulations were run at a density of 2.1 particles
per site and the profiles were averaged over one million t ime steps.
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Figure 4: Typical momentum profile . The e momentum density pro­
file for a 32 X 32 system run at n ;;:; 2.1 particles per site and a forcing
level F = 0.76 momentum units per time step. The profile was aver­
aged over one million time steps. The solid line is a parabolic fi t to
the simu lation data po ints (symbols) .
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Figure 5: Kinematic viscosity versus mass density. Viscosity values
derived from the present work are shown as crosses. Symbols with
erro r bars are t he results obtained by d 'Humierea et el. T he solid line
is the theoret ical value obtained using Chaprnan-Enskog techniques.
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In both cases, the errors are only rough est imates since they were not
computed from first principles but were estimated by comparing similar
runs with different initial conditions.

The two sets of viscosity data appear to be consistent , except in the
range 2 < p < 3, where our data are consistently greater than the results of
reference 10. It would be tempting to relate the discrepancy between the
two viscos ities to viscosity renormalization effects [181, but we presently do
not have any conclusive evidence.

The solid line is the shear viscosity as calculated by the technique of
Michel Henan [251 and by other authors using Chapman-Enskog techniques
[171. Both methods are based on an approximate theoretical description of
the gas in which the correlations between particles are completely neglected .

In the low density limit , there is a very good agreement with the theory,
as is expected since the relative importance of particle correlation becomes
negligible in th at limit. Note that we do not quo te results for p < 0.4
because for these densiti es the mean-free path (see [221) of the particles
becames compar able to the width of the channel.

4 . Conclusion

We have given some precise simulation evidence that LGAs are correctly
represented by the constitut ive relation, equation (1.5). We have also shown
that the simulation of channel How gives the expected parabolic profile to a
good degree of accuracy and that the effect ive kinemat ic viscosity obtained
by these stea dy non-equilibrium flows is in reasonable agreement with that
obtai ned by d'Humieres et al. using shear waves relaxat ion measurements.

The technique used for these simulations is capable of providing reason­
ably accurate measurement of viscosity; the particular kind of boundary
conditions used allow a wide range of lattice size width and makes feasible
the study of the dep end ence of the kinematic viscosity on the width of the
simulation channel. For two-dimensional fluids, there are rather precise pre­
dictions, based on renormalization group arguments and other techniques,
for this dependence [18]. In first-order perturbation theory, the kinematic
viscosity diverges as the logarithm of the box size. We have some prelimi­
nary results, to be published elsewhere, which indicate the presence of this
effect even within the range of channel widths accessible by our method of
simulation.
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