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Abstract. Lattice gas automata have been recently proposed as a
new technique for the numerical integration of the two-dimensional
Navier-Stokes equation. We have accurately tested a straightforward
variant of the original model, due to Frisch, Hasslacher, and Pomeau,
in a simple geometry equivalent to two-dimensional Poiseuille (Chan-
nel) flow driven by a uniform body force.

The momentum density profile produced by this simulation agrees
well with the parabolic profile predicted by the macroscopic descrip-
tion of the gas given by Frisch et al. We have used the simulated
flow to compute the shear viscosity of the lattice gas and have found
agreement with the results obtained by d’Humiéres et al. [10] using
shear wave relaxation measurements, and, in the low density limit,
with theoretical predictions obtained from the Boltzmann description
of the gas [17].

1. Introduction

In a now classic paper, Frisch, Hasslacher, and Pomeau [1] proposed a new
technique for solving the two-dimensional Navier-Stokes equation based on
the implementation of a lattice gas automaton. Their original idea has
recently been extended to two-dimensional binary fluids, two-dimensional
magnetohydrodynamics, three-dimensional Navier-Stokes, and other inter-
esting problems [4].

Two-dimensional lattice gas automata have been described in great de-
tail in reference 3. We will therefore give only a very short description of
the model in order to define the nomenclature used.

Lattice gas automata are based on the construction of an idealized mi-
croscopic world of particles living on a lattice. The particles can move on
the lattice by “hopping” from site to site. In the specific examples consid-
ered in this paper, we allow only hops from a site to its nearest neighbors
(a particle may also remain stationary at its current site) and we indicate

these motions with the vectors C*. The C* are traditionally interpreted
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as the momenta of the particles. (We are using the lattice spacing, the
“mass” of a particle, and the simulation time step as fundamental units.)
To simplify even further, we suppose that there cannot be more than one
particle with a given momentum at a given site. The population at each
site can then be represented by an I + 1 element binary vector, {f*(z)},
where [ is the number of nearest neighbors and T is the label of a lattice
site. We can now define the microscopic number density

5(E) = 3 13 (L.1)
and the microscopic momentum density
5(®) = ¥ Care(@). (1.2)

The time evolution of the gas is produced by the effect of two alternating
steps: the “hopping” phase we described above and a collision phase. In the
latter, the {f®} of each site are transformed according to a set of collision
rules. The rules can change from site to site or from time step to time step,
but in any case they will conserve the microscopic densities p and 5 on each
site.

It is possible to construct macroscopic densities from p and 5 by averag-
ing in space and time over appropriate regions. The time evolution of the
macroscopic number and momentum densities, p and g, can be expressed,
in the appropriate limit, in terms of the conservation laws

Op+ g = 0, (1.3)
dgi +9;T;; = 0, (1.4)

(where Latin indices now denote Cartesian coordinates). It should be noted
that we express the above densities in units of mass and momentum per
unit area rather than units of mass and momentum per lattice site, as used
by other authors (for instance, [9,10]). We completely ignore all the math-
ematical difficulties implied in the derivation of equations (1.3) and (1.4)
[3], but we note that p and g in equations (1.3) and (1.4) are intended to
be small perturbations from the equilibrium state, § = 0 and p = constant.

The structure of the stress tensor T;; reflects the symmetries of the un-
derlying lattice. Frisch et al. have shown that a hexagonal lattice possesses
sufficient symmetry to obtain the right structure for 7;;. By this we mean
that up to higher derivatives and O(g*), it is possible to write

Ty =
A(n)gig; + p(n, %) 6ij — v(n)(9;9: + 0:ig; — 6i;0kgx) — €(n)6i;Okg, (1.5)

where the quantities i and £ can be interpreted as transport coefficients
while A (which equals 1 for standard Navier-Stokes) arises from the absence
of Galilean invariance for the lattice gas [3,13]. In the limit of incompress-
ible flow, equations (1.3) and (1.4) together with the constitutive relation
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(1.5), can be rescaled to the incompressible Navier-Stokes equation [3].
Thus, we can interpret this lattice gas as an analog computer capable of
solving the two-dimensional incompressible Navier-Stokes equation.

Note that nowhere is there an attempt to simulate the microscopic be-
havior of a real fluid. Lattice gas automata are quite distinct from molec-
ular dynamical simulations [20]. While both kinds of simulations seem to
produce the expected macroscopic behavior for the fluid (in the sense of giv-
ing the expected constitutive relations for the macroscopic currents), they
represent two completely different approaches to the problem. Molecular
dynamical simulations attempt to faithfully model the microscopic behav-
ior of a real fluid, while lattice gas automata extract only the minimal
microscopic properties required to obtain the desired macroscopic behavior
[5-7].

This suggests two interesting paths of research. The first, more techni-
cally oriented, concerns how well the results obtained from this new tech-
nique agree with real fluids, while the second concerns the more profound
question of the connection between the microscopic and macroscopic as-
pects of many body systems [21]. In this paper, we principally address
technical questions: the quantitative accuracy of the constitutive relation,
equation (1.5), in a particular simple example, and the comparison of the
effective kinematic viscosity measured in our steady non-equilibrium simu-
lation with the values obtained by shear wave relaxation methods.

2. The simulation model

The object of our simulation is a steady forced flow between two walls with
no-slip boundary conditions. We are simulating a steady flow because it
allows us to obtain good accuracy in the measurements of p and § by ex-
tensive time averaging. We are simulating a channel with null velocity at
the walls because for weak forcing (low Reynolds number), the g profile
is expected to be a parabola and there is a simple relation between the
maximum g, the forcing level, and kinematic viscosity v. The actual sim-
ulation setup described below is conceptually very different from a direct
implementation of a no-slip boundary channel flow but, as we will show,
gives the same parabolic momentum profile.

The simulation system we have employed is a model of forced two-
dimensional Poiseuille flow [13,22-24]. The system is a hexagonal lattice
with an equal number of rows and columns (figure 1). Note that the system
width, W, is /3 /2 times the length, L, due to the unequal row and column
spacings. The flow is forced by adding momentum in the positive z direction
to the system at a constant rate: After each time step, we randomly select
a lattice site and, if possible, apply one of the microscopic forcing rules
described in figure 2. Each successful application of a forcing rule adds one
unit of momentum to the system. The forcing process is repeated until the
desired amount of momentum has been transferred to the gas; fractional
amounts of momentum to be added to the system are accumulated across
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Figure 1: The simulation model. The walls AA' and BB’ are joined
by periodic boundary conditions while “Mobius strip” boundary con-
ditions (see text) are used to connect the AB and A'B' walls. The
representative lattice site shown in the upper right-hand corner illus-
trates the orientation of the underlying hexagonal lattice.

time steps until they sum to an amount greater than 1, at which time one
additional unit of momentum is added to the gas. The result of this process
is a constant body force applied to the gas uniformly-across the width and
length of the channel.!

The forcing level employed in the present work varies from 0.3 to 2.8
units of momentum per time step. Within this range, the resulting flow is
steady when averaged over a period of the order of a few diffusion times,
L*/v. For a steady flow, the equations for the forced flow [22,3] become

0 = 8;59,, (21)
O(Agret) = —8ip+ Bi(vora) + fi (2.2)

where f = (f,0) is the average force per unit area.

The two walls perpendicular to the flow, AA' and BB’ in figure 1, are
mapped onto each other by periodic boundary conditions. The walls paral-
lel to the flow, AB and A'B’, are mapped onto each other by “Mdbius strip”
boundary conditions. This boundary condition can be described as a two-
step process whereby particles crossing the boundary have their position

1The actual forcing scheme is slightly more complicated since it must compensate for
inhomogeneity in the momentum and number densities due to the macroscopic flow (see
[11]). The forcing algorithm randomly selects a lattice row and column and then searches
along the row until it finds a site where a forcing rule may be successfully applied. The
program terminates if no forcing operation can be performed on a selected row. This
guarantees that forcing operations will be uniformly distributed across the width of the
channel, despite variations in the mass and momentum densities.
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Figure 2: Forcing rules. The four pairs of diagrams represent the
microscopic forcing rules used in the simulation. The black symbols
indicate occupied states while the outlined symbols indicate vacant
states. States not indicated in a diagram may be either filled or va-
cant. Each forcing operation adds one unit of momentum in the z
direction.
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and velocity reflected with respect to the line OO’ and then standard peri-
odic boundary conditions are applied. The alternative to the Mobius strip
boundary would be the use of no-slip boundary conditions, for instance,
random scattering of the particle impinging on the walls. Both boundary
conditions dissipate the momentum injected into the gas by the uniform
body force, but the no-slip condition creates a layer at the boundary (a
Knudsen layer [14]) whose thickness is of the order of a mean-free path.?
Since the mean-free path for our model is typically about 5 lattice spacings
and the system is only 32 lattice rows in width, Knudsen layers along both
the upper and lower boundaries would significantly distort the Poiseuille
flow momentum profile.

The combination of a uniform body force directed in the positive z
direction and vanishing fluid velocity along the upper and lower boundaries
gives rise (through equations (2.1) and (2.2)) to a parabolic momentum
density profile

6:(s) = B0 - (50 (23

with g, = 0 and

1FW
gmax = g~ (2.4)

where we have neglected the corrections O(g.(8,9.)?) due to variation of p
across the width of the system (see [11]) and y is measured from the axis
of the channel. We extract this momentum profile from the simulation by
averaging the microscopic momentum density in time and along the lattice
rows (lines of constant y).

At this point, we note that the flow which develops in the channel is
equivalent to that obtained by applying to a system of length L and width
2W, with periodic boundary conditions in both directions, the “square
wave” force field

flzy) =(£,0) foro<y<W, (2.5)
f"(z:,y) = (—f,0) forW <y<2W. (2.6)

We have verified this correspondence by comparing simulation results from
runs employing Ma&bius strip boundary conditions with runs using square
wave forcing (see figure 3). Both types of flow exhibit long wavelength
instabilities related to the existence of inflection points in the momentum
profile at y = 0 and y = W. The critical Reynolds number given by lin-
ear stability analysis for infinitely long channels (Kolmogorov flow [15,16])
is quite small, Re, = 1.11, but a finite length-to-width ratio increases
Re.,. The particular length-to-width ratio used in our simulation, 1/ V3,

2The Knudsen layer is caused by the matching between the artificial particle distribu-
tion imposed by this kind of boundary condition and the non-equilibrium particle distri-
butions imposed by the macroscopic flow in the bulk.



A Poiseuille Viscometer for Lattice Gas Automata 797

appears to be stable even for the largest Reynolds number obtainable in
our simulation (= 50), as was suggested by the linear stability analysis of
the problem.

3. Results

In this section, we will occasionally refer to mass density in number of
particles per site n,n = (\/5 /2)p, instead of number of particles per unit
area, p; this is done for notational convenience. Figure 4 shows a typical
momentum profile obtained from our simulation. The average number of
particles per site in this run is n = 2.1, the system dimensions are W =
164/3 and L = 32 (corresponding to a 32 x 32 lattice), and we have used the
model-II collision rules described in reference 3. The profile was obtained
by averaging the microscopic momentum density 5 in the direction parallel
to the flow and on one million iterations. The g, component appears to be
due entirely to statistical noise; it is small: max |g,(y)/gmax| < 0.01, where
Omax 18 gz at the center of the channel.

The solid line represent a parabola fitted to the simulation results which
are shown as symbols. The fit is very good; if we define

_ lgz(y) — h(y)]
e(y) = "

where h(y) is the fitted parabola, then max |e(y)| < 0.01 over the central
region of the parabola (roughly the 26 centermost rows).

The result quoted above can be improved by increasing the number of
time steps on which the simulation in figure 4 is averaged. However, im-
provements obtained by averaging are limited by systematic deviations from
a parabolic profile which can be reduced only by decreasing the amplitude
of §. These systematic deviations are due to higher-order terms, O(g?),
neglected in equation (1.5), and to the presence of a term proportional to
¢? in the expression, derived in [1,2,3]; for the pressure p, see [11].

We can use equation (2.4) to relate the maximum measured velocity to
the applied force. This permits us to define an effective kinematic viscosity

V_l FW
SLgma.x.

In figure 5, we plot the measured v as a function of the reduced density for
a set of simulations using the model II collision rules of reference 3. The
system used for the measurement was 32 X 32, and the forcing level was
very weak, so that the typical Mach number, defined as the ratio between
the speed of sound and the hydrodynamical velocity, §/p, is approximately
~ 0.1.

In the same figure, we compare our viscosity measurements with data
obtained by relaxation measurements [10]. The errors bars for the latter
set of data are set at about 3 percent of the actual measured viscosity [12],
while the errors on our data set are about 1 percent and are not indicated.

(3.1)
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Figure 3: Mdbius strip boundary conditions versus square wave fore-
ing. The symbols represent the z momentum density profile for square
wave forcing (see text) with periodic boundary conditions in both di-
rections. The solid line is a parabolic fit to the momentum density
profile obtained using M&bius strip boundary conditions on a system
half as wide. Both simulations were run at a density of 2.1 particles
per site and the profiles were averaged over one million time steps.
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Figure 4: Typical momentum profile. The z momentum density pro-
file for a 32 x 32 system run at n = 2.1 particles per site and a forcing
level F = 0.76 momentum units per time step. The profile was aver-
aged over one million time steps. The solid line is a parabolic fit to
the simulation data points (symbols).
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Figure 5: Kinematic viscosity versus mass density. Viscosity values
derived from the present work are shown as crosses. Symbols with
error bars are the results obtained by d’Humiéres et al. The solid line
is the theoretical value obtained using Chapman-Enskog techniques.
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In both cases, the errors are only rough estimates since they were not
computed from first principles but were estimated by comparing similar
runs with different initial conditions.

The two sets of viscosity data appear to be consistent, except in the
range 2 < p < 3, where our data are consistently greater than the results of
reference 10. It would be tempting to relate the discrepancy between the
two viscosities to viscosity renormalization effects [18], but we presently do
not have any conclusive evidence.

The solid line is the shear viscosity as calculated by the technique of
Michel Hénon [25] and by other authors using Chapman-Enskog techniques
[17]. Both methods are based on an approximate theoretical description of
the gas in which the correlations between particles are completely neglected.

In the low density limit, there is a very good agreement with the theory,
as is expected since the relative importance of particle correlation becomes
negligible in that limit. Note that we do not quote results for p < 0.4
because for these densities the mean-free path (see [22]) of the particles
becames comparable to the width of the channel.

4. Conclusion

We have given some precise simulation evidence that LGAs are correctly
represented by the constitutive relation, equation (1.5). We have also shown
that the simulation of channel flow gives the expected parabolic profile to a
good degree of accuracy and that the effective kinematic viscosity obtained
by these steady non-equilibrium flows is in reasonable agreement with that
obtained by d’Humiéres et al. using shear waves relaxation measurements.

The technique used for these simulations is capable of providing reason-
ably accurate measurement of viscosity; the particular kind of boundary
conditions used allow a wide range of lattice size width and makes feasible
the study of the dependence of the kinematic viscosity on the width of the
simulation channel. For two-dimensional fluids, there are rather precise pre-
dictions, based on renormalization group arguments and other techniques,
for this dependence [18]. In first-order perturbation theory, the kinematic
viscosity diverges as the logarithm of the box size. We have some prelimi-
nary results, to be published elsewhere, which indicate the presence of this
effect even within the range of channel widths accessible by our method of
simulation.
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