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Eddy Viscosity and Diffusivity:
Exact Formulas and Approximations

Robert H . Kraichnan"
303 Potrillo Drive, Los Alamos, NM 87544, USA

Abstract. Exact asymptotic expressions for eddy diffusivity and
eddy viscosity are ob tained as the lead ing terms of in finite-series rep­
resentations of integral equations which express the act ion of turbu­
lence on an infinitesimal mean field. The series are transformed term
by te rm from Euler ian to Lagrangian form. The latter is more suitable
for constructing approximations to the exact asymptotic express ions.
T he analysis is prefaced by some qualitative remarks on possible im­
provements of eddy transport algorithms in turbulence computations.

1. Introd u ction

E ddy viscos ity and eddy diffusivity have long been fruitful concepts in
turbu lence theory, and the ir use has made possible the computation of
turbulent flows at Reynolds numbers too high for fu ll numerical simulation.
However, there is a fundamental logical Haw. Mo lecular viscosity is a va lid
concept when there is a strong separation of space and time scales between
hydrodynamic modes and gas-kinet ic collision processes. In high-Reyno lds­
number turbu lence, on the other hand , there is typically a continuous range
of sign ificantly excited modes between the largest motions and those small
motions which are represented by an eddy viscosity.

In t he present paper, the lack of clean scale separation of modes is
expressed by exact statistical equations in which the interaction between a
(large-scale) mean field and a (small-scale) fluctuat ing field is nonlocal in
space and t ime. In an asymptotic case of interaction be tween modes whose
sp ace and t ime scales are strongly separated, the exact formu las reduce
t o ones which are effectively local in space and time and which express
what can be termed the distant-interaction eddy viscosity. Even in this
asymptotic case, the exact eddy viscosity is not a simple expression, and it
is not perfectly reproduced by any approximations that have been proposed.

Most of the present paper is devoted to a derivat ion of t he exact expres­
sions for asymptotic eddy viscosity and eddy diffusiv ity, the embedding of
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these express ions within infinite-series representati ons of the general non­
local integral equations, and, particular ly, the t ransformat ion of Eulerian
formulas into Lagrangian ones . The Lagran gian representat ion is proba­
bly the one in which approximations to the exact eddy viscosity and eddy
diffusivity can most successfully be carried out. It is hoped that both the
Eu lerian and Lagr angian exact formulas can be of use in analy zing approx­
imations and interpreting various approaches to t he construction of eddy
transport coefficients.

T his mathemat ical analys is is prefaced by a qualitative d iscuss ion of
the more difficult question of improv ing eddy-viscosity and eddy-d iffusivity
algor it hms actually used for subgrid-scale representat ion in computations
of turbulent flows. The spat ia l an d temporal nonlocalness exhibi ted in the
mathematical analysis may here be of some practical sign ificance . The
relative success of very cru de eddy-viscosity approximat ions in comput a­
t ions suggests that the dynamics of tur bulence yields robust statistics, with
feedback characteristics that somehow partly compensat e for bad app rox­
imat ions. However , exist ing subgr id-scale ap prox imations do no t perform
well in the computation of the point-to-point amplit ude st ructure of a large­
scale flow, as opposed to statistics. It may he that here the incorporation
of nonlocal effects is essential. Nonlocality in time means that the su b­
grid modes exert reactive as well as resistive forces on the explicit modes,
and this may be important in reproducing finite-amplitude ins tabilities and .
other properties of the explicit modes.

One conse quence of the lack of clean separation of explicit and sub­
grid mo des is that the latter exert fluctuat ing driving forces on the explicit
mo des which are conceptually distinct from eddy viscosity (or even nega­
tive eddy viscosity ) [11 . Since the detailed st ructure of the subgrid modes
is unknown in a flow comput ation, the fluctuating forces must be treated
stat ist ica lly, but the close coupl ing between the two classes of mo des means
that the re levant stat istics are not purely random. T he existence of fluctu­
at ing for ces on the exp licit mo des implies t hat the explicit velocity field in
a calculation is not simp ly replaceab le by its stat ist ical mean.

Some simple numer ics y ield a strong mot ivat ion for improvement of
subg rid representa ti ons. If the smallest spatial scale t reated explicitly in a
h igh-Reynolds number flow increases by a factor c, t he computa tional load
of the explicit calc ulation decreases by a factor of perhaps c4 • T he precise
ratio depends on the method of computation used. If the calculat ion is
Eu lerian, and logarithmic factors assoc iated with fast Fourier t ransforms
are ignored , the power four used above ar ises from increase in grid mesh
size in three dimensions together with increase in the smallest t ime ste p
needed , the latter determined by the convection by the large-scale flow. If
these cr ude est imates are relevant , an increase of m inimum exp licit sca le
by a factor 2 decreases the load by a factor 16, and an increase by a factor
4 decreases the load by a factor 256. This means that an imp rovem ent in
subgrid representation that permits a shrinking of t he explicit scale range by
a factor 2 may be cost-effect ive , provided that it increases t he computation
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size by less t han a factor 16 over a cruder subgrld-scale representation .
Caveats should be stated at this point. F irst, a useful subgrid a lgorithm

must be practical to program and implement. This implies, among other
th ings, t hat it must have a reasonably broad application. Second, a new
algorithm must in fact be an improvement. An analytical approximation
wh ich includes higher-order effects may actually make things worse rather
than better, because the convergence properties of the relevant approxima­
tion sequences are subtle and dangerous.

It seems unlikely that adding correction terms to the local asymptotic
formulas exhibited in the body of the present paper is a valid route to im­
proving eddy-viscosity and eddy-diffusivity representations. And, of course,
no eddy-viscosity representation, however good, takes account of the ran­
dom forces exerted by the subgrid modes. Moreover, the statistical facts
about the subgrid scales needed to evaluate even the lowest-order asymp­
totic formulas are unavailable in a practical flow calculation.

One alternative approach is to infer as much as possible about the be­
. havior of the subgrid mo des by ext rapolation from the dynamics and statis­
tics of the explicitly computed modes. The well-known Smagorinsky eddy­
viscosity formul a [2J can be v iewed as a simple example of this approach.
Here, the effective eddy viscosity is determined from the local rate-of-strain
te nso r of t he exp licit ve locity field by appeal to Ko lmogorov inert ia l-range
scaling ar guments. It may be worthwhile, however, to extract substan­
t ia lly mo re detailed infor mation from the exp licit ve locity field in order to
estimate the dynamical effects of the subgr id scales.

Supp ose, for example, the flow calcu lation is sufficiently large t hat a
subst antial ran ge of spat ia l scales is included in the explicit veloc ity field .
It is then possib le t o analyze the explicit field to extract information abou t
the mean transfer of energy between di fferent scale sizes, reactive interac­
tions, and, as well , the fluctuating forces exerted by exp licit mo des of small
scale on those of lar ger scale. Such an analysis could be performed individ­
ually on each calc u lated flow field as the computation proceeds. However,
it m ight be mo re economical to try to build up library tables of results
fro m which these quantit ies could be rapidly estimated for a given com­
puta tion using rela tively few measured parameters. In either event, the
effects of subgrid mo des on the explicit field could then be estimated by
assuming similarity with interscale dynamics within the explicit field. T his
wou ld seem a less dras tic assumption than adopting idealized inertial-range
dynami cs for the subgrid scales. Of course, the similarity analysis could
be modified by taking into account crucial dynamical differences between
explicit and subgrid modes-for example, increase of molecular viscosity
effects with wavenumber.

2. Exact Eulerian analysis for eddy diffusivity

The equation of motion for a passive scalar advected by an incompressible
velocity field may be manipulated to yield statistical equations which are
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exact and which display an eddy-diffusivity term acting on scalar modes
having very large space and time scales. Let the scalar field o;6 (x , t) obey

L(,,)0;6(x,t) + u (x , t) . V 0;6(x , t) = 0 (2.1)

where

a
L(,,) = - - "v' (2.2)

at

and

V · u(x,t) = O. (2.3)

Write

o;6(x, t) = o;6"(x, t) + 0;6' (x , t) (2.4)

where

o;6· ' (x , t) = (0;6 (x, t» (2.5)

and ( ) denotes ensemb le average. Assume

(u (x , t) = O. (2.6)

If, ins tead, u (x, t) has a non zero mean , extra terms appear in the following
analys is.

Equations (2.1) through (2.6) yield the following equat ions for the mean
and fluctuating sca lar fields:

L( ,,)0;6·' (x ,t) = Q(x,t) (2.7)

IL (,,) + u(x, t) . V)]0;6' (x ,t) = - u (x, t) . V0;6·' (x, t) - Q(x , t) (2.8)

where

Q(x , t) = (u (x , t ) . V0;6' (x,t».

Define the unaveraged Green's function g(x , tj y,t) by

(2.9)

IL(,,) + u (x, t) . VJg(x, t ;y , s) = 0

g(x,s;y,s) = 6(x - y) .

Ass ume

(t ~ s) , (2.10)

(2.11)

(2.12)o;6(x , t) = O.

Then, equat ions (2.7) through (2.11) yield

o;6' (x , t) = - 10' ds I dyg (x, t;y, s)[u (y, s). V,0;6·' (y, s)+Q(y,s)](2.13)
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and, therefore,

Q(x , t) = 8~; 10' dsI dy A; (x,t;y ,s)Q(y,s )

8 l' I 84>"" (y ,s)+ -8 ds dy I';;(x ,t;y, s) 8 .
~ 0 W

where equat ion (2.3) is used and

A;(x,t;y,s) = (u;(x ,t )g(x,t;y,s ) ,

I'.;(x ,t;y, s) = (u.(x, t )g(x , t ;y,s)u;(y,s) .
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(2.14)

(2.15)

(2.16)

No approximation has been made so far. Suppose that 4>Qtl (x,t) has
space and time scales very long compared to those that are significant in
u(x , t). Then, equat ions (2.7) and (2.14) yield an equation of motion for
4>Qtl(x, t) in which the coefficient functions are averages whose correlation
scales are characteristic of the velocity field. Now let the slowly varying field
4>"O(y,s) in (2.14) be expanded in a Taylor series about (x, s). Assume that
this series has at least a finite radius of convergence in

or that the series is asymptotic in some suitable sense about ei = O. Equa­
t ion (2.14) may be exp anded in the form

Q(x, t) = Y (x , t ) + Z(x, t )

where

(2.17)

8 l' 8Q (x ,s)Y (x, t ) = -8 ds[A;(x, t; s)Q(x, t) + A;;(x, t;s ) 8 + .. .],
Xi 0 Xi

(2.18)

z\x, t) =

8 (' [ 84>(x ,s) 8'4>"O (X,s) ]
-8 . n ds I';;(x ,t ;s ) 8 . + 1'.;m(x ,t; S) 8.8 +... , (2.19)
XIJ ~ x, x, xm

and

etc.

A;(x ,t; s) = I dy(u;(x, t )g(x ,t; y,s) ,

A;;(x, t; s) = I dy(u. (x,t)g (x , t;y,s)~;) ,

I';;(x,t ;s) = I dy (u;(x ,t)g(x,t;y, s)u;(y , s» ,

(2.20)

(2.21)

(2.22)
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l"ijm(X,t; s) = ! dY(Ui(X ,t)g(x ,t;y,s)Uj(y,s)Em}, (2.23)

etc.
Equations (2.17) through (2.19) st ill provide a formally exact represen­

tation of Q(x , t) , imp licitly in powers of a ratio f.,. /£., where f.,. and £. are
character istic spatial scales of the velocity field and the mean scalar field
q,'., respectively. An equivalent of (2.22) was first der ived by Corrsin [31.

Q(x,t ) may now be expressed in powers of lu/l~ by an iterat ion so lu­
tion of equation (2.17). The leading term in th is expansion is the term in
J.Li;(X,t;s). lfthe s-variat ion of ¢av(x, s) is neglected in comparison to that
of .uij(X, t; s), there results th e equation of motion for q,GlI (X, t) :

L(I< )q,' · (x , t ) = 88 [J<; j(x ,t ) 8q,'.(x,t)]
X j aXj

wher e

I<;j(x,t) = fa'l"ij(x ,t;s)ds.

(2.24)

(2.25)

The tensor Ki"(X ,t) is the exact asymptotic ed dy diffusivity in the sense
that (2.24) is asymptotically exact if the spatial and temporal variation
of q,'·(x,t) is infinitely slow compared to that of u (x , t ). No closu re ap­
proximation has been mad e . It is assumed, via equation (2.12) , that the
mean scalar field is switched on at t = 0 (or, equivalent ly, that the velocity
field is switched on at t = 0). Statist ical homogeneity or stationarity of
the velocity field is not assumed, but if the velocity field is statistically ho­
mogeneous and isotropic , the exact asymptotic scalar eddy diffusiv ity (in
three dimensions) is

1
I<eddy(t) = 3I<ii (X, t ). (2.26)

3 . Lagrangian transformation

There are two principal reasons for transforming the Eulerian formulae of
section 2 into Lagrangian expressions. First, the results reproduce Taylor's
1921 formula [41 for eddy diffus ivity when the molecular diffusivity I< van­
ishes, and thereby provide an exact generalization of Taylor's formula to the
case of nonzero K . Second, the Lagrangian expressions are physically more
appropriate because they eliminate confusing (and canceling) convection
effects in the amplitude factors from which the right -hand sides of (2.20)
through (2.23) are constructe d. Thereby, these express ions become more
suitable for statist ical approximation. Th is is discusse d further in sect ion 5.

The Lagrangian transformation of equa t ions (2.18) an d (2.19) (with
equations (2.20) through (2.23) inserted), has the effect of changing the
spacetime integrals on the right-hand sides into integrals backward in time
from the present instant t, along a space-filling family of fluid-element tra­
jectories. This can be done by introducing the generalized velocity field
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u (x , t ls ) and scalar field .p(x, tls ) defined as follows: u(x,t ls) is the ve­
locity field measured at time s in that fluid element whose trajectory
passes through the spacetime point (x ,t) , with a. corresponding meaning
for .p(x , tis) 15J. The Eulerian fields are then

u.(x ,t) = u;(x,t lt), .p(x , t ) = .p(x, tlt) ,

while the usual Lagrangian velocity field is

ui(x,t) = u.(x , Olt).

(3 .1)

(3.2)

A generalized Green's funct ion may also be defined: g(x, tlsix', t' ls') is the
probability density that scalar concentration found at time s' in the fluid
element whose trajectory passes through (x', t') appears "at time s in the
fluid element whose trajectory passes through (x , t) . If I< = 0 (no molecular
diffusivity),

g(x,tls;x',t ls') = S(x - x ') (all s and s'). (3.3)

(3.4)

That is , the scalar concentration in a fluid element is indep end ent of the
time of measurement. Equations of motion for the generalized fields and
the generalized Green's function have been given elsewhere 15].

The transformation to Lagrangian representation is effected by express­
ing the integration in equations (2.20) through (2.23) in terms of the new
vector variable z(y,t Js), defined in harmony with the preceding definit ions
as the position at time s of the fluid element whose trajectory passes through
(y, t ). The transformat ion is volume preserving , in consequence of (1.3) so
that dz = dy. It follows from the definitions of the generalized functions
that

u[z (y, t ls),sJ == u (y , t [s ), et c .

Then, equations (2.20) through (2.23) may be rewr itten as

),;(x, t; s) = I dy (u;(x , t)g(x, t it; y , t is)), (3.5)

),;;(x,t;s) = I dy (u;(x,t)g(x,t lt ;y, t ls) t ;(y, t ls) ), (3.6)

JL;;(x,t ;s) = I dy(u;(x,t)g(x ,tlt;y,t ls)u;(y,t Js)), (3.7)

I";m(x , t ; s ) = I dy(u;(x , t)g(x , t lt;y, t Js)u;(y , tis) tm(y, t is) ) , (3.8)

where

t ;(y ,t ls) = z;(y,t ls) - X;. (3.9)

If I< = 0, it follows from (3.3) and (2.6) that (3.5) th rough (3.8) reduce to
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>..(x,t;s) = 0,

>..;(x,t;s) = (u. (x, t )€;(x , t ls)) ,

I'.; (x , t ;s ) = (u. (x , t )u;(x , t ls )),

1";m(X, t ; S) = (u, (x,t)u; (x , tls )€m(X,tIS )) .
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(3.10)

(3.11)

(3.12)

(3.13)

(3.15)

Equation (3.12) is equiva lent to Taylor's 1921 formula for eddy diffusiv­
ity, the difference being that the Lagrangian velocity in (3.12) is referred
to posit ions of fluid elements at time t, while that in Taylor's formula is
referred to positions at the initial instant. The entire expansion of which
equations (3.10) through (3.13) give the leading terms is equivalent to an
infinite-series equation of motion for c/>CUJ (x ,t) of Moffatt's Lagrangian form
(6-8). A difference is that the present expansion retains nonlocality in time,
while in Moffatt 's form only present values of the mean field appear. A
further difference is t hat the reversion of power series which underlies Mof­
fatt's form is not needed here . Moffat t 's form of expansion gives an elegant
expression of turbulent diffusion of weak magnet ic fields [6-8J. However,
serious complications arise if the same kind of expansion is att empted for
eddy-viscosity effects . Although the vorticity field obeys the same formal
equation of mot ion as the weak magnetic field, the intrinsic statistical de­
pendence of velo city on vortici ty plays a crucial role.

It should be noted that the case K. = 0 can be made to include the case
of nonzero K. by the artifice of representing molecular diffusivity as due to a
very rapid and small-scale component of the velocity field. Nevertheless, it
is of practical inte rest to have the expl icit formulae (3.5) through (3.8) for
nonzero It . Moreover, it can be useful to make only a partial transformat ion
to Lagrangian coordinates, so as to lump small-scale, rapid modes of the
turbulent velocity field with the molecular diffusivity. This can be done
by using a filtered velocity field to define t he Lagrangian transformation.
Equations (3.5) through (3.8) ret ain the same forms, but the meani ng of
the generalized fields is altered. If v (x, t) is th e filt ered field obtained
by passing the Eulerian field u (x , t) through a low-pass wavenumber filter
or other appropriate filter, then the generalized fields are related to the
Eulerian fields by [51 :

[~ + v (x , t) · 'i7]u, (x, t is) = 0, u,(x,sls) = u. (x , s), (3.14)

[: t + v (x, t). 'i7] ¢(x , tls) = 0, ¢ (x,sl s) = ¢ (x ,s).

The vector field z(x,t js) now represents trajectories of particles carried by
the field v(x, t). Only if v(x, t) = u(x, t) and I< vanishes do equations
(3.5) through (3.8) reduce to (3.10) through (3.13). In either event, (3.5)
through (3.8) remain exact equations.
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4. Exact analysis for eddy viscosity

The Nav ier-Stokes (N-S) equat ion leads to expansions like those deve loped
in sect ions 2 and 3, and associated expressions may he constructed for the
asymptotic eddy viscosity acting on slowly varying modes . However, there
are important differences arising from the nonlinearity of the equat ions of
motion and from the vector character of the velocity field. The nonlinear­
ity implies that an asymptotic eddy viscosity, independent of the slow field
it acts upon , is well-defined only if the slow field has infinitesimal ampli­
tude. The vector nature of the field adds qualitatively new features to the
expansions.

Let the N-S equation for an incompressible velocity field u(x, t) in a
cyclic box or infinite domain he written as

1
L(v)u,(x, t) = - z-P;;m('I7 )[U;(x , t)um(x , t)J ,

where L is defined by equation (2.2), v is kinemat ic viscosity,

(4.1)

(4.2)

P,;('I7) = 8,; - '17-''17,'17;,
a

'17, '" -a.x, (4.3)

Here, P';m('I7 ) expresses eliminatio n of the pressure field via (2.3). P,;('I7)
is a project ion operator which suppresses the longitudin al part of the vecto r
funct ion on which it operates . Let uftl (x,t) be an infinitesimal mean field
switched on as a perturbation at time t = O. Assume that the unperturbed
field u; (x, t ) has zero mean for all t , an d let u:(x ,t) be the pertu rbat ion
induced in the fiuctuat ing field. Then , equation (4.1) yields t he following
equat ions for the evolution of u '" and u ':

L(v)ui"(x, t) = Q,(x,t),

Q,(x ,t) = - P';m('I7)(u;(x , t)u:'(x, t)),

[8;mL(v) + P';m('I7)u;(x , t) ]u:'(x, t)
= - P';m('I7 )1u; (x , t )u:::, (x , t )l - Q,(x,t).

(4.4)

(4.5)

(4.6)

As in the scalar case, uHx,t) can be expressed as a spacetime integral over
a Green's function. The latter is now a solenoidal tensor defined by

[8;mL(v ) + P';m('I7) u;(x ,t)Jgmn(x ,t ;y, s) = 0,

gmn(x,s ;y, s) = Pmn('I7)8(x - y).

(4.7)

(4.8)
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If t he integral expression for u:(x, t) is substituted into (4.5), the result may
be written in a form analogous to (2.14) :

Q;(x, t)

where

= V; I.' dsJdY[A;;n(x ,t;y, s)Qn(Y,s)

( ) au~U (y , s) ( ) .U( )]+ J1.ijan x,t;y,s a + ~jn x,t;y,s Un Y ,S
Y.

(4.9)

A;;n(X, t; Y,S) P;m(V )( [U;(X , t)gmn (X,t; y, S)

+ um(X, t)g;n(X,t; y,s)]) , (4.10)

!';;.n(x, t; y , s] P;m(V)( [u;(x , t )gm.(x, t; y, s)

+ um(x, t )g;.(x, t ;y , s))P..(V.)u.(y, s)}, (4.11)

,,;;.(x, t; y, s ) P;m(V)(lu;(x, t}gm.(x , t; y, s}

+ um(x, t}g;.(x , t; y , s})P••(v.)au.(y , s )a y. }. (4.12)

In these equat ions, Pim(''V,,) operates on fun ctions of y . Bo th the symmetry
of P;;m(V) and th e property (2.3) are used in obt aining the right-hand sides.
There are some differences from the scalar case. First , J1.ijan(X,t jy, s) and
Qi;n(X, tj y, s) are opera to rs; Prn C~'u) and Pr60 (''VtI) operate on everything to
their right. Second, the term in !Xi;n has no count erpart in the scalar case .
It involves u:U(y,s) itself rather than its spat ial derivative . This term is
analogous to the a-effect term in the equat ion for a weak magnetic field
diffused by turbulence [61.

As in the scalar case, u(lU(y, s) can be expanded in power series about
the point (x,s). Hthe leading Cli;n term is nonzero, it is the leading term in
the entire expansion, and as a consequence, in contrast to the scalar case ,
the Aiin term can contribute to the exact asymptot ic eddy viscosity.

The power-series expansions are formally stra ightforward. If the leading
(Xiin term vanishes , as it does in reflection-invariant homogeneous turbu­
lence , the exact asymptotic form taken by' (4.9) in limit of infinitely slowly
varying u"''' is

au~U(x , t)
Q;(x ,t ) = V; v;;•• (x, t}-'--"ac'---'--!­

x.

where

vii",n(X,t) = itds f dY[~ii",n (x,t;y,s) + (Xiin (x ,t;y,s)€",] .

(4.13)

(4.14)

In equation (4.14) , ~ii",n and Ctiine", reduce to functions; the P operato rs no
longer act on u'" . If the turbulence is statist ically homogeneous, isotropic,
and nonhelical , the exact asymptotic equat ion of motion for uat' reduces to

L(v)u ·U(x, t ) = v"",. (t )V'u· · (x, t ), (4.15)
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with
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(4.16)

in three dimensions.
It should be noted that when Vi;an (X, t) for homogeneou s turbulence is

transformed into the wavevector domain, the eo factor in (4.14) becomes a
derivat ive with respect to wavevector. Such derivatives do not appear in
the wavevector representation of the asymptotic eddy diffusivity.

The Lagrangian transformation of the eddy viscosity can be carried
out as in the scalar case, but care must be taken to correct ly handle the
derivatives with respect to Yj derivatives with respect to z (y, tis) are not
equivalent to derivatives wit h respect to y. IT the Eulerian fields

W,~ (y,s) = PmCI7.)u.(y,s),

[
au.(y,s)]

Xm.(Y,s) = p,.('V.) €. aYn

(4.17)

(4.18)

are delined, the generalized lields wm.(y,tls) and Xm.(y,tls) may be de­
lined by an equation like (3.14) . Then, (4.14) can be transformed to

Vij.n(X,t) = Pim ('V)1.'JdY([Uj(x, t)gm,(x,t lt;y,tls)

+ um(x, t)gj,(x, t it;y , tls)J [wm,(y, t is)
+ X,n. (y,tls)]) . (4.19)

The equations of mot ion for gm...[x, tjt;y , tis ) have been described elsewhere­
[5]. If the power-series expans ion of u °t/(y , s) of (x,s) is carried to higher
terms, the Lagrangian transformation can be carried out term by term in
the entire resulting series for Qi(X,t) .

5. Breaking t he averages

The expressions for asymptotic eddy diffusivity and eddy viscosity derived
in sections 2 through 4 are exact under the assumptions made . However,
they involve rather complicated statistical averages. It is tempting to try
to approximate the expressions by factoring them into products of simpler
averages . Most of the closure approximations that have been proposed
for eddy diffusivit y and eddy viscosity involve such facto ring, performed
according to a variety of rationales.

Consider the approximation to the eddy diffusivity obtained by factoring
the Eu lerian express ion (2.22) and insert ing the result int o (2.25):

ltij(X,t) = 1.' dsI dY[(Ui(X, t)Uj(y, s)}(g(x, t;y, s))]. (5.1)
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What can be said about the validity of this approximation? First it may
be noted that (5.1) alternatively can be obtained as a consequence of the
direc t-interac t ion app rox imatio n (DIA) for the turb ulent diffusion of a pas­
s ive scalar [9], and it has bee n prop osed independently in the form of a
natural approximat ion for the Lagrangian velocity covariance [3,10]. The
DIA also yields equations which determine the evolut ion of the covariance
and mean Green's function that appear in (5.1) . Numerical integrations in­
dicate that both (5.1) an d the DIA values are good qualit ative and quant ita­
tive approximations in isotropic turbulence, provided that the wavenumber
spectrum of the Eulerian velocity field is concentrated about its center of
gravity [11] .

If instead the spectrum is diffuse in wavenumber, (5.1) introduces quali­
tative errors because of convect ion effects. (This is independent of whether
the DIA is used to evaluate the right side.) To see this, suppose that the
Eulerian velocity spectrum consists of a strong low-wavenumber part and a
high-wavenumber part, the two widely separated in wavenumber. Convec­
tion of the high-wavenumber field by the low-wavenumber field will induce
rapid decorrelation of the latte r in time, and this makes both averages on
the right side fall off rapidly. However, the product average, in the original
exact expression (2.22), does not show this effect because the convection
effects in the three factors are correlated.

The spurious convection effects in (5.1) do not arise if the Lagrangian
average (3.7) is factored to give the approximat ion

l"i; (X,t;S) = ! dy[(u; (x,t )u;(y, tls ))(g(x,tlt,y, tls )) ]. (5.2)

(5.3)

In the case /'C = 0, the g funct ion is statist ically sharp with the value (3.3),
and (5.2) is identical with t he exact express ion (3.12). If Ie is nonzero,
g(x , t lt ;y,t ls) fluct uates because of distortion of fluid elements by the flow.
The distortion makes the scalar gradient in a given fluid element fluctuate
and hence makes the molecular diffusion fluctuate. However, it is plausi­
ble that this fluctuat ion is much more weakly correlated with fluctuations
in u; (x , t Is) t ha n the convect ion effects which afflict th e factoring of the
Eulerian expression (2.22). Thus, it is plausible t hat (5.2) remains a good
qualitative and quantitat ive approximat ion even for nonzero /'C .

A more drastic approximation is to simply replace the g function in
(3.7) by t he value it would have in the absence of the turbulence:

O( I . I ) -[ ( )]- 3/' ( - Ix - y l')9 x ,t t, y, ts -4"I<t-s exp [41« t - s )] .

This ap proximation ignores complete ly the effects of straining of fluid ele­
ments on molecular diffusion. Itshould, nevertheless, have a greater domain
of validity than the Eulerian factoring (5.1).

Approximations to the exact asymptot ic eddy viscosi ty also may be
constructed by factoring the Eulerian and Lagrangian expressions. As in
the scalar case, the Eulerian factoring introduces spurious convection effects
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when the velocity spectrum encompasses a wide range of wavenumbers.
These effects do not ar ise in the factoring of (4.19), which leads to the
approximation

V';.n(x,t ) = P'm('i7) fo' Jdy[W;,..(x,t;y,t ls)Gm.(x,t lt;y,tls)

+ Wm,..(x,t;y,tls)G;.(x,t;y,t ls)j. (5.4)

Here,

W;...(x , t; y, ti s) = (u; (x, t )[w...(y , tis) + X...(y , tis)]) (5.5)

conta ins the Lagrangian velocity covariance, mod ified by the solenoidal
projection operator, while

(5.6)

is the mean Lagrangian Green's tensor.
In contrast to the scalar case, the inviscid Lagrangian Green's tensor

is not simply the solenoidal projection of a a-functionj it exhibits effects
of st raining and pressure fluctuations. Consequently, replacing Gmr by its
purely viscous va lue may not to be a vali d further approximation in high­
Reynolds-number turbulence. Perhaps more just ified is the approximation
of W j r na by a simpler Lagrangian tensor:

W;... (x,t;y,t) = P,.('i7,)U;.(x,t;y,tls)
ou.(y, t is)+ p••('i7,)(u;(x ,t)€.(y,tls) 0 ) (5.7)

Yn

where

U;.(x,t;y,tJs) = (u;(x,t)u.(y,tJs) ) (5.S)

is the Lagrangian velocity covariance.
Equations (5.2), (5.4), and (5.7) alternatively are obtained as conse­

quences of the Lagrangian-history DIA [5J, which provides approxima­
tions for the Lagrangian functions G, Uja, and G mr in terms of Eulerian
quantities . It would be interesting to see how good an approx imation
(5.2) and (5.4) provide (with or wit hout equa tion (5.7)) if exac t values
of G, Gmn Wjm1u and U;o. are used.

The exact formulas of sect ion 4 assume that the large-scale mean field
has infinitesima l amplitude, but in typical applications, the modes of large
spatial scale have most of the kinetic energy. It is therefore important to
discuss the errors associated with finite mean-field excitation, both for the
exact asymptotic formulas and for the approximate factorings presented in
the present sectio n. Modes of large spatial scale exert two (interacting)
kinds of effect on modes of small spatial scale: convection and distortion.
The former is proportional to the large-scale velocity and the latter to the
large-scale rate-of-strain tensor. If the turbulence is statistically homo­
geneous, convection effects do not alter the energy transfer between the
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mean field and the small-scale turbulence and therefore do not alter the
eddy viscosity. This is expressed formally by the invariance of the ex act
asymptot ic exp ress ions (4.10) through (4.12), (4.14), (4.16), and (4.19) to
Galilean transformations. The exact eddy-diffusiv ity expressions (2.2 2),
(2.25), and (3.12) also ar e invar iant under Gal ilean transformation when
there is statistical homogeneity. Distortion by the large-scale mean fie ld
does affect the energy transfer. Thus, the effect ive eddy viscosity exerted
on a finite-strength large-scale field differs from the asymptotic value if the
rates of strain associated with the large-scale field are comparable to those
intrinsically associated with the small-scale turbulence.

Galilean invariance extends also to the factoring approximat ions (5.1),
(5.2), and (5.4). In the case of the Euler ian factoring (5.1) and its coun­
terpart for eddy viscosity, both the covariance and Green's function factors
on the right-hand side change under a st atistically sharp Galilean trans­
formation, but the changes exac tly compensate when there is statistical
homogeneity.

The convection effects of large-scale Buctuating fields are associated
with behavior under random Galilean transformation: the addition to the
total velocity field of an x-independent velocity which is randomly different
in each real izat ion 151 . Both the Eulerian and Lagrangian exact asymp­
totic eddy-d iffusivity and eddy-viscosity formulas are invariant under ran­
dom Galilean transformation, but the factored approximations behave dif­
ferently. The Lagrangian factorings (5.2) an d (5.4) are invariant because
both covariance and Green's function factors are invariant. However, these
factors both change under transformation in the Eulerian case (5.1) and
the corresponding factoring for eddy-viscosity. Because of the breaking of
the averages, the changes do not compensate, as they did for statist ically
sharp transformation, and the resulting eddy diffusivity and eddy viscosity
show spurious change under the transformation (see the discussion follow­
ing equa t ion (5.1)).

Eddy viscosity traditionally is positi ve, corresponding to energy flow
from the large-scale field to the small-scale turbulence. However, various
negative-viscosity phenomena, in which the direction of energy flow is re­
versed, have been described 112-201. It should be noted here that the nega­
tive viscosity effect in two-dimensional turbulence [12-15], which can occur
with isotropic statistics, and the corresponding effect in three dimensions
115-201 , which depends essentially on anisotropy of the small-scale statis­
tics , are both contained in the exact asymptotic eddy expression (4.14).
Moreover, they survive in the factor ing approximation (5.4) and under the
further approximation of using Lagrangian-history DIA to evaluate the co­
variance and Green's funct ion.

The recently descrihed "an isotropic kinetic alpha (AKA) effect" 1201
is a reverse-energy-flow phenomenon that involves the «tin term in (4.9) .
There are several interesting features. First, the AKA effect results in
growth of large-scale helical waves of a particular sign, and therefore, the
small-scale field defines a screw sense . Nevertheless, the small-sca le field
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has no helicity. Second, the maintenance of the AKA effect in steady state
requires that non-Galilean-invariant , small-scale, zero-mean forcing terms
be added to the Navier-Stokes equation. In the presence of such forcing, an
additional term appears in (4.9) which involves the functi onal derivative of
the Green's tensor with respect to the mean velocity field.
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