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Eddy Viscosity and Diffusivity:
Exact Formulas and Approximations

Robert H. Kraichnan*
303 Potrillo Drive, Los Alamos, NM 87544, USA

Abstract. Exact asymptotic expressions for eddy diffusivity and
eddy viscosity are obtained as the leading terms of infinite-series rep-
resentations of integral equations which express the action of turbu-
lence on an infinitesimal mean field. The series are transformed term
by term from Eulerian to Lagrangian form. The latter is more suitable
for constructing approximations to the exact asymptotic expressions.
The analysis is prefaced by some qualitative remarks on possible im-
provements of eddy transport algorithms in turbulence computations.

1. Introduction

Eddy viscosity and eddy diffusivity have long been fruitful concepts in
turbulence theory, and their use has made possible the computation of
turbulent flows at Reynolds numbers too high for full numerical simulation.
However, there is a fundamental logical flaw. Molecular viscosity is a valid
concept when there is a strong separation of space and time scales between
hydrodynamic modes and gas-kinetic collision processes. In high-Reynolds-
number turbulence, on the other hand, there is typically a continuous range
of significantly excited modes between the largest motions and those small
motions which are represented by an eddy viscosity.

In the present paper, the lack of clean scale separation of modes is
expressed by exact statistical equations in which the interaction between a
(large-scale) mean field and a (small-scale) fluctuating field is nonlocal in
space and time. In an asymptotic case of interaction between modes whose
space and time scales are strongly separated, the exact formulas reduce
to ones which are effectively local in space and time and which express
what can be termed the distant-interaction eddy viscosity. Even in this
asymptotic case, the exact eddy viscosity is not a simple expression, and it
is not perfectly reproduced by any approximations that have been proposed.

Most of the present paper is devoted to a derivation of the exact expres-
sions for asymptotic eddy viscosity and eddy diffusivity, the embedding of
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these expressions within infinite-series representations of the general non-
local integral equations, and, particularly, the transformation of Eulerian
formulas into Lagrangian ones. The Lagrangian representation is proba-
bly the one in which approximations to the exact eddy viscosity and eddy
diffusivity can most successfully be carried out. It is hoped that both the
Eulerian and Lagrangian exact formulas can be of use in analyzing approx-
imations and interpreting various approaches to the construction of eddy
transport coefficients.

This mathematical analysis is prefaced by a qualitative discussion of
the more difficult question of improving eddy-viscosity and eddy-diffusivity
algorithms actually used for subgrid-scale representation in computations
of turbulent flows. The spatial and temporal nonlocalness exhibited in the
mathematical analysis may here be of some practical significance. The
relative success of very crude eddy-viscosity approximations in computa-
tions suggests that the dynamics of turbulence yields robust statistics, with
feedback characteristics that somehow partly compensate for bad approx-
imations. However, existing subgrid-scale approximations do not perform
well in the computation of the point-to-point amplitude structure of a large-
scale flow, as opposed to statistics. It may be that here the incorporation
of nonlocal effects is essential. Nonlocality in time means that the sub-
grid modes exert reactive as well as resistive forces on the explicit modes,
and this may be important in reproducing finite-amplitude instabilities and .
other properties of the explicit modes.

One consequence of the lack of clean separation of explicit and sub-
grid modes is that the latter exert fluctuating driving forces on the explicit
modes which are conceptually distinct from eddy viscosity (or even nega-
tive eddy viscosity) [1]. Since the detailed structure of the subgrid modes
is unknown in a flow computation, the fluctuating forces must be treated
statistically, but the close coupling between the two classes of modes means
that the relevant statistics are not purely random. The existence of fluctu-
ating forces on the explicit modes implies that the explicit velocity field in
a calculation is not simply replaceable by its statistical mean.

Some simple numerics yield a strong motivation for improvement of
subgrid representations. If the smallest spatial scale treated explicitly in a
high-Reynolds number flow increases by a factor ¢, the computational load
of the explicit calculation decreases by a factor of perhaps c¢*. The precise
ratio depends on the method of computation used. If the calculation is
Eulerian, and logarithmic factors associated with fast Fourier transforms
are ignored, the power four used above arises from increase in grid mesh
size in three dimensions together with increase in the smallest time step
needed, the latter determined by the convection by the large-scale flow. If
these crude estimates are relevant, an increase of minimum explicit scale
by a factor 2 decreases the load by a factor 16, and an increase by a factor
4 decreases the load by a factor 256. This means that an improvement in
subgrid representation that permits a shrinking of the explicit scale range by
a factor 2 may be cost-effective, provided that it increases the computation
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size by less than a factor 16 over a cruder subgrid-scale representation.

Caveats should be stated at this point. First, a useful subgrid algorithm
must be practical to program and implement. This implies, among other
things, that it must have a reasonably broad application. Second, a new
algorithm must in fact be an improvement. An analytical approximation
which includes higher-order effects may actually make things worse rather
than better, because the convergence properties of the relevant approxima-
tion sequences are subtle and dangerous.

It seems unlikely that adding correction terms to the local asymptotic
formulas exhibited in the body of the present paper is a valid route to im-
proving eddy-viscosity and eddy-diffusivity representations. And, of course,
no eddy-viscosity representation, however good, takes account of the ran-
dom forces exerted by the subgrid modes. Moreover, the statistical facts
about the subgrid scales needed to evaluate even the lowest-order asymp-
totic formulas are unavailable in a practical flow calculation.

One alternative approach is to infer as much as possible about the be-

-havior of the subgrid modes by extrapolation from the dynamics and statis-
tics of the explicitly computed modes. The well-known Smagorinsky eddy-
viscosity formula [2| can be viewed as a simple example of this approach.
Here, the effective eddy viscosity is determined from the local rate-of-strain
tensor of the explicit velocity field by appeal to Kolmogorov inertial-range
scaling arguments. It may be worthwhile, however, to extract substan-
tially more detailed information from the explicit velocity field in order to
estimate the dynamical effects of the subgrid scales.

Suppose, for example, the flow calculation is sufficiently large that a
substantial range of spatial scales is included in the explicit velocity field.
It is then possible to analyze the explicit field to extract information about
the mean transfer of energy between different scale sizes, reactive interac-
tions, and, as well, the fluctuating forces exerted by explicit modes of small
scale on those of larger scale. Such an analysis could be performed individ-
ually on each calculated flow field as the computation proceeds. However,
it might be more economical to try to build up library tables of results
from which these quantities could be rapidly estimated for a given com-
putation using relatively few measured parameters. In either event, the
effects of subgrid modes on the explicit field could then be estimated by
assuming similarity with interscale dynamics within the explicit field. This
would seem a less drastic assumption than adopting idealized inertial-range
dynamics for the subgrid scales. Of course, the similarity analysis could
be modified by taking into account crucial dynamical differences between
explicit and subgrid modes—for example, increase of molecular viscosity
effects with wavenumber.

2. Exact Eulerian analysis for eddy diffusivity

The equation of motion for a passive scalar advected by an incompressible
velocity field may be manipulated to yield statistical equations which are



808 Robert H. Kraichnan

exact and which display an eddy-diffusivity term acting on scalar modes
having very large space and time scales. Let the scalar field ¢(x,t) obey

L(k)¢(x,t) + u(x,t) - Vé(x,t) =0 (2.1)
where

L(k) = % - kV? (2.2)
and

V-u(x,t) =0. (2.3)
Write

B(x,t) = ¢*(x,1) + ¢'(x,?) (2.4)
where

$" (x,t) = (6(x,1)) (2.5)
and ( ) denotes ensemble average. Assume

(u(x,t)) = 0. (2.6)

If, instead, u(x,%) has a nonzero mean, extra terms appear in the following
analysis.

Equations (2.1) through (2.6) yield the following equations for the mean
and fluctuating scalar fields:

L(k)¢* (x,) = Q(x, ) (2.7)
(L(k) + u(x,2) - V)¢ (3%, 8) = —u(x,t) - Vo¥(x,8) — Q(x,8)  (2.8)

where
Q(x,t) = (u(x,t) - V¢'(x,1)). (2.9)
Define the unaveraged Green’s function g(x,%;y,t) by
[L(x) +u(x,t) - V]g(x,t;¥,8) =0  (t > s), (2.10)
g(x,8;y,8) = 6(x —y). (2.11)
Assume
#(x,t) = 0. (2.12)

Then, equations (2.7) through (2.11) yield

#(x,t) =~ f; ds f dy g(x,t;y,5)[u(y,s)- V8™ (y,8)+Q(y, $)](2.13)
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and, therefore,

Qx,t) = aax- f; de dy Xi(x,t;y,5)Q(¥, s)
a i 3 av .
e az'_fo dedy M-‘j(x,f;yﬁ)-%i)- (2.14)
where equation (2.3) is used and
Ai(x, v, 8) = (wi(x,t)g(x,t;y,5)), (2.15)
wii (%, 8y, 8) = (wi(x,t)g(x,t;y, s)u;(y,s)). (2.16)

No approximation has been made so far. Suppose that ¢®(x,t) has
space and time scales very long compared to those that are significant in
u(x,t). Then, equations (2.7) and (2.14) yield an equation of motion for
% (x,t) in which the coefficient functions are averages whose correlation
scales are characteristic of the velocity field. Now let the slowly varying field
¢*(y,s) in (2.14) be expanded in a Taylor series about (x, s). Assume that
this series has at least a finite radius of convergence in

b= — %

or that the series is asymptotic in some suitable sense about £; = 0. Equa-
tion (2.14) may be expanded in the form

Qx,8) = Y (x,£) + Z(x,1) (2.17)

where

Y(x,t) = ;ﬂ; o‘ da e, b o) O, 8} gl 826 w +..,

(2.18)
2\x,t) =
t s 2 tav X. 8
%J{‘ ds [“ii(x:t;s) agéa(z; Lt tigmlx, ) ——aaij;m;)+...], (2.19)
and
Xi(x,t58) = /dY(ui(X,t)g(X,t;Y,S)), (2.20)
Aij(x,t58) = f dy(ui(x,t)g(x,t;y, ) ;) (2.21)
etc.

Hi5 (%, t; 8) =fdY(ue(x,t)y(x,t;y,S)u,-(y, s)), (2.22)
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Bism(X, t;8) = f dy (ui(%,t)9(x,t; ¥, 8)u; (¥, 8) €m)s (2.23)

ete.

Equations (2.17) through (2.19) still provide a formally exact represen-
tation of Q(x,¢), implicitly in powers of a ratio /£, where £, and £; are
characteristic spatial scales of the velocity field and the mean scalar field
$°, respectively. An equivalent of (2.22) was first derived by Corrsin [3].

Q(x,t) may now be expressed in powers of £,/{4s by an iteration solu-
tion of equation (2.17). The leading term in this expansion is the term in
i (x,t; s). If the s-variation of ¢%(x, s) is neglected in comparison to that
of p;;(x,t; ), there results the equation of motion for ¢*(x,t):

L(k)$™(x,t) = %[m;,-(x,t) —‘?f;i—f’” (2.24)
where
k(1) = [ N b Sl (2.25)

The tensor ;;(x,t) is the exact asymptotic eddy diffusivity in the sense
that (2.24) is asymptotically exact if the spatial and temporal variation
of ¢**(x,t) is infinitely slow compared to that of u(x,t). No closure ap-
proximation has been made. It is assumed, via equation (2.12), that the
mean scalar field is switched on at ¢ = 0 (or, equivalently, that the velocity
field is switched on at ¢ = 0). Statistical homogeneity or stationarity of
the velocity field is not assumed, but if the velocity field is statistically ho-
mogeneous and isotropic, the exact asymptotic scalar eddy diffusivity (in
three dimensions) is

Koy 8) = %w (%,2). (2.26)

3. Lagrangian transformation

There are two principal reasons for transforming the Eulerian formulae of
section 2 into Lagrangian expressions. First, the results reproduce Taylor’s
1921 formula [4] for eddy diffusivity when the molecular diffusivity x van-
ishes, and thereby provide an exact generalization of Taylor’s formula to the
case of nonzero k. Second, the Lagrangian expressions are physically more
appropriate because they eliminate confusing (and canceling) convection
effects in the amplitude factors from which the right-hand sides of (2.20)
through (2.23) are constructed. Thereby, these expressions become more
suitable for statistical approximation. This is discussed further in section 5.

The Lagrangian transformation of equations (2.18) and (2.19) (with
equations (2.20) through (2.23) inserted), has the effect of changing the
spacetime integrals on the right-hand sides into integrals backward in time
from the present instant ¢, along a space-filling family of fluid-element tra-
jectories. This can be done by introducing the generalized velocity field
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u(x,t|s) and scalar field ¢(x,t|s) defined as follows: u(x,t|s) is the ve-
locity field measured at time s in that fluid element whose trajectory
passes through the spacetime point (x,t), with a corresponding meaning
for ¢(x,¢|s) [5]. The Eulerian fields are then

ui(x,t) = uwi(x,t[t), o(x,t) = d(x,tt), (3.1)
while the usual Lagrangian velocity field is
ut(o, 1) = uix, O}t). (3.2

A generalized Green’s function may also be defined: g(x,t|s;x',#'|¢') is the
probability density that scalar concentration found at time s' in the fluid
element whose trajectory passes through (x',t') appears-at time s in the
fluid element whose trajectory passes through (x,t). If & = 0 (no molecular
diffusivity),

g(x,t|s; 2, t|s") = 6(x—x') (all s and &'). (3-3)

That is, the scalar concentration in a fluid element is independent of the
time of measurement. Equations of motion for the generalized fields and
the generalized Green’s function have been given elsewhere [5].

The transformation to Lagrangian representation is effected by express-
ing the integration in equations (2.20) through (2.23) in terms of the new
vector variable z(y, t|s), defined in harmony with the preceding definitions
as the position at time s of the fluid element whose trajectory passes through
(v,t). The transformation is volume preserving, in consequence of (1.3) so
that dz = dy. It follows from the definitions of the generalized functions
that

ulz(y,t|s), s] = u(y,t|s), ete. (3.4)

Then, equations (2.20) through (2.23) may be rewritten as

Ai(x)t; 5) = f@(ui(x)t)g(xstlt;Y»tls))! (3'5)
Aij(x,1;8) =fdy(u.-(x,t)g(x,t|t;y,t|s)$,—(y,t|s)), (3.6)
[.L,'_,'(X,t;s) =fdY(ui(xit)g(x:tlt;Ystls)u.‘i(Y:tls})’ (3'7)

Ju'ijm.(x$ t; S) = f dy(u,- (x!t)g(xi tlt;y? tls)u.‘f (Yst]‘s) Em(y, tls)) ’ (38)
where

&y, tls) = z(y, t]s) — =i (3.9)
If « = 0, it follows from (3.3) and (2.6) that (3.5) through (3.8) reduce to
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Ai(x,t;8) =0, (3.10)
Aij (%, 85 8) = (wi(x, 1) €5(x, t]s)), (3.11)
pij (%, 15.8) = (i (3, t)uj(x, t]s)), (3.12)
Pigm (%, 5 8) = (ua(x, t)u; (x, t|s) €m(x, 2]5)). (3.13)

Equation (3.12) is equivalent to Taylor’s 1921 formula for eddy diffusiv-
ity, the difference being that the Lagrangian velocity in (3.12) is referred
to positions of fluid elements at time ¢, while that in Taylor’s formula is
referred to positions at the initial instant. The entire expansion of which
equations (3.10) through (3.13) give the leading terms is equivalent to an
infinite-series equation of motion for ¢°(x,t) of Moffatt’s Lagrangian form
[6-8]. A difference is that the present expansion retains nonlocality in time,
while in Moffatt’s form only present values of the mean field appear. A
further difference is that the reversion of power series which underlies Mof-
fatt’s form is not needed here. Moffatt’s form of expansion gives an elegant
expression of turbulent diffusion of weak magnetic fields [6-8]. However,
serious complications arise if the same kind of expansion is attempted for
eddy-viscosity effects. Although the vorticity field obeys the same formal
equation of motion as the weak magnetic field, the intrinsic statistical de-
pendence of velocity on vorticity plays a crucial role.

It should be noted that the case & = 0 can be made to include the case
of nonzero k by the artifice of representing molecular diffusivity as due to a
very rapid and small-scale component of the velocity field. Nevertheless, it
is of practical interest to have the explicit formulae (3.5) through (3.8) for
nonzero k. Moreover, it can be useful to make only a partial transformation
to Lagrangian coordinates, so as to lump small-scale, rapid modes of the
turbulent velocity field with the molecular diffusivity. This can be done
by using a filtered velocity field to define the Lagrangian transformation.
Equations (3.5) through (3.8) retain the same forms, but the meaning of
the generalized fields is altered. If v(x,t) is the filtered field obtained
by passing the Eulerian field u(x,t) through a low-pass wavenumber filter
or other appropriate filter, then the generalized fields are related to the
Eulerian fields by [5]:

[% FlEB- V]u;(x,ﬂs) =0, -l ale) =ulxa), (3.14)

[% +v(x,t) - V]qﬁ(x,t|s) =0, ¢(x,5]s) = ¢(x,s). (3.15)

The vector field z(x,t|s) now represents trajectories of particles carried by
the field v(x,t). Only if v(x,t) = u(x,t) and x vanishes do equations
(3.5) through (3.8) reduce to (3.10) through (3.13). In either event, (3.5)
through (3.8) remain exact equations.
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4. Exact analysis for eddy viscosity

The Navier-Stokes (N-S) equation leads to expansions like those developed
in sections 2 and 3, and associated expressions may be constructed for the
asymptotic eddy viscosity acting on slowly varying modes. However, there
are important differences arising from the nonlinearity of the equations of
motion and from the vector character of the velocity field. The nonlinear-
ity implies that an asymptotic eddy viscosity, independent of the slow field
it acts upon, is well-defined only if the slow field has infinitesimal ampli-
tude. The vector nature of the field adds qualitatively new features to the
expansions.

Let the N-S equation for an incompressible velocity field u(x,t) in a
cyclic box or infinite domain be written as

L(v)ui(x,t) = —%ij(V)[uj(x, t)m (%, 1)), (4.1)

where L is defined by equation (2.2), v is kinematic viscosity,

Piim(V) = Vi Pii(V) + V; Pin(V), (4.2)

P,'J'(V] —_ 6.',' —_ V—2V;Vj, V — a

P g (4.3)

Here, P;;;n(V) expresses elimination of the pressure field via (2.3). P;(V)
is a projection operator which suppresses the longitudinal part of the vector
function on which it operates. Let uf”(x,t) be an infinitesimal mean field
switched on as a perturbation at time¢ = 0. Assume that the unperturbed
field u;(x,t) has zero mean for all ¢, and let uj(x,%) be the perturbation
induced in the fluctuating field. Then, equation (4.1) yields the following
equations for the evolution of u®*’ and u':

L(v)ui®(x,t) = Qi(x, 1), (4.4)

Qi(%,8) = = Pijm (V) {u3(x, t)up (%, 2)), (4.5)

[BmL(¥) + Pim(V)us(x,8)]un(x,?)
= = Piym(V)[u; (%, t)ur (x,8)] — Q:(x,1). (4.6)

As in the scalar case, u}(x,t) can be expressed as a spacetime integral over
a Green’s function. The latter is now a solenoidal tensor defined by

[6imL(¥) + Pijm(V)u;j(x,t)]gmn(x,t;y,8) =0, (4.7)

Fina(X; 8;¥, 8) = Pna(V)6(x — ). (4.8)
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If the integral expression for u!(x,?) is substituted into (4.5), the result may
be written in a form analogous to (2.14):

Q,-(x,t) = VJ"/; dsde[Aijn(x!t;Y1s)Qn(Y13)

+ ﬂ‘l’jan(xr ts Y, 8) aug;—iz,sl + a;j,,(x, t; Y, S)M:"(y, 3)] (49)
where
/\n'jn(x&t; y’s) = P,m(V) ([u.f (x! t)gm(x, 5y, s)
+  Um(X,t)gin(%,t;¥,8)]), (4.10)

»ul'jan(xa iy, 5) = P,-.,.(V)([u,-(x, t)gmr (X, 85, 8)
+  um(X,t)g5- (%, 155, 8) | Pra(Vy ) 2a (¥, 8))» (4.11)

al':'n(x’t;sz) = Pgm(V)(iu,-(x,t)gm,.(x,t;y,s)
+ um(X,8) g5 (X, 85 ¥, 8)] Prs (Vi) Ous (v, 8)Fyn). (4.12)

In these equations, P;,»(V,) operates on functions of y. Both the symmetry
of P;j»(V) and the property (2.3) are used in obtaining the right-hand sides.
There are some differences from the scalar case. First, p;;n(X,%;y,8) and
@;;in(X,1;¥,s) are operators; P,,(V,) and P,;(V,) operate on everything to
their right. Second, the term in a;;, has no counterpart in the scalar case.
It involves u3’(y,s) itself rather than its spatial derivative. This term is
analogous to the a-effect term in the equation for a weak magnetic field
diffused by turbulence [6].

As in the scalar case, u®(y,s) can be expanded in power series about
the point (x,s). If the leading cy;,, term is nonzero, it is the leading term in
the entire expansion, and as a consequence, in contrast to the scalar case,
the A, term can contribute to the exact asymptotic eddy viscosity.

The power-series expansions are formally straightforward. If the leading
a;in term vanishes, as it does in reflection-invariant homogeneous turbu-
lence, the exact asymptotic form taken by (4.9) in limit of infinitely slowly
varying u®’ is

ud’(x,t)

e (4.13)

Q.‘(x, t) = vjyijnn (xg t)
where
t
Vijan(X:t) = j; ds f dy [tijan (%, 85 Y, 8) + aijn(%, 85y, 8) &) (4.14)

In equation (4.14), tijan and a;,&, reduce to functions; the P operators no
longer act on u®’. If the turbulence is statistically homogeneous, isotropic,
and nonhelical, the exact asymptotic equation of motion for u® reduces to

L(v)u® (x,t) = v, (t) Viu®(x,1), (4.15)
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with
1
Veady = 5Fin(V)Vizin(%,1), (4.16)

in three dimensions.

It should be noted that when v;4,(x,1) for homogeneous turbulence is
transformed into the wavevector domain, the &, factor in (4.14) becomes a
derivative with respect to wavevector. Such derivatives do not appear in
the wavevector representation of the asymptotic eddy diffusivity.

The Lagrangian transformation of the eddy viscosity can be carried
out as in the scalar case, but care must be taken to correctly handle the
derivatives with respect to y; derivatives with respect to z(y,t|s) are not
equivalent to derivatives with respect to y. If the Eulerian fields

Wena(¥5 8) = Pra(Vy)ua(y, s), (4.17)
Xona(8) = Pa(V) [ea“—(”—)] (4.18)

are defined, the generalized fields wynq(y,2|s) and Xma(y,%|s) may be de-
fined by an equation like (3.14). Then, (4.14) can be transformed to

U!'.fdn(x’t) = Pim(V) j;/dy([u_,~(x,t)gm,(x,t|t;y,t[3)

F um(x,t)g_.,-,(x,t|t;y,t|s)] [Wena (¥, t|s)
T Xrnu(Yst!‘g)])' (4.19)

The equations of motion for g,..(x, t|t; ¥,t|s) have been described elsewhere-
[5]. If the power-series expansion of u®(y,s) of (x,s) is carried to higher
terms, the Lagrangian transformation can be carried out term by term in
the entire resulting series for Q:(x,1).

5. Breaking the averages

The expressions for asymptotic eddy diffusivity and eddy viscosity derived
in sections 2 through 4 are exact under the assumptions made. However,
they involve rather complicated statistical averages. It is tempting to try
to approximate the expressions by factoring them into products of simpler
averages. Most of the closure approximations that have been proposed
for eddy diffusivity and eddy viscosity involve such factoring, performed
according to a variety of rationales.

Consider the approximation to the eddy diffusivity obtained by factoring
the Eulerian expression (2.22) and inserting the result into (2.25):

wisls) = [ ds [ dyl(uslx,t)us(,8)) (00x, 5, ). (51)
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What can be said about the validity of this approximation? First it may
be noted that (5.1) alternatively can be obtained as a consequence of the
direct-interaction approximation (DIA) for the turbulent diffusion of a pas-
sive scalar [9], and it has been proposed independently in the form of a
natural approximation for the Lagrangian velocity covariance [3,10]. The
DIA also yields equations which determine the evolution of the covariance
and mean Green’s function that appear in (5.1). Numerical integrations in-
dicate that both (5.1) and the DIA values are good qualitative and quantita-
tive approximations in isotropic turbulence, provided that the wavenumber
spectrum of the Eulerian velocity field is concentrated about its center of
gravity [11].

If instead the spectrum is diffuse in wavenumber, (5.1) introduces quali-
tative errors because of convection effects. (This is independent of whether
the DIA is used to evaluate the right side.) To see this, suppose that the
Eulerian velocity spectrum consists of a strong low-wavenumber part and a
high-wavenumber part, the two widely separated in wavenumber. Convec-
tion of the high-wavenumber field by the low-wavenumber field will induce
rapid decorrelation of the latter in time, and this makes both averages on
the right side fall off rapidly. However, the product average, in the original
exact expression (2.22), does not show this effect because the convection
effects in the three factors are correlated.

The spurious convection effects in (5.1) do not arise if the Lagrangian
average (3.7) is factored to give the approximation

i, t38) = [ dy{ (s, 2)us (3, tls)) (g o, it ¥, )] (5.2)

In the case & = 0, the g function is statistically sharp with the value (3.3),
and (5.2) is identical with the exact expression (3.12). If k is nonzero,
g(x, t|t; ¥, t|s) fluctuates because of distortion of fluid elements by the flow.
The distortion makes the scalar gradient in a given fluid element fluctuate
and hence makes the molecular diffusion fluctuate. However, it is plausi-
ble that this fluctuation is much more weakly correlated with fluctuations
in u;(x,t|s) than the convection effects which afflict the factoring of the
Eulerian expression (2.22). Thus, it is plausible that (5.2) remains a good
qualitative and quantitative approximation even for nonzero .

A more drastic approximation is to simply replace the g function in
(3.7) by the value it would have in the absence of the turbulence:

2

Pl ) —fame(e — )] exp (2. (5.3

This approximation ignores completely the effects of straining of fluid ele-

ments on molecular diffusion. It should, nevertheless, have a greater domain
of validity than the Eulerian factoring (5.1).

Approximations to the exact asymptotic eddy viscosity also may be

constructed by factoring the Eulerian and Lagrangian expressions. As in

the scalar case, the Eulerian factoring introduces spurious convection effects
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when the velocity spectrum encompasses a wide range of wavenumbers.
These effects do not arise in the factoring of (4.19), which leads to the
approximation

¢
U,-,-m(x,t) = Pm(V) dy[w.fma(x=t;Y1t|5)Gmr(x=t|t§th]5)
0
+ Waena(X,1;7,5)Gjr(x, 15y, t]s)]. (5.4)
Here,

Wirna (%, 135, 8]s) = (u;(%, ) [wena(y, t]s) + Xena(¥:2]s)]) (5.5)

contains the Lagrangian velocity covariance, modified by the solenoidal
projection operator, while

Gor (%, 85 ¥, t[8) = (gmr (X, 15 ¥, t]5)) (5.6)

is the mean Lagrangian Green’s tensor.

In contrast to the scalar case, the inviscid Lagrangian Green’s tensor

is not simply the solenoidal projection of a §-function; it exhibits effects

of straining and pressure fluctuations. Consequently, replacing G, by its

purely viscous value may not to be a valid further approximation in high-

Reynolds-number turbulence. Perhaps more justified is the approximation

of Wi by a simpler Lagrangian tensor:

ij(x1t;Y: t) = Prn(vy)Uja(x, t;Y;tls)
dup(y, t|s

P9, 0,0 Euly, tle) 200011,

4 (5.7)

where

Uja(%: 15y, t]s) = (u;(x,t)ua(y, t]s)) (5-8)

is the Lagrangian velocity covariance.

Equations (5.2), (5.4), and (5.7) alternatively are obtained as conse-
quences of the Lagrangian-history DIA [5], which provides approxima-
tions for the Lagrangian functions G, Uj,, and Gp,, in terms of Eulerian
quantities. It would be interesting to see how good an approximation
(5.2) and (5.4) provide (with or without equation (5.7)) if exact values
of G, Gmry Wijrna, and Uj, are used.

The exact formulas of section 4 assume that the large-scale mean field
has infinitesimal amplitude, but in typical applications, the modes of large
spatial scale have most of the kinetic energy. It is therefore important to
discuss the errors associated with finite mean-field excitation, both for the
exact asymptotic formulas and for the approximate factorings presented in
the present section. Modes of large spatial scale exert two (interacting)
kinds of effect on modes of small spatial scale: convection and distortion.
The former is proportional to the large-scale velocity and the latter to the
large-scale rate-of-strain tensor. If the turbulence is statistically homo-
geneous, convection effects do not alter the energy transfer between the
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mean field and the small-scale turbulence and therefore do not alter the
eddy viscosity. This is expressed formally by the invariance of the exact
asymptotic expressions (4.10) through (4.12), (4.14), (4.16), and (4.19) to
Galilean transformations. The exact eddy-diffusivity expressions (2.22),
(2.25), and (3.12) also are invariant under Galilean transformation when
there is statistical homogeneity. Distortion by the large-scale mean field
does affect the energy transfer. Thus, the effective eddy viscosity exerted
on a finite-strength large-scale field differs from the asymptotic value if the
rates of strain associated with the large-scale field are comparable to those
intrinsically associated with the small-scale turbulence.

Galilean invariance extends also to the factoring approximations (5.1),
(5.2), and (5.4). In the case of the Eulerian factoring (5.1) and its coun-
terpart for eddy viscosity, both the covariance and Green’s function factors
on the right-hand side change under a statistically sharp Galilean trans-
formation, but the changes exactly compensate when there is statistical
homogeneity.

The convection effects of large-scale fluctuating fields are associated
with behavior under random Galilean transformation: the addition to the
total velocity field of an x-independent velocity which is randomly different
in each realization [5]. Both the Eulerian and Lagrangian exact asymp-
totic eddy-diffusivity and eddy-viscosity formulas are invariant under ran-
dom Galilean transformation, but the factored approximations behave dif-
ferently. The Lagrangian factorings (5.2) and (5.4) are invariant because
both covariance and Green’s function factors are invariant. However, these
factors both change under transformation in the Eulerian case (5.1) and
the corresponding factoring for eddy-viscosity. Because of the breaking of
the averages, the changes do not compensate, as they did for statistically
sharp transformation, and the resulting eddy diffusivity and eddy viscosity
show spurious change under the transformation (see the discussion follow-
ing equation (5.1)).

Eddy viscosity traditionally is positive, corresponding to energy flow
from the large-scale field to the small-scale turbulence. However, various
negative-viscosity phenomena, in which the direction of energy flow is re-
versed, have been described [12-20]. It should be noted here that the nega-
tive viscosity effect in two-dimensional turbulence [12-15], which can occur
with isotropic statistics, and the corresponding effect in three dimensions
[15-20], which depends essentially on anisotropy of the small-scale statis-
tics, are both contained in the exact asymptotic eddy expression (4.14).
Moreover, they survive in the factoring approximation (5.4) and under the
further approximation of using Lagrangian-history DIA to evaluate the co-
variance and Green'’s function.

The recently described “anisotropic kinetic alpha (AKA) effect” [20]
is a reverse-energy-flow phenomenon that involves the aj, term in (4.9).
There are several interesting features. First, the AKA effect results in
growth of large-scale helical waves of a particular sign, and therefore, the
small-scale field defines a screw sense. Nevertheless, the small-scale field
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has no helicity. Second, the maintenance of the AKA effect in steady state
requires that non-Galilean-invariant, small-scale, zero-mean forcing terms
be added to the Navier-Stokes equation. In the presence of such forcing, an
additional term appears in (4.9) which involves the functional derivative of
the Green’s tensor with respect to the mean velocity field.
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