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Abstra ct. Lat t ices of coup led maps on t he in terval are used to test
some ideas of Y. Pomeau concerning estimates of the numb er of de­
grees of freedom per unit leng th of a spatia lly in coh erent system .
Qualitative agreement is found between dimension densit ies obtained
using two-point measurements at separ ated lat t ice p oints and dimen­
sion densities obtained using spati al decay of the correlation function.

1. Introduction

T he int roduct ion of nonlineart deterministic, and low-dimensional dynami­
cal systems with chaotic solutions led to many conjectures about how these
chaotic systems might be related to fluid tu rbulence. It appears that th e
time series, produced by a chaotic solution can be, from the point of view of
power spectra, as complex as experimentally observed signals from turbu­
lent hydrodynamics (see [1-3] and referenc es therein). Furthermore, certain
transitions from laminar to t urbulent flow have their analog in th e transi­
tion from ord ered to chaotic behavior of deterministic chaotic systems.

A basic problem in that context is how methods from nonlinear dy­
nami cal syste ms can be used to describe experime ntal turbulence. It was
suggested t o determine t he fract al dimension 14--6j of a turbulent flow in
orde r to est imate how many nonlinear equations would be needed for a
model of turbulence. A frequent objection to the app roach of using sim­
ple dynamical syste ms as models for turbulence is that these models might
reproduce some temporal chaos but would not correspo nd to real tu rbu­
lence, for which th e spatial structure also is very irregular and chaotic. The
dynamics in a turbulent flow especially is not expected to be spatially co­
herent and therefore cannot be describ ed by a few global mo des. Thus, a
one-point measurement of a velocity component , say, should always con­
tain information about t he dynamics of the whole fluid and t herefore yield
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a fractal dimension which is proport ional to the size of the container . This
has been confirmed, e .g., by Brandstatter [6] in an experime nt on t urbu lent
channel flow.

Thus, if we still want to use the framework of simple dyn amical systems ,
then we have to consider lat t ices of coup led dynamical systems, such as
coupled maps on the interva l. It is known t hat these systems have very
interesting properties with respect to spatio-temporal complexity [7,8]. In
t he following, we want to use the simplest of t hese maps in orde r to t est
the applicability of some ideas of Y. Pomeau [9,101 which should make it
possible to estimate the the number of degrees of freedom pe r unit length
of a system which is spatially incoherent.

This is done by computing the dimens ion density of the lat t ice sys tem
through a series of two-point measurements at separated lattice points.
Then, we compare these res u lts with the spatia l decay of the correlation
function and the mutual information content. We find a qualitative agree­
ment with the expected dependence. For p recise quantitative measurement,
the general problem of acc uracy and data limi tations appear to become
dominant.

There are several other approaches t o th is problem . T he straight for­
ward idea , which is un realistic for basically all numer ical simulat ions , is to
compute the dimension of the fu ll system and t hen divide the dim ension by
the volume of the system. T he specia l cases, where the full dime ns ion can
be estimated through t he Kaplan-Yorke conjecture, cons ist of mathemati­
cal sys tems for which the eq uat ions and the ir de rivatives are kn own. Since
derivat ives reflect local dynamics and therefore in a sense corres pond to in­
fin ite resolution, we wou ld ex pect that dime nsion densities defined t hrough
Lyapunov spectra define an up per bound on the dime ns ion densities from
time series. It is also not quite clear to us if these methods can be com­
par ed at al l. In ou r numerical simula tions we cou ld, however, confirm this
inequali ty.

A different approach , which is completely based on the spati al structure
of the systems and which does not explicitly t ake into accou nt the temporal
evol ution, has been proposed by P. Grassbe rger [11]. We do not yet kn ow
how realistic this approach will turn out to be .

2. Dimension density

We wa nt to discuss an intensive measure of complex ity of the spatio­
temporal dynam ics of a system, i.e., an observable which does not dep end
on the size of the system. T he natural ap proach would be to define the
densi ty of an (ext ensive) quant ity, which grows proport ionally with the
size of the system. T he quantity we choose is the dynamical dimens ion , or
number of degr ees of freedom of the sys tem. Since for sp a t ially coherent
sys tems it is obvious that t he d imension density mu st van ish in the limi t of
lar ge extensions, we ass ume that the influence of the local dy namics at on e
position x decays with the distance from x . T hus, in t he limit of infinite
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experime ntal resolu t ion , we wou ld expect that a dimensi on measurement
at a given position of the system will yield a value which is extensive, since
every point in the system contributes t o a certain degree to the dynamics
at x . Because of the dec reasing influence of distant points, we expect that
for finite reso lution we are going to measure a finite dimension, since we
cannot resolve the small amplitude dynamics. In a way, this is similar to
the noise perturbation of a deterministic system, only in this case, deter­
minist ic dynamics and "stochastic" noise have the same dynamical origin
and cannot be clearly distinguished.

The dimensio n value that we obtain for a finit e resolution from a one­
point measurement is composed of two different contributions from (i) the
local dynamics, whic h can be of a dimensional complexity which can vary
considerably with parameters and systems, or (ii) large amplitude influences
from the dynamics of the ne ighborhood. The first situation we would expect
for a small coupling between neighboring sites. The second case we would
expect when the coup ling is strong. With a one-point measurement we are
not able to dist inguish between these two cases.

Thus, let us assume we are measuring a signal S(x, t) at a position x at
a t ime t . It can be decomposed into local and coupling terms:

S (x,t) '" So (x, t) + eu.(t) , (2.1)

where So{x, t ) denotes the contribution from the local dy namics and eu. (t )
stands for the influence from a neighborhood Uz of x. We would like to
mention that we do not consider here the finit e propagat ion speed of per­
turbat ions, but are on ly interested in the st at ionary dynamics at different
poin ts. For the sake of simp licity, let us ass ume that we have an exponen­
tial decay of the influence of spatially separat ed points. By this , we mean
that the dyn amics at a point y E U«, which is separated by a distance
Ilx - yll = L from x , will generate a perturbation e, of size:

- L
. eT (2.2)

where S(y) represents the local dynamics at position y and we have assumed
a spatia l hom ogeneit y, i.e. , the mean amplitude of the dynami cs should not
dep end on the pos ition. Of course, this excludes complex spatial patterns ,
which would severe ly complicate the arguments. T he exponential factor
contains a characteristic length A, but again, the main argument does not
dep end on the exac t form in which t he spatial perturbation decays. From
equat ion (2.2), we can see how for infinite reso lution (eu --+ 0) we asymp­
tot ically measure the d imension of the whole system.

In the next part , we int roduce a finite experiment al res olution e >
0, which means that we do not compute dimension values for signals of
ampli tude r < e. From equation (2.2), we see that this means that we only
pick up perturbati ons from a neighborhood of size L, for which: e-~ = e.
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From this , we obtain the effective range L, = Aln~. Again, we note that
this quantity cannot be obtained from a one-point measurement.

From the measured dimension D, at a single point with resolution e
and the range Lc , we can now define the dimension density p of the system
by:

NIf= P · L~, (2.3)

where d is the geometrical dimension of the system: in our case, of a string
of coupled ma ps we have d = 1.

The next assumpti on which we make is that of an additivity of the
dimensions for com bined signals , i.e. if we superimpose the signals from
two oscillators 81(t),8,(t) of the same amplitude (l181(t)1 1 118,(t)ll),
th en we expect to observe a signal which has a dimension which equa ls the
sum of the dimensions of the two separate signals. There are several ways
in which this superposition can be realized . For instance, the combined
signal cou ld be the sum 8(t) = 8,(t) + 8,(t) of the separate signals or it
could consist of an interleaved time series , which could be interpreted as
coming from two "orthogonal" sources .

3. Two-point m easurements

We now intend to specify the two signals S;(t) an originating from the same
sys tem but from different locations:

81 (t )
8,(t)

8(x,t)
8(y, t) Ix - yl = l (3.1)

We can now roughly distinguish between three different cases depending
on the separation t , The characteristic dist ances we have in our model are
A, which determines a distance over which a perturbation has decreased
significantly. The second characteristic length L~ is given by the experi­
mental resolution (or by the smallest structures we wish to resolve). Thus ,
we have for the two-point dimension D~2) (l) obtained from points separated
by a distance l :

D;')(l) = {
D, for e:S x
2D, for l;::: L ,

(3.2)

For intermedi ate distances A :::; l ~ L~ , we have:

D;')(l) = p' V(Bz(L ,) U B,(L,)) (3.3)

where Bz(L~) denotes a ball of radius L~ centered at point x and V is
the corresponding volume in the appropriate embedding space . In one
dimension, we have: V (Bz(L, )) = 2 . L,. From this, we get for the two­
point dimension of a lattice string :



Dimension Densities (or Tur bulent Systems

n (' )(l ) = {P(2L. + l) l::;2L.
, p · 4L . l?2L.

825

(3.4)

We now eliminate the characteristic length L. from equation (3.4) by
insertion: nl'l(O) = o - 2L•. Then we obtain from equat ion (3.4):

Finally, for the dimension density p:

nl')(l) - nl') (0)
P = l .

(3.5)

(3.6)

In the case that we do not have a discrete spatial lat t ice, but a cont in­
uous system , we get :

(3.7)

4. Numerical r ealiza tions

To investigate t he introduced notions of correlation length and density of
degrees of freedom, we choose as a model a one-dimensional lat tice of cou­
pled "tent" -maps

x~l. = (1 - 2c) h (x~) ) + f: Cj(h(X~- i)) + h(X~+i))) + ~~) (4.1)
j=-no<

with

1
h(x) = 1-2Ix - - 1

2

n.

c=LCj
j =1

n" is the number of neighb oring points which one point is coupled to
on either side, r denotes the decay rate of coupling strength, and '7~) is a
small Gaussian distributed noise term of t he ord er of 10- 6 •

This system may serve as a crude model of fully developed turbulence
by yielding essentially random data with certain spat iotemporal corre lat ion
properties. Being restricted to discrete space and t ime, it nevertheless
exh ibits features also found in real physical situat ions.

We intend t o describe the int erdependence of signals u(x, t) derived from
two separated points in the system's domain . Specificall y, we consider the
time ser ies meas ured at a reference point eo, u(xol t) and the time series
measured at a point :to + 6.x that may also be shifted in t ime by a cer tain
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amount 6.t, i.e . u(x+.6.:t.t +.6.t). In the following, we refer to the sequence
(u(xo,t),u(xo + 1'.x,t + 1'.t)) as the combined time series belonging to the
displacement (1'.x, 1'.t).

The aim of our investigation is to find out how "low order app roxi ma­
tions" describing spatiotemporal correlations compare. To that end, we
compute three different quantities: t he correlation funct ion cl) (.6.x, .6.t) and
the mutual informat ion J.L (.6.x,6. t ) as a funct ion of spatial and temporal
displacement, and the two-point correlat ion dimension D~2 ) (.6.x) as a fun c­
tion of the spat ial displacement. The first two quantities desc ribe features
of the joint probability distribution p(U , u'] generated by the scalar series
u = u(xo,I) and u' = u(Xo + 1'.x,t + 1'.t), and are defined in the standard
way:

~(1'.x, 1'.t) = (uu') - (u)(u')
UuUy'

(4.2)

Uu denotes the standard deviation of the distribution p(u) generated by u,

=

1'(1'.x , 1'.t ) = H(u ) + H (u' ) - H (u, u')

+Joo ( ') (p(u, u') ) r
p u, u log p(u)p(u') dudu

-00

(4.3)

where H(u ) is the entropy of the distribution p(u).
The two-point dimension [9,10] is conceptually different because it also

takes into account the dynamics of the lattice. It is defined as the cor­
relat ion dimension of the combined series (u,u'). It is determined by the
well-known method of reconstruct ion in a space of embedding dimension D.
In t he case of a combined signa l, we embed pairs of po ints in an effect ively
2D -dimensional phase space. T he st ate of the system is thus represented
by a pair of vectors (:~~:~)~z.t)) ' The norm in t his space is defined via

II(~) II ' = lIall' + IIbll'·
In our numerical simulations of system (4.1) we use 100 maps, nearest­

neighbor coupling (n/C. = 1), and open bo undary conditions (i.e., one-s ided
coupling at the boundary) . In all runs, the noise level is 10- 6 • As reference
point Xo, we pick point number 47 (near the middle of the lat t ice) and deter­
mine the above defined quant ities with the second point ( "probe") lying in
the range 47 . . . 54, corresponding to tlx = o... 7. For the determinat ion of
the mutual information content of the combined signa l, we use an algorithm
proposed by Frazer [121. The numbe r of da ta points considered for both
the corre lation ~ and mut ual information jJ. is about 16400. The two-point
correlation exponent Di2) is determined by computing t he well-known cor­
relation graphs for embedding dimensions D up to 20, using 10000 to 25000
data points . As discussed above, these curves cannot be assig ned a unique
asymptotic slope. Thus, we fix a certain level of resolution log] '0) an d
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Figure 1: Corre lation graph of the coupled tent-map lattice (equation
(3.1)) for n~ = 10, It = 0.3. The two-point dimension is computed for
a distance .6. = 1. The curves for the first 15 emb edding dimensions
are plotted.
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Fig ure 2: Local slope (dimension) for system of figure 3.1.
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F igure 3: Correlation function cI>, mutual information M and two­
po int dime nsion D~2) as a function of the point separation.6.. The

two-point dimension D~2) is plotted for several values of resolution c
and embedding dimension D. The four subplots correspond to differ­
ent coupling strengths K 1 = 0.05, ... 10.3. Here, the coupling neigh­
borhood is n .... = 5.

define the correlation exponent as the local slope of the corre lation graph.
The results are shown in figures 1 and 2, where we give an example of how
the correlation graph of this model (figure 1) behaves. We clearly see the
increase of dimension (slope, figure 2) with the increase of the resolut ion.
For various combinations of embedding dimension and resolut ion, we have
displayed the correlation function, the mutual information content, and the
two-point dimension for a lattice with a coupling between five neighboring
points for increasing coupling strength. We see qualitatively the behavior
which we expect . We compare the estimated dimension dens ity, e.g., for
K. = .3 with the value which we obtain from the Lyapunov spectrum. For
th e Lyapunov dimension of the system of 100 maps, we observe a dimension
of about 67, which yields a density of 0.67 . From the two-point dimension,
we obtain a valu e which appears to be below 0.5 for the resolutions we
could realize. This is also in agreement with the theoret ical expectation .

We think it became clear in this paper that quantitative results are very
pr eliminary in this field and the complexity exhibited by spat ially extended
systems is much richer than what is known from low dimensional chaos.
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