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Abstract. Lattices of coupled maps on the interval are used to test
some ideas of Y. Pomeau concerning estimates of the number of de-
grees of freedom per unit length of a spatially incoherent system.
Qualitative agreement is found between dimension densities obtained
using two-point measurements at separated lattice points and dimen-
sion densities obtained using spatial decay of the correlation function.

1. Introduction

The introduction of nonlinear, deterministic, and low-dimensional dynami-
cal systems with chaotic solutions led to many conjectures about how these
chaotic systems might be related to fluid turbulence. It appears that the
time series, produced by a chaotic solution can be, from the point of view of
power spectra, as complex as experimentally observed signals from turbu-
lent hydrodynamics (see [1-3] and references therein). Furthermore, certain
transitions from laminar to turbulent flow have their analog in the transi-
tion from ordered to chaotic behavior of deterministic chaotic systems.

A basic problem in that context is how methods from nonlinear dy-
namical systems can be used to describe experimental turbulence. It was
suggested to determine the fractal dimension [4-6] of a turbulent flow in
order to estimate how many nonlinear equations would be needed for a
model of turbulence. A frequent objection to the approach of using sim-
ple dynamical systems as models for turbulence is that these models might
reproduce some temporal chaos but would not correspond to real turbu-
lence, for which the spatial structure also is very irregular and chaotic. The
dynamics in a turbulent flow especially is not expected to be spatially co-
herent and therefore cannot be described by a few global modes. Thus, a
one-point measurement of a velocity component, say, should always con-
tain information about the dynamics of the whole fluid and therefore yield
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a fractal dimension which is proportional to the size of the container. This
has been confirmed, e.g., by Brandstatter [6] in an experiment on turbulent
channel flow.

Thus, if we still want to use the framework of simple dynamical systems,
then we have to consider lattices of coupled dynamical systems, such as
coupled maps on the interval. It is known that these systems have very
interesting properties with respect to spatio-temporal complexity [7,8]. In
the following, we want to use the simplest of these maps in order to tes{
the applicability of some ideas of Y. Pomeau [9,10] which should make it
possible to estimate the the number of degrees of freedom per unit length
of a system which is spatially incoherent.

This is done by computing the dimension density of the lattice system
through a series of two-point measurements at separated lattice points.
Then, we compare these results with the spatial decay of the correlation
function and the mutual information content. We find a qualitative agree-
ment with the expected dependence. For precise quantitative measurement,
the general problem of accuracy and data limitations appear to become
dominant.

There are several other approaches to this problem. The straightfor-
ward idea, which is unrealistic for basically all numerical simulations, is to
compute the dimension of the full system and then divide the dimension by
the volume of the system. The special cases, where the full dimension can
be estimated through the Kaplan-Yorke conjecture, consist of mathemati-
cal systems for which the equations and their derivatives are known. Since
derivatives reflect local dynamics and therefore in a sense correspond to in-
finite resolution, we would expect that dimension densities defined through
Lyapunov spectra define an upper bound on the dimension densities from
time series. It is also not quite clear to us if these methods can be com-
pared at all. In our numerical simulations we could, however, confirm this
inequality.

A different approach, which is completely based on the spatial structure
of the systems and which does not explicitly take into account the temporal
evolution, has been proposed by P. Grassberger [11]. We do not yet know
how realistic this approach will turn out to be.

2. Dimension density

We want to discuss an intensive measure of complexity of the spatio-
temporal dynamics of a system, i.e., an observable which does not depend
on the size of the system. The natural approach would be to define the
density of an (extensive) quantity, which grows proportionally with the
size of the system. The quantity we choose is the dynamical dimension, or
number of degrees of freedom of the system. Since for spatially coherent
systems it is obvious that the dimension density must vanish in the limit of
large extensions, we assume that the influence of the local dynamics at one
position z decays with the distance from z. Thus, in the limit of infinite
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experimental resolution, we would expect that a dimension measurement
at a given position of the system will yield a value which is extensive, since
every point in the system contributes to a certain degree to the dynamics
at z. Because of the decreasing influence of distant points, we expect that
for finite resolution we are going to measure a finite dimension, since we
cannot resolve the small amplitude dynamics. In a way, this is similar to
the noise perturbation of a deterministic system, only in this case, deter-
ministic dynamics and “stochastic” noise have the same dynamical origin
and cannot be clearly distinguished.

The dimension value that we obtain for a finite resolution from a one-
point measurement is composed of two different contributions from (i) the
local dynamics, which can be of a dimensional complexity which can vary
considerably with parameters and systems, or (ii) large amplitude influences
from the dynamics of the neighborhood. The first situation we would expect
for a small coupling between neighboring sites. The second case we would
expect when the coupling is strong. With a one-point measurement we are
not able to distinguish between these two cases.

Thus, let us assume we are measuring a signal S(z,t) at a position z at
a time ¢t. It can be decomposed into local and coupling terms:

S(z,t) = So(z,t) + év. (1), (2.1)

where So(z,t) denotes the contribution from the local dynamics and &y, (t)
stands for the influence from a neighborhood U, of z. We would like to
mention that we do not consider here the finite propagation speed of per-
turbations, but are only interested in the stationary dynamics at different
points. For the sake of simplicity, let us assume that we have an exponen-
tial decay of the influence of spatially separated points. By this, we mean
that the dynamics at a point y € U,, which is separated by a distance

||z — y|| = L from z, will generate a perturbation £, of size:
P =L
& =5(y) - e (2.2)
sl

where S (y) represents the local dynamics at position y and we have assumed
a spatial homogeneity, i.e., the mean amplitude of the dynamics should not
depend on the position. Of course, this excludes complex spatial patterns,
which would severely complicate the arguments. The exponential factor
contains a characteristic length A, but again, the main argument does not
depend on the exact form in which the spatial perturbation decays. From
equation (2.2), we can see how for infinite resolution (£, — 0) we asymp-
totically measure the dimension of the whole system.

In the next part, we introduce a finite experimental resolution £ >
0, which means that we do not compute dimension values for signals of
amplitude r < . From equation (2.2), we see that this means that we only

pick up perturbations from a neighborhood of size L, for which: e F =e.
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From this, we obtain the effective range L, = J\En%. Again, we note that
this quantity cannot be obtained from a one-point measurement.
From the measured dimension D, at a single point with resolution

and the range L., we can now define the dimension density p of the system
by:

Ny=p-L, (2.3)

where d is the geometrical dimension of the system: in our case, of a string
of coupled maps we have d = 1.

The next assumption which we make is that of an additivity of the
dimensions for combined signals, i.e. if we superimpose the signals from
two oscillators Sy(t),52(t) of the same amplitude (||Si(2)|] ~ [|S2(8)]]),
then we expect to observe a signal which has a dimension which equals the
sum of the dimensions of the two separate signals. There are several ways
in which this superposition can be realized. For instance, the combined
signal could be the sum S(t) = Si(t) + S:2(t) of the separate signals or it
could consist of an interleaved time series, which could be interpreted as
coming from two “orthogonal” sources.

3. Two-point measurements

We now intend to specify the two signals S;(t) an originating from the same
system but from different locations:

51(t) = S(=,t)
Sit) = S(wt) le—vl=t (3.1)

We can now roughly distinguish between three different cases depending
on the separation £. The characteristic distances we have in our model are
A, which determines a distance over which a perturbation has decreased
significantly. The second characteristic length L, is given by the experi-
mental resolution (or by the smallest structures we wish to resolve). Thus,

we have for the two-point dimension Diz) (£) obtained from points separated
by a distance £:

@y ) De for£< A
Dy’(6) = { 2D, for£> L, ey
For intermediate distances A < £ < L., we have :
D®(e) = p-V(B.(L.) U B,(L.)) (3.3)

where B,(L.) denotes a ball of radius L. centered at point z and V is
the corresponding volume in the appropriate embedding space. In one
dimension, we have: V(B,(L,)) = 2 - L,. From this, we get for the two-
point dimension of a lattice string:
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@n ) (2L +€) £<2L,
U e ety (34

We now eliminate the characteristic length L, from equation (3.4) by
insertion: D{”(0) = p-2L,. Then we obtain from equation (3.4):

D(e) = DP(0) + ¢ - p. (3.5)
Finally, for the dimension density p:

_ D(g) — D (0)
p F== E ..

In the case that we do not have a discrete spatial lattice, but a contin-
uous system, we get:

(3.6)

p—1im 220 — D)

lim Z (3.7)

4. Numerical realizations

To investigate the introduced notions of correlation length and density of
degrees of freedom, we choose as a model a one-dimensional lattice of cou-
pled “tent”-maps

ziha = (1= 2)h(=0) + 30 e(h(@l™) +A@ET) +0)  (21)

J=—ne

with

hlz) = 1- 2z — 5|

3

<
c= c;
i=1

— o —T(i-1
c; = c1€ (-1)

n, is the number of neighboring points which one point is coupled to
on either side, I' denotes the decay rate of coupling strength, and n{¥) is a
small Gaussian distributed noise term of the order of 1075.

This system may serve as a crude model of fully developed turbulence
by yielding essentially random data with certain spatiotemporal correlation
properties. Being restricted to discrete space and time, it nevertheless
exhibits features also found in real physical situations.

We intend to describe the interdependence of signals u(z, t) derived from
two separated points in the system’s domain. Specifically, we consider the
time series measured at a reference point zo, u(zo,t) and the time series
measured at a point zo + Az that may also be shifted in time by a certain



826 Gottfried Mayer-Kress and Thomas Kurz

amount At, i.e. u(z+ Az, ¢+ At). In the following, we refer to the sequence
(u(zo,t),u(zo + Az,t + At)) as the combined time series belonging to the
displacement (Az, At).

The aim of our investigation is to find out how “low order approxima-
tions” describing spatiotemporal correlations compare. To that end, we
compute three different quantities: the correlation function &(Az, At) and
the mutual information p(Az, At) as a function of spatial and temporal
displacement, and the two-point correlation dimension Dgz)(Az] as a func-
tion of the spatial displacement. The first two quantities describe features
of the joint probability distribution p(u,u') generated by the scalar series
u = u(zo,t) and v’ = u(zy + Az,t + At), and are defined in the standard
way':

®(Az, At) = fow) ~ i) (4.2)

TuOy

o, denotes the standard deviation of the distribution p(u) generated by u,

p(Az, At) H(u) + H(v') — H(u,v')

+c0 p(u u,)

= 4 — u' 4.3
_‘0/0 P(uau )log(p(u)p(u') )dﬂd ( )
where H(u) is the entropy of the distribution p(u).

The two-point dimension [9,10] is conceptually different because it also
takes into account the dynamics of the lattice. It is defined as the cor-
relation dimension of the combined series (u,u'). It is determined by the
well-known method of reconstruction in a space of embedding dimension D.
In the case of a combined signal, we embed pairs of points in an effectively
2D-dimensional phase space. The state of the system is thus represented

by a pair of vectors (:‘;((:':_)Az NE The norm in this space is defined via

@I = lall® + [b.

In our numerical simulations of system (4.1) we use 100 maps, nearest-
neighbor coupling (n. = 1), and open boundary conditions (i.e., one-sided
coupling at the boundary). In all runs, the noise level is 107, As reference
point zg, we pick point number 47 (near the middle of the lattice) and deter-
mine the above defined quantities with the second point (“probe”) lying in
the range 47 ... 54, corresponding to Az = 0...7. For the determination of
the mutual information content of the combined signal, we use an algorithm
proposed by Frazer [12]. The number of data points considered for both
the correlation ® and mutual information p is about 16400. The two-point
correlation exponent D?’ is determined by computing the well-known cor-
relation graphs for embedding dimensions D up to 20, using 10000 to 25000
data points. As discussed above, these curves cannot be assigned a unique
asymptotic slope. Thus, we fix a certain level of resolution log(e;) and
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Figure 1: Correlation graph of the coupled tent-map lattice (equation
(3.1)) for n, = 10, £ = 0.3. The two-point dimension is computed for
a distance A = 1. The curves for the first 15 embedding dimensions
are plotted.
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Figure 2: Local slope (dimension) for system of figure 3.1.
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K= 0100

Figure 3: Correlation function ®, mutual information M and two-
point dimension Dgz) as a function of the point separation A. The
two-point dimension Dgzl is plotted for several values of resolution €
and embedding dimension D. The four subplots correspond to differ-
ent coupling strengths K; = 0.05,...,0.3. Here, the coupling neigh-
borhood is n, = 5.

define the correlation exponent as the local slope of the correlation graph.
The results are shown in figures 1 and 2, where we give an example of how
the correlation graph of this model (figure 1) behaves. We clearly see the
increase of dimension (slope, figure 2) with the increase of the resolution.
For various combinations of embedding dimension and resolution, we have
displayed the correlation function, the mutual information content, and the
two-point dimension for a lattice with a coupling between five neighboring
points for increasing coupling strength. We see qualitatively the behavior
which we expect. We compare the estimated dimension density, e.g., for
k = .3 with the value which we obtain from the Lyapunov spectrum. For
the Lyapunov dimension of the system of 100 maps, we observe a dimension
of about 67, which yields a density of 0.67. From the two-point dimension,
we obtain a value which appears to be below 0.5 for the resolutions we
could realize. This is also in agreement with the theoretical expectation.

We think it became clear in this paper that quantitative results are very
preliminary in this field and the complexity exhibited by spatially extended
systems is much richer than what is known from low dimensional chaos.
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