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Abstract. Plasma applications of computational techniques based
on cellular automata are inhibited by the long-range nature of elec-
tromagnetic forces. One of the most promising features of cellular
automata methods has been the parallelism that becomes possible
because of the local nature of the interactions, leading (for example)
to the absence of Poisson equations to be solved in fluid simulations.
Because it is in the nature of a plasma that volume forces originate
with distant charges and currents, finding plasma cellular automata
becomes largely a search for tricks to circumvent this nonlocality of
the forces. We describe automata for two situations where this ap-
pears possible: two-dimensional magnetohydrodynamics (2D MHD)
and the one-dimensional electrostatic Vlasov-Poisson system. Insuffi-
cient computational experience has accumulated for either system to
argue that it is a serious alternative to existing methods.

1. Two-dimensional magnetohydrodynamics (2D MHD)

The basic equations of two-dimensional incompressible magnetohydrody-
namics are a relatively straightforward generalization of those of two-di-
mensional fluid mechanics, and for our purposes can be written as [1-3]:

3(;:1) + V- (pun) = —Vp+j x B+ pvV?u, (1.1)
2 2

3¢ (PAs) + V- (puds) = mV°A,, (1.2)
V-u=0 (1.3)
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Here, u = (u.,u,,0) is the velocity field and B = (B,, B,,0) is the mag-
netic field. The mass density, assumed uniform and constant, is p, and
the pressure is p. For all variables, 8/8z = 0. The magnetic field B is
obtained from a one-component magnetic vector potential A = (0,0, 4.)
as B = V x A. The electric current density isj = V x B = (0,0,—V?*4,) in
this geometry. The pressure p is obtained from solving the Poisson equa-
tion that results from taking the divergence of equation (1.1) and using
V - 8(pu)/dt = pd(V -u)/dt =0.

The dissipation coefficients v and 5 are the kinematic viscosity and mag-
netic diffusivity respectively. In the natural dimensionless units of the prob-
lem, they may be thought of as the reciprocals of either (a) the Reynolds
number (v — R™!) and magnetic Reynolds number (p — R_!) or (b)
the Lundquist number (np — S~!) and the “viscous” Lundquist number
(v — M™1). The choice (a) is preferable when comparable magnetic and
fluid kinetic energies are expected, and the choice (b) when the fluid ki-
netic energy is expected to be small or zero. Idiomatically, these are the
“astrophysical” and “controlled fusion” regimes, respectively.

The generalization of fluid-dynamic cellular automata methods to equa-
tions (1.1) through (1.3) present essentially two challenges, over and above
those associated with two-dimensional Navier-Stokes fluids. First, equation
(1.1) differs from the two-dimensional Navier-Stokes equation only by the
presence of the extra volume force j x B on the right-hand side. For the
two-dimensional geometry, jxB = —(V A,)V2A,, so all magnetic quantities
are determined Jocally by A,. Given A,, the inclusion of j x B presents nei-
ther more nor fewer significant complications than the inclusion of external
forces such as gravity now present in operating two-dimensional Navier-
Stokes codes; this will be discussed presently.

The second new feature is the advancement of A,, and it can be dealt
with by a straightforward extension of methods introduced for the hexag-
onal lattice gas model [4-7]. The cells and molecules are identical to those
of the hexagonal lattice gas, but in addition, each molecule carries with it
a “photon label,” or quantum of A, associated with an index o = +1, —1,
or 0. Each molecule can execute the same two-dimensional, momentum-
conserving, Fermi-Dirac collisions that it executes in fluid simulations, car-
rying its value of o with it. Each hexagon now contains eighteen possible
single-particle states instead of six. A particle’s ¢ can change only in col-
lisions for which £,0 = 0. The field A, is interpreted as an average of o
over super-cells containing many adjacent hexagons, in the same way that
the fluid velocity u is interpreted as the average of the particle velocity &,
(a =1,2,...6) over super-cells containing many adjacent hexagons.

It appears to be possible and desirable to restrict the o-exchanging col-
lisions to those two-body collisions for which the initial pairs of o-values are
(+1,-1),(—1,+1), and (0,0). For each of these three initial possibilities, it
is convenient to choose as the outcome one of the same three possible pairs
of values, randomly, with each one of the three possibilities as equally likely
(probability 1/3). In hexagons with two or more particles per &,, no colli-
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sion occurs—the final state is the same as the initial one. Though it is not
an essential feature of the physics, the o variable may be thought of as the
z-component of canonical momentum for fluid particles bearing (both signs
of) charge for motions confined to a plane. However, the particle motions
underlying the true microphysics are far more complicated than this argu-
ment would indicate, and they are many approximations removed from 2D
MHD. Their inclusion, in a way that reflected the microphysics as faithfully
as the mechanical scattering rules represent the molecular collisions, would
require particles of two mass species, z-velocities, z-accelerations, and so
on.

The inclusion of the j x B = —(V A,)VZA, force in equation (1.1) appar-
ently cannot be dealt with within the pure cellular automaton framework
without the necessity of replacing the configuration-space cells by phase
space cells (see section 2). In this respect, it is apparently a matter sim-
ilar to the inclusion of gravity in the two-dimensional Navier-Stokes case
and can be dealt with in the same way that gravity is now included in
the Los Alamos code. Define (A,) as the macroscopic average of o over,
say, (64)% hexagons. V(A,) and V*(A.) can then be obtained from lo-
cal finite-difference approximations. Inside each super-cell, hexagons may
be chosen randomly in proportion to the components of —(V(A4,))VZ(4,),
and particles are flipped to admissible unoccupied values of &, to provide
the requisite momentum per unit time per unit volume, as indicated by
_(V(Az) v* (Aa) ) g

A Chapman-Enskog development can be given for any model kinetic
equation which contains a collision term which conserves z and y momenta
in particle collisions, conserves T,0, and obeys an H-theorem [5,8-10]. The
Fermi-Dirac statistics require an eighteen-valued distribution function f7
at each hexagon. For theoretical purposes, fZ can be interpreted as a
smooth, spatially-differentiable ensemble average. The mass, momentum,
and vector potential densities, also assumed smooth, are defined by p =
Yo fI pu = T,ao8afl, and pA, = ¥, ,0f(cos(27wa/6), sin(27a/6)),
a=1,2,...6,and ¢ = 1,—1,0.

The differential conservation laws are:

% 4 (pu)=0 (1.4)
%(pu)—kv-H:O (1.5)
3(9A ), v. $=0 (1.6)

where Il =}, , €é&.f] and ¢ = 3,, €.0f;. Il and ¢ are the momentum
flux tensor and vector potential flux vector respectively.
The local thermodynamic equilibrium distribution is [10]

f2(eq.) = [1 +exp(a+ fu- &, +v04,)]”} (1.7)
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where the Lagrange multipliers o, 8, 7 are obtained from requiring that
equation (1.7) lead to p, u, and A,. Explicit calculation of a, 8, v requires
that, as in the Navier-Stokes case, we assume u* < 1 (small Mach numbers).
Solving for a, 8, 7, fZ(egq.) becomes, up to terms of 0(u?),

fe(eq.) = (p/18){1 + 28, - u + 304, /2

9—p o
-+ (18 o p) [2(23,,ea tuu — u?)

3 (35242
(—"2 :_ Af,_) + 602, - ud,|} (1.8)

2

Inserting f2(eq.) in equations (1.4) through (1.6) gives the Euler equa-
tions:

g—': +V-(pu)=0 (1.9)
a%(ﬂ“) +V:(puu)=-V.P (1.10)

(1.11)

%(PAz) +V. [pugm] =0.

(18 —p)

In equation (1.10), P is the pressure tensor is

P = (p/2) [1 - (;";Pp) u2] 1- (189_ p) o (1.12)

At low densities (p < 9), the combination 2(9 — p)/(18 — p) — 1 so that
equation (1.11) becomes the nondissipative version of equation (1.2), and
P — (p/2)(1 — v?/2)1 — puu/2 as in the fluid case [4,5,7].

The imperfections in the model are two-fold: the u-dependent P, which
has the same form in the Navier-Stokes case, and the absence of the j x B
term on the right-hand side of equation (1.10), which, as already discussed,
involves going outside the model. (At this level, the transport of A, is still
that of a “passive scalar.”)

The Chapman-Enskog procedure [10] may be carried to first order in
the ratio of mean-free path to macroscopic length scale, and leads to (u® <
1,n < 9):

a

a . - 28,8, — 1 oe
(a e V) fileq) = (T) PVE g VA, = 00 ()

(1.13)
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The right-hand side of equation (1.13) stands for the linearized (about
f2(eq.)) collision term which might contain, say, the 2R, 2L, and 3S colli-
sions (Wolfram’s notation [5]) appropriately generalized for the o-exchange.

Q) (f) is, in general, an 18 x 18 matrix acting on an 18-component
column vector fé:,), and is difficult to invert, even without allowing for
other potential complications such as finite lattice size effects [11]. The
solution for f}ﬁ} has not been carried out, but from the form of the middle
part of equation (1.13), it will be seen to contain terms involving pVu and
pVA,. These, in turn, seem certain to lead to terms in equations (1.5)
and (1.6) proportional to V - (pVu) and V - (pVA,) respectively. In the
incompressible limit, these are the standard viscous and resistive dissipative
terms of equations (1.1) and (1.2). The coefficients v and 5 have been
calculated by Hatori and Montgomery [15].

The inclusion of “stopped” particles will make these coefficients even
more difficult to calculate, and as in the case of real substances, “measure-
ment” may provide more reliable values than theoretical calculation.

2. One-dimensional Vlasov cellular automata

The one-dimensional, electrostatic, Vlasov-Poisson system advances par-
ticle distribution functions f;(z,v,t) and an electric field E(z,t), which
accelerates particles in the z direction. In the continuous two-dimensional
phase space (z,v), f; obeys

Dj; _ 9% 9%  &EO; _
Dt — ot "oz ' my; dv e {2y

in dimensionless units [12]. The symbol f; represents two different distri-
butions: j — 7 for positive ions and j — e for electrons. For the electrons,
e, = —1, and for the ions, ¢; = +1. For the electrons, M, = 1, and for
the ions, M; = M, an arbitrary integer > 1. (The cellular automaton is
designed to eliminate all floating-point operations.) The velocity space is
infinite, —co < v < oo, and a variety of boundary conditions may be as-
sumed in z. For present purposes, we will assume ideal reflecting plates at
z = 0 and z = L, no external electric fields, and zero net charge between
z = 0 and z = L. This results in f;(0,v,t) = f;(0,—v,t), f;(L,v,t) =
f;(L,—v,t), E(0,t) = E(L,t) = 0, and can be implemented by choos-
ing periodic initial conditions of period 2L subject to the initial symmetry
fi(z,—v,0) = f;i(—=z,v,0), which will be preserved in time. L is a (large)
integer.
The electric field E(z,t) obeys Poisson’s equation

2 = 7t~ 1o (2:2)

and in one dimension may be obtained from Gauss’s law [13,14]. For the
present assumptions about the boundary conditions, it may be written as
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E(z,t) = fo ‘4ot [ : do(fi(@yv,1) — ful,0,8)) (2.3)

in0<z<L.

In the cellular automaton version, the phase space is divided into square
cells of integer dimension for both species, so that z = n,n =1,2,3,... L;
v — 8, 8§ = —00,...— 1,0,1,...00, although in practice, all v-cells above
some large but finite |s| will always be empty. Time is discretized into
integer steps 7 = 0,1,2,3,.... Inside each phase space cell, the discretized
distribution functions f;(n, s,7) are always either 1 or 0. Fermi-Dirac statis-
tics are assumed, as initial conditions, and are preserved by the automaton
now to be described. The discretized electric field is E(n,7), which will
also be an integer.

The updating of the f;(n,s,r) and E(s,7) takes place in three steps.
At r =1,4,7,..., fi(n,s,7) is updated in the z direction according to

fi(n,s,7) = fi(n—s,8,7— 1),

br =149 ..} (2.4)
At 7 =2,5,8,..., f;(n,s,7) is updated in the v direction according to

fi(n,s,7) = fi(n,s — E(n,r —1),7 — 1),

fe(n,s,7) = fo(n,s + ME(n,7r —1),7 — 1),

(r =2,5,8,...). (2.5)

(Equations (2.5) and (2.6) reflect the accelerations of ion and electrons.)
Finally, at 7 = 0,3,86,9,..., the electric field is updated according to the
discretized version of Gauss’s law which is

E(n,r) = i i [filn', 8,7 —1) — fo(n',8,7 — 1)],

n'=03=-00
(r=0,3,6,9,...) (2.6)

Equation (2.7) is not a local determination of E(n,7) and cannot be
made so. It can, however, be updated in a somewhat more local way.
Namely, establish E(n,0) by equation (2.7), then determine E(n,r) for
7 > 3 by counting the net numbers of charges which pass into or out of
the region between z = 0 and z = n by counting those which go past the
n'? cell in both directions. Since equation (2.7) simply gives E(n,7) as the
total number of positive charges minus the total number of negative charges
which lie between the first and n'® cells, this number, once established, can
be updated by the local operation of counting flow past a point (this is the
discretized version of the one-dimensional Maxwell equation OE /9t+411j =
0).
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At this point, so little analysis of the automaton given by equations
(2.4) through (2.7) has been done that it is pointless to speculate about how
effective a competitor it can be made to established methods of solving the
one-dimensional Vlasov equation such as particle-in-cell or Fourier-Hermite
spectral techniques. Some points clearly need to be analyzed, such as the
manifest nonconservation of energy associated with updating the electric
field at different time steps from those at which the velocity space is updated
(equations (2.4) to (2.7), though the net nonconservation of energy over a
three-unit cycle 7 may be quite small). That the recipe is in some sense a
convergent algorithm for the Vlasov equations seems almost obvious, with
the convergence enhanced by spreading the velocity-space distribution, for a
given number of particles per fixed phase-space volume, over more and more
cells in s. That no floating-point operations are involved is also manifest.
There is nothing sacred about the order in which the three steps (2.5),
(2.6), and (2.7) are carried out, and it may be determined in practice that
another order is superior.

Equations (2.4) through (2.7) are perhaps the first example of a phase-
space cellular automaton, as contrasted with a configuration-space one. It
seems inevitable, in circumstances where in nature the system is such that
local fluid variables do not suffice to determine the distribution function,
that phase space considerations must arise. The Vlasov equation is perhaps
the first and simplest example. Once again, however, a local conservation
law has played a crucial role: equation (2.1) is a statement of the local
conservation of f; itself [14].
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