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Abstract . A Green-Kubo formula, relat ing the shear visco sity to
discrete time correlation functions , is de rived via a Liou ville equation
formalism for a class of non -deterministic lattice gas models. This
allows a Monte-Carlo calculat ion of the viscosity. Preliminary resu lts
are presented for the Frisch-Hess lacher-Pomeau two-dimensionallat­
tic e gas model.

1 . Introduction

When a physical system at thermodynamical equ ilibrium is subject t o a
weak large-sca le perturbation (say a temper ature gradient ) , a flux of a
conjugated quantity (say a heat flux) resul ts , which is linear in the gradient.
In an isot ropic newtonian fluid, a gradient of velocity creates a momentum
iiux, related by a linear relation involving a fourth-order tensor. Isotropy
imp lies that this tensor is express ible in te rms of two scalars, the shea r
and bulk viscosities. Fluctuation-dissipation theory relates such t ranspor t
coeffi cien ts to time-integrated correlation functions. The earliest resul ts in
that line was obtained by Einstein in the study of Brownian motion 11]. In
the fifties, systematic fluctuation-d issipation relations were developed for
classical and quant um mechanical systems by Green [2,31 and Kubo [41.

Cellular automata with discrete state variables attached to a lattice
an d suitable conservation relations (lattice gases) present thermodyn ami c
equilibria, as continuous systems do, and they can display large-scale hydro­
dynamic behavior [5,6]. F luctuation-dissipation relat ions for lattice gases
have been considered in references 6 th rough 9. Due to discreteness, t here
ar e novel features in the theory of t ransport coefficients , such as "propaga­
t ion viscos it ies" [10]. Typically, there are two poss ible approaches . One is
based on "noisy hydrodynamics" [6J. The other one, in the spirit of Gre en
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[31, uses a Liouville equation approach and is developed her e for a quite
general class of D -dimensional, non-determinist ic, one-speed models. For a
more rest rict ed class of deterministic two-dimens ional models, resul ts were
already announced by Frisch an d Rivet [111.

In sect ion 2, we formul ate the problem; we will use the same notation
as in reference !6] j however, in order to make the paper reasonably self­
contained, we will reintroduce briefly some of the bas ic concep ts. In section
3, we pert urbat ively solve t he Liouville equation around an equilibr ium
state and find the discrete Green-Kubo formula for th e shear viscos ity. In
section 4, we show how to use the discrete Green-Kubo formula for a Monte­
Car lo calculation of the shear viscosity; numerical results are given only for
th e simp lest FHP model [5,6]. Compar isons are made wit h th eoretic al
values obtained from t he lat t ice Boltzmann approximat ion [6,10] and with
results of numeric al experiments based on relaxation of large scale shear
waves [12,13].

2. The class of models a n d the formalism

In order to avoid heavy no tation as much as possible, we limi t the following
study to the class of non-deterministic, one-speed models whose complete
defin ition is given in reference 6. This includes several two-dimensional
and three-dimensiona l (pseudo-four-dimensional) models known as HPP,
FHP-I, and FCHC. We will also give the final results for F HP models with
rest-parti cles, which do not be long t o t his class . We recall br iefly the main
feat ures of the one-speed models: uni t mass particles are moving wit h speed
c along links of a regular D-d imensional Bravais lat tice, where each node
is connected to its b nearest neighbors by a set of b vectors c. , i = 1, ... , b
of equal modulus c. This set is supposed to verify some further geometric
condit ions given in reference 6. The fact that two particles with the same
velocity vector are not allowed to be at the same node at the same time
(exclusion pr inciple) enables us to describe the state of one node at any
int eger t ime by a b-bit binary word: 8 = {8., i = 1, . . . ,b} where 8. = 1 if
a particle is present at the node, in the cell corresponding t o t he velocity
vector c., and s, = 0 otherw ise.

If initial conditions (t ime t = 0) are taken such that all particles are
located at t he nodes, the free propagation along links ensures t hat at any
integer t ime! t., all par ticles are at t he nodes. At any node, incoming
particles can perform local collis ions according to a non-deterministic rul e;
that is, an input state described by the binary word s will be changed
into an output state s' with the transition probability A(s -+ 8'). These
t ransition probabili t ies are taken node-independent . A(8 -+ s') is zero if
inpu t and output states have different total mass (Ei s. ] or momentum
(L;; s;c;).

The state of the whole lattice £. at int eger t ime t. may be described by
th e so-called Boolean field:

1 As in [61, an index "star" denotes th e discr et e ind ependent variables.
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n(t .) = {ni(t. ,r.), i = l , .. , b; r ; E c}.

841

(2.1)

The time evolution of this Boolean field is governed by the microdynam­
icaI eq uation, (see [6J, sect ion 3.1) which can be form ally wr it ten using
streaming, coll ision, and evolut ion operators $, C, and c:

n(t. + 1) = S o Cn(t.) = t n(t.). (2.2)

For non-deterministic collision rules, the operator c is itself non-deterministic.
The conservation laws induce two exact relations for the Boolean field:

L ni(t. +l,r. +cil = L ni(t.,r.) ,

L Cini(t. + l ,r. +ci) = LCini(t. ,r.).
i i

(2.3)

(2.4)

The lat t ice gas may be described st at ist ically by a probability dist ri­
bution P (s(.)) that gives the pr obability of occurrence of a configuration
s(.) = {s(r.) , r ; E .c }. The time-evolution of this probability distribution
is given by a Liouvill e equation (see [6], sect ion 3.3)

P (t.+ 1, Ss'( .)) =

L II A[s(r.) - s' (r. ))P (t. , s(.)) , \/s'(.) E r,
.(.)er r.e t.

(2.5)

where r denotes the set of all possible configurations of the lattice L, For
further use, it is convenient to introduce a global transition probability
A(' )(s - s') which is IIr.ec A[s (r. ) - s' (r . )1and to wr ite equat ion (2.5) in
the more compact form

p(t. +1, Si(.)) = L A(' )(s - s') p (t.,s(.) ) .
. (.)er

The following mean" quantit ies will be useful in the sequel:

mean population: Ni(t., r. ) = L si(r. )P(t.,s(. )),
•.er

mass current (momentum): j(t. ,r.) = LciNi(t.,r.),

mean velocity: u(t . ,r.) =j(t. ,r.) /p(t . ,r. ).

2 Averaged over the probability distribution P ( ,,(.))

(2.6)

(2.7)
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The Liouvill e equation admits a family of homogeneous factoriz ed equi­
libriu m solutions of the form 161:

p ''' ' (s(.)) = IT IT Nt " ';(l - N,'"")('-·;). (2.8)
r.El ;

For low-speed equilibria, Ntq j may be expressed in terms of the density
and mean velocity:

(2.10)v(p) =

N '''' ( ) - p pD O( ') (29)i P, ll - "b+ bc2CiaUa + 'U. •

Averages over the the equilibrium distributi on with u = 0 will be denoted
by angular brackets (). Local equilibria havi ng the above form but with
slowly varying parameters p and u will be the zero-order terms of an ex­
pansion in powers of the scale separation e between the lattice constant
and the smallest excited scale. As has been shown in reference 6, sections 5
through 7, when the latti ce has sufficient isotropy, as we will assume here,s
hydrodynamical equations are obtained for the density and momentum.
The momentum equation involves a kinematic shear viscosity"

bc. c2

D(D + 2) t/J (p) - 2(D + 2)

The coefficient t/J(p) relat es t he first-o rder perturbat ion <N;(') of the mean
popula.tion to the gradient of the mass cur rent j = pu through [61

<NP ) = t/J (p)Q;a~aa(j~),

(2.11)where
c'

Qit;l{j = Cit;lCi {j - D 8 t;1{j

is the (traceless) microscopic stress-tensor. To determine the vis cosity, we
must find the shear-induced perturbation of the mean population. As the
mean population does not satisfy a closed set of equa t ions .! we must revert
to the full probability distribution satisfying the Liouville equation.

3. Perturbative resolution of the Liouville equation

Global homogeneous equilibrium distribu tions are exact steady solut ions
of the Liouville equation , but local equilibria are not.6 We will look for a
solut ion of the Liouville equat ion (2.5) in th e form

p(t*,s(.)) = p(Ol(t*,s(.)) + <p(.) (t*, s(.)) + 0«') , (3.1)

3The formalism presented here is easily ex tended to anisotrop ic cases in terms of an
anisotropic viscosity tensor.

4The bulk viscosity is zero for one-speed models [6].
6Except in the latti ce Boltsmann approximation which we are not using here.
6Local equilibria have the same dependence in p and u as a global equilibria but with

p and u allowed to be space-dependent.
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where p (O) (t.,s{.)) is a low-speed local equilibrium distribut ion whose pa­
rameters have slow variat ions on spatia l scale C 1. We assume that the
perturbation p el ) vanishes initially. Using equation (2.5), we find that the
perturbation p(l) satisfies the inhomogeneous Liouville equation

p(I)(t. + 1, Ss'(.)) - 2:: A(')(s ~ S' )p(l)(t ., s(.l) =
. (.)er

_,-I [pIO)(t. + 1, Ss' (.)) - 2:: A(')(s ~ s')p(O) (t., s (.))]. (3.2)
.(.)er

We have now to make some straightforward manipulations of the r.h.s of
the above equation.

Using the fact that s~ is 0 or 1 and performing for each value of i the
spatial shift r ; ---+ r-, + Ci , we can write p(O)(t. + 1, 5s'(.)) in the form

p(O)(t. + 1, Ss'( .))

= II [Nj")(t . +1 ,P. +c;)s' (P.) + (1-NjO)(t.+1,P.+c;)) (1- s'(p . )) ].(3.3)
1,p.

As the mean populations Nl O) are supposed to have slow space and time
variations, we Taylor-expand all finite differences up to the first order in
the gradients, and make the rescalings (see [6J, section 5)

(3.4)

We thereby obtain

+, 2::(8" + C;a81a)NjO) (t• .p. l (Pj,;:')(s' (.)) - pi~:') (s'( .)) )
i.e-

+0(,').

Here, we have introduced

= s; (P.) II [N::"s;,(r~) + (1 - N::")(1 - sdr~)) J,
(i',r~);l!(;,P.)

(3.5)

pi~:') (s( .))

= (1 - s;(P.)) II [N;\'" sdr~ ) + (1 - N;',"' )(1 - sdr~))J, (3.6)
(i'.r~ ) :;t (j.p.)
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wh ich have an interesting interpretation. pl,;:')(s(.)) (respectively pl.~:') (s ( .)))
is the probability distribution corresponding to a state where all nodes and
all cells are occupied with the zero-speed global equilibrium probability,
except the ith cell of the node P. which is occupied with probability 1 (re­
spectively 0). These states are referred to as "SBSE" for Single Bit Set
Equilibr ium (respective ly, "SBCE" for Single Bit Cleared Equilibrium) .

Note t hat p(O) (s' (.)) is the sa me as 2:.(.)H A I' )(s ..... s')p(O) (s (.)), be­
cause p (O) has locally the same analytic form as Pvv, This allows us to
rewr ite equation (3.2) for the perturbation pill as

pill (t. + 1, Ss'(.)) - L A(')(s ..... S')p(l) (t., s(.)) =
.( .)er

- LUI" + c,.al.)N,l O) [pl ,;:' )(s'( .)) - pl,~:')(s'(.))],
;".

Ifs' (.) E r . (3.7)

We can now re-express the t ime derivatives in terms of space derivat ives
by using the mac rodynamlcal Euler equations ([6J, section 5) and the low
speed equilibrium form (2.9); the expression (at, + c,.al.)NiO) becomes
then .~,Q,.pal.(pUp) an d equation (3.7) becomes

p ll)(t. + 1,Ss'( .)) - L A(')(s ..... S')pll)(t.,S( .)) =
.(.)er

- ~2 L (p},;:, )(s'( .)) - Pl.~:' ) (s' (. ) ) ) Q;. pa1.(pup),
s.e-

Ifs'(.) E r. (3.8)

In order to so lve equation (3.8), we consider the probability distributions
pl,;:')(t. ,s(.)) and Pl.;:')(t . , s(.)) obtained after t ; evolution steps, starting
from an SBSE and an SBCE. The solution of (3.8) wit h vanis hing initial
condition is

(3.9)
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For further use, we introduce the following notation:

N(+,q) (f.; i ,r.li, P.) = L:.(.)Ef Si(r . ) P;~;:q) (f. ,S'(.)),

N(- ,q) (f.; i, r . Ii ,P.) = L:.()Ef Si(r. ) pJ.~:q) (f., s' (.J).
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(3.10)

N(+eq)(T*ji,r*lj ,p*) (respect ively, N(- eq)(T*ji,r*l j ,p *)) is the condit ional
probability to find at time T*, a particle at node r-, in cell i, knowing
that at time a there was one (respectively none) at node p* in cell i.
We can now express the perturbation of mean population Np)(t* , r *)
L:,'I.)Efs; (r .)p(I) (t.,s '(.J) in th e form

Np)(t. ,r.) =

D t.- l
"" ""(NI+.q) ( .' I ' )- bc2 LJ ~ r* , ~,r*J,p*

7". = O"P.

(3.11)

We now use the two following identities:

N '.,' - ~ - N(+,q)(f'i r I)' p)~ + N (-·q)(f· i r I)' P )(1 - ~) (3 12)
i - b - *, , * , * b *, , * '* b"

(3.13)

Equation (3.12) expresses that the equilibrium populations can be recov­
ered from transit ion probabilit ies. Equation (3.13) expresses the two-point
equilibrium probability in terms of the transition probability and the single­
point probability. Using (3.12) and (3.13), we can rewrite (3.11) as

Db '.-1
c' (b - ) L: L:(ni (f.,r.)n; (O ,p.))Q;apU,a(PUp),

P P 7". = O, .p.

(3.14)

The average is over the zero-speed global equilibrium. From the isotropy
of fourth-order tensors, it follows that

(3.15)

Using equations (2.10), (2.11), (3.15), reversal and translation invariances,
we finally obta in

t. -l

v(p) = vlp"p) + L: I' [r.],
7". = 0

c'v (prop) - - ~~-c.
- 2(D + 2)'

(3.16)
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r(T.) =

<'(D _ b1f( D + 2) p(b~ p)~f ~ QiOP(ni(T., p. )n;(O,0))Q;op(3.17)

is (within a numerica l factor) the correlat ion function of the microscopic
stress-te nsor. IT f (T*) falls off sufficiently fast as T. -+ 00, the summation
over T. can be extended to infinity. This is the case in three dimensions but
not in two, where the viscos ity may at best display a quasi-steady plateau
as T* increases (see sect ion 4), so we will keep a finite upper bo und for th e
time-summation.

Let us now specialize the results for the FHP-I mode l. We just subst i­
tu te 6 for b, 2 for D , and 1 for c in th e above formu lae and get

1 t. - l

v(p) = -- + L r (T.)
8 ,..=0

(3.18)

For variants of FHP-I ca lled FHP-II and FHP-III [6,14], which includ e rest
particles, a simple generalization leads to

1 t . - l

v(p) = -8 + L r (T.),
.,.. =0

(3.19)

T he capital indices I and J which take the values (*,1 , 2, .. . ,6) refer to
the seven possible velocities, name ly, the veloc ity zero (I = *) and the six
non-zero velocities of FHP-I.

4. Monte-Carlo calculation of the shear v iscosity

In lattice gases as in (continuous) molecular dynamics (MD), there are
broadly two strategies for calculating transport coefficients: m acroscopic
strateg ies involving large-scale gradients and mi croscopic strategies based
on Green-Kubo relations. Their relative merits in MD have been recently
discussed in reference 15. For lattice gases , macroscopic calculations of
the shear viscosity have been performed by d 'Humieres and Lallemand [13]
and by Zanett i [9] . The exist ence of a discrete analog for lat t ice gases of
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the MD Green-Kubo formula provides us with an alternative numerical
procedure. It is our purpose here to describe this path for a simple case,
the two-dimensiona l model FHP-I, which has binary head-on and triple
collisions.

Since lat t ice gases are governed by local cellular aut omata rules, there
are some interesting simplifications not present in MD . These ar e conse­
quences of the following properties concerning equilibrium finite-t ime cor­
relations :

P I Finite L x L periodically wrapped-around lattic es and infinite lat t ices
admit the same factorized single-time equilibrium solutions. Mul t i­
time distributions are identical when the maximum time-separation
be tween the arguments is less than, LI{2c), where c is the particle
sp eed (unity for FHP-I model) .

P2 The binary equilibrium correlation function (ni (r. ,P.)n(O, OJ) vani shes
if cJr.1 < Ip.1< L/2. (Actually, for the FH P-I model, it vanishes
outside of a hexagonal domain of influence D{r.) inscribed in the
circle of radius chi.)

The first part of PI has been established in reference 6 (section 4.1) . For
the second part, we observe that multiple-time distributions are expressible
in terms of single-t ime distributions and iterated evolu tion operators . The
evolution operator propagates information at the maximum speed co; thus ,
for ti me-separ ation less than L/{2c) no finite-s ize effects are felt . P2 is a
conseq uence of PI and of the absence of single-t ime correlations between
different nodes.

A consequence of PI is that finit e-time corre lat ions ap pearing in the
Green-Kubo formula can be evaluated on a sufficient ly large finite lat t ice
by ensemble an d space averaging. A consequence of P2 is that the spat ial
summation over p* in the Green-Kubo form ula 3.18 can be restricted t o
the domain of influence D(T.)i otherw ise, as we will see, trouble arises. We
have found ti me averaging to be unreliable even for correlation functions
involving only small (or van ishing) t ime-separations. This may be due to
a finite-size effect and/or a bias in the total momentum of the randomly
generated init ial configuration.

After these preliminar ies, we descri be a simulat ion stra tegy . We com­
bine two kinds of averag ing:

spatial averaging over all lattice nodes. All nod es of t he lattice are suc­
cessively shifted to the origin r ; = 0; the resul ts of these element ary
experiments are cumulated and divid ed by t he numb er of nodes L2.

ensemb le averaging in which N elementary experiments are performed.
Each elementary experiment involves an ind epend ent random gener­
at ion of the Boolean var iables ~(O,r.) with mean N, = p16. the zero­
velocity equil ibrium value . A small number of sa mples (typically, N is
about 40) ensures an adequately low level of random noise, provided



848 Jean-Pierre Rivet

th e spatia l summati on over P.. is restricte d to the domain of influence
D(T.). If we simply use (3.18), ignoring that the spatial summation
can be restricted to the domain of influence, the results will be far too
noisy for realisti c values of N . Consider, for example, the T.. = 0 term
of the time-summation; its relative Monte-Carlo noise (the inverse
of the signal to noise ratio) is Oh/L' /N) ; this tends to zero when
N ~ 00 but far too slowly: it is still about 30 for a 64 x 64 lat tice
filled with a density p = 1.2, averaged over N = 50 shots. On the
other hand, if the summation is restricted to the domain of influence,
namely P.. = 0 for the T.. = 0 term, the relative Monte-Carlo noise
becomes O(l / ../N L' ) which is far smaller . We see how import ant
it is not to sum over terms which are known by P 2 to be zero. For
T* f. 0, this is also true, although to a lesser extent since the size of
the domain of influenc e grows like IT..I.

Numerical results

Th e characterist ics of the numerical experiments were:

latt ice size: 64 x 64 nodes

averaging over N = 40 independent realizat ions

number of time steps 'maz = 15.

Three independent experiments (with different seeds for the pseudo­
random generator) have been done in order to have an experimental esti ­
mat e of the Monte-Carlo noise. The funct ion f(,*) in the expression 3.18 of
the kinemat ic shear viscosity will be referred to as the correlation function .
The cumulated correlation function up to time t; - 1 plus the propaga­
tion viscosity (-1/8) will be referred to as the viscosity. Figures La and
b present for a dens ity per node p = 1, the correlation function and the
viscosity for r, between 0 and 15. The black circles are averages over the
three exp eriments. The absolute Monte-C arlo noise grows in a way con­
sistent with our theoretical estimate. Clearly, beyond r; = 10, the results
are too noisy to be significant, but for our purpose there is no need to go
beyond '* = 10. The viscosity exhibits beyond r, = 8 a plat eau defined
with an accuracy of about 3 percent at the value v = 0.7 ± 0.02. Simi­
larly, evaluat ed viscosities for various values of the density are represented
as black circles (with error bars) on figure 2. The stars (also with error
bars) are the viscosities observed by d'Humieree and Lallemand [13] from
macroscopic simulations with relaxation of shear waves . Whenever both
data are available, the error bars overlap except at very low densities. This
probably reflects a pathology of the F HP-I model: at low densities, triple
collisions are so rare that the dynamics are affected by a spurious invariant
that would be present in the absence of triple collisions.

The cont inuous curve of figure 2 is the viscosity calculated from the
lat t ice Boltzmann approximation [6,10]
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Figure 1: (a) Monte-Carlo simulation of the correlation function of
the microscopic stress-tensor for the FHP-I model at den sity p = 1.
Black circles are data points with error bars. The dashed line is a
least square fit of an exponential to the first five points. (b) Viscosity
with error bars in the same cond it ions as figure La. T he plateau gives
t he effective kinematic shear viscosity.
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Figure 2: Density dependence of viscosit ies for t he model FHP-I.
Black circles with error bar s: Monte-Carlo simul ations . Black stars
wit h error bar s: shear wave simulat ions of d 'Humieres and Lallemand
[13J. Continuous line: Lattice Boltzmann approximat ion.

1 1
v = -8 + 2p(6 _ p)" (4.1)

We see th at th e Boltzmann results are 10 to 30 percent higher than the
Green-Kube values . The Boltzmann approximation for th e viscosity im­
plici tly ass umes an exponent ially decaying correlation function. It is of
inte rest t o see how well the Monte-Carlo values for t he correlation function
fit an exponent ial. The dashed line on figure l a is an exponent ial obtained
by a leas t square fit on the low noise data for T. = 0, 1, 2, 3, 4. If we now
assume that t he exponent ial behavior holds all the way to infinity and sum
the geometric series, we obt ain a value of the viscosity which lies within a
few percent of the Boltzman n value.

The correlation functio n f (,. ) cannot be exp onent ial all t he way to
infin ity ; theoretical arg uments on "long t ime tails" predict that the viscos­
ity for very long times and very large systems is logari thmically divergent
16,7,16,17j. There have been various attempts to find long time t ails in
lattice gas correlat ion functions [7,18J. To un ambiguously reveal long t ime
tails in simulations of the FHP model is definitely beyond the scope of the
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present work.
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