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Abstract. This paper examines the validity and usefulness of cellular
automaton models of fluid motion by means of a simple problem in
kinetic theory.

We formulate three lattice models of the motion of a particle in
a two-dimensional matrix of fixed, randomly placed , non-overlapping
scat terers (the Lor entz gas). We measure several macroscopic and
mi croscopic properties of this system, such as diffusion co efficients
and mean-free paths. The resu lts agr ee with analytical predictions,
except at a high density of scatterers, where the models break down.

We also study these models as discrete dyn amical systems. The
properties of their st ate-transition diagrams, which give the number
of all possible trajectories of th e particle and their length s, are simi­
lar to those of chaoti c and random discrete maps. This agrees with
analytical predictions' that t his gas exhibi ts chaotic behavior.

For this problem) we conclude that agreement between cellular
automaton simulations and analytical result s is very good.

1. Introduction

T his paper studies the behavior of severa l cellu lar automaton models of the
Lorentz gas. We present perhaps the most cr it ica l test to date for cellular
automaton flu ids. Since this is the simplest example of fluid motion with
collisio ns, failure of the models t o agree with an alytica l results would en­
d anger the validity of cellular automaton simulations of fluids in generaL
Considering a simple problem in kin etic theory also offers several advan­
tages: (a) th ere is a large body of analyt ical and computat ional resu lts
available, (b) we can easily study in detail microscopic pro perties of inter­
est and not just average (macros copic) properties , and (c) we can study in
detail the gas as a discrete dynamical system and compare it s properties
with those of other discrete m ap s. For a sys tem this simple, we can give a
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complete description of the possible t rajectories of the particle in terms of a
state-transition diagram. To the best of OUI knowledge, this paper presents
such a description of a discrete fluid mechanical system for the first time.

Both the physical properties and the dynamical system propert ies of the
three models formulated in this paper agree well with analytica l predict ions.
The physical proper ties st udied in this paper are the dependence of the
mean-free path on the density of scatterers, the long-time displacement
dis t r ibut ion, and the dependence of the diffusion coefficient on the dens ity
of scatterers . T he dynamical properties incl ude the possible number of
recurring trajectories (limit cycles ) for a given configuration, the average
length of a cycle, and the distribution of cycles starting from a ran domly
picked initial condition. Our result s for these properties, in agreement
with analytical predictions, indicate that the Lorentz gas exhibits chaotic
behavior. We will now talk briefly about the lattice gas rules on which the
mode ls presented here are based.

Severa l models of fluid motion have been proposed 11-31 in which t ime
is d iscre te and part icles move and collide in a lattic e. T hese mod els use
collision rules wh ich conserve m ass , momentum, and energy at each node
of the lat t ice; they belong to a class of discr ete paralle l-comput ing systems
with local rules known as cellu lar automata. T he macroscopic equ ations
which result from some of t hese models 12,3] have been show n to approach
the Navier-Stokes equation, which describes the motion of many incom­
pressible fluids. Thanks to recent advances in parallel computation, it is
possible that such models of fluid motion may soon compete with tradi­
t ional computational methods.

Some effort has gone into testing these lattice gas models with stan­
dard problems of fluid mechanics such as shear flow and Poiseu ille flow.
T he p urpose of t hese t ests has been to measure average quan t it ies (e.g .,
ve locity profiles or viscosi t ies) . Lit tle effort has been made to follow mi­
croscopic motion in det ail in these simulat ions. Also, since the number of
possib le states of the gas grows exponentia lly with the numb er of parti ­
cles, a complete dynamical description of these many-part icle problems is
unfeasible.

This paper will proceed as follows. In section 2, we desc r ibe briefly
the Lorentz model and several analytical results which will be of interest
in the remainder of the paper. In section 3, we introduce the three new
models for t he Lore ntz gas. T hese are simple modifications of the models
presented for gases with collisions between moving part icles in re ferences 1
and 2. In sect ion 4, we pr esent the resu lt s for mean-free paths , displacement
distributions , an d diffusion coefficients, wh ich mostly ag ree with analy tic a l
results. Section 5 has the results for the dynamica l propert ies of the mod els;
these will be discussed in ligh t of similar resul ts for random maps of integers
and discrete versions of chaotic maps. Section 6 contains a summary and
discussion of the res ults, most of which support the claim that cellu lar
automaton models are useful in the simulation of gas dynamics.
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2. T h e Lorentz gas

We study in this paper what is probably the simplest nontrivial example
of fluid motion. The problem is the motion of a single particle embedded
in a two-dimensional matrix or fixed, non-overlapping , randomly placed
scatterers. It was first introduced by Lorentz !4j as a model of electronic
motion in a solid. In his mo del, the particle represents a free electron and
the scatterers represent atoms. He assumed the particle-scatterer collisions
to be perfect ly elastic.

Because of its simplicity, the Lorentz gas has been well studied and some
of its properties have been der ived mathemati cally [5-9\. There is disagree­
ment be tween simulation and these analytical results for some quantities,
especially the velocity autocorrelation function [10,11]. For the purposes of
this paper, we will only study quant ities for which this disagreement does
not exist.

We are concerned with three physical properties of the Lorentz gas:
the dependence of the mean-free path on the density of scatterers, the
form of the displacement distribution, and the dependence of the diffus ion
coefficient on the density of scatterers.

The first property, the mean-free path, is the average distance traveled
by the particl e between collisions. IT the positions of t he scatterers are un­
corre lated, the frequency of collis ions should be proportional to the density
of scatterers, and the mean-free path should be inversely proport ional to
the density. This is, indeed, the resul t given in section 10.5 of refe rence 7
for t his gas . Reference 9 shows implicitly tha t the mean-free path and the
density of particles are inversely propor tional for an arbitrary lattice gas .

The second property is the long-t ime limi t of the displacement dist ri­
bution. This quantity is the average over scatte re r configurati ons of the
d istance that the particle t rave ls from a given point. Reference 5 shows
that for long t imes th is dist rib ution obeys the central limi t theorem, sug­
gesting a Gaussian form.

T he third property, the diffusion coefficient, is a macroscopic one. Its
value is given by the time evolution of the mean-square displacement. The
relevant analytical results are given in reference 8. In that paper, an ex­
press ion for the diffusion coefficient is given to second order in the density
of scatterers. This equation will be given in section 4. The authors do this
for the wind-tree model, which is a Lorentz gas in which the particle (wind)
is restricted to move in mutua lly perpendicular directions because of the
placement of t ilted square-sha ped obstacles (t rees).

3 . Model

Three models were use d to obtain the results reported in the next two
sections; we will call them square lattice (8) ; triangular , ti me-alternating
(TTA) ; and triangular , t ime-independent (TTl). These mode ls have two
common features : they are discrete in time and they are formulated in
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Figure 1: Collision rule for the triangu lar, time-alternating (TTA)
model: upon hitting a scatterer, the particle has two possible trajec­
tor ies: (a) at an odd t ime step, (b) at an even time step.

a regular plane-filling lat t ice (square or triangular). These models are
straightforward adaptations of those in references 1 and 2, wh ich show
hydrodynamic behavior. For simplicity, we will t ake t he edge len gth, time
step, and velocity of the particle to be equal t o one, so that all d ist r ibut ions,
d iffusion coefficients, and recurrence times come out dime nsionless. Note
that with this simplification, the mean-free t ime and the mean-free path
are the same. In the first model, the particle moves between the nodes of a
square grid at unit speed. The direction of t he particle only changes when
it hits a scat te rer (randomly placed at the nodes of the grid ). It does so by
±90°, according to the parity of the time step.

In the other two models, the particle moves in a triangular grid, so that
at each node six directions-differing by angles of 600-are possible. Unless
a scatterer is present, the particle will go throug h a node without change
in velocity. In the TTA case, t he particle will undergo a ± 60° change in
directi on , according to t he parity of the t ime step (see figure 1) . Note that
th is case is t he most similar to the FHP model for many particl es, which
approximates the Navier-Stokes equation [2]. For this reason, it will be
the most carefully studied in this paper . In the TT l case, a scat terer will
always cause a 600 deviation in the same direction, corresponding in every
case to eit her only (a) or only (b) in figure 1.1 So, afte r six collisions, a
particle will have traveled in every poss ible directi on . In th is case, we can
interpret the scatterers as point mag netic fields of just sufficient st rength
to make a charged particle change direction by exact ly 600

• We have by
now deviated considerably from the or iginal problem, which contained only
int eract ions between hard spheres.

In all models, we have used a parallelogram-shaped domain wit h helical

1 A model similar to TTl but in a square lat tice was int roduced by M. Kac in D.J.
Gates , J. Math . Phys., 13 (1972) 1315.
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boundary conditions, as introduced in reference 1. These boundary condi­
tions are similar to per iodic ones , except that the corres ponding edges of
the domain are slight ly shift ed. T his was done to ensu re t hat in t he air
sence of scat terers t he particle would sweep the ent ire space and show some
semb lance of ergodic behavior. The sole excep t ions to these boundary con­
ditions are the trajectories in figure 4, ob tained with reflecting boundary
conditions.

In order to study the effects of system size (more exact ly, of number
of states of t he discrete system), we used lattices of size 64 x 64, 32 X 32,
and 16 x 16 for all models. The traject ories in figure 4 were obtained in a
252 x 251 tr iangular lat tice. We decided t o study the case of nonoverlapping
scatterers because it yields a nonzero diffusion coefficient [8J. The exte nsion
to overlapping scat terers could be done with collect ions of point scatterers.

The greatest disadvantages of th ese methods are that (a) t he extension
to three dimensions is st ill problematic [1 21 and (b) the change in behavior
that we should expect for high density of scatterers does not occur . These
obstacles, occupy ing no volume, do not rest rict the motion of the particle
as finite obstacles do. In particular , the diffusion coefficient does not go to
zero in our models for high densi ties of scatterers.

These models are very different from the Lorentz lattice models for
which Ernst and collaborators [10J calcu lated analytically the form of the
velocity autocorrelation function and the diffusion coefficient. Their model
consists of random walks on a square lattice with randomly excluded sites.

4 . Physical properties

In this sect ion , we describe the results that correspond to physically mean­
ingful quant ities for the Lorentz gas . These include t he calculation of
mean-free paths, long-time dis placement distribut ion, and the diffusion co­
efficient .

4.1 Mean-free path

Figure 2 shows t he average mean-free path versus the density of scatte r­
ers. The average was calculated over 400 different scatterer configurations
with a random initial condit ion for the part.lcle.P The mean-free path was
calculated by dividing the recurrence time (number of time st eps it takes
the particle to return to its original position with its original velocity) by
the number of collisions suffered during this time. Since the trajectory we
used is reproduced endlessly in these models of th e gas, we can consider

2Since th e purpose of this pape r is not to test the accuracy of a numerical method,
we will not perform an exhaustive error analysis. We would like, however, to give the
reader an idea of what it enta ils to pick only 400 configurations out of a large numbe r of
them-of the order of the possible numbe r of arrangements of the scatterers on the latt ice.
We performed 20 runs each over 400 indepe ndent configurations of the 64 X 64 TTA lat t ice
wit h 128 scat terers for the mean-free path and the diffusion coefficient. In th e first case,
the standard deviati on was 0.7 per cent and in the second it was 4.2 percent.
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Figure 2: Average logarithm (base 2) of the mean-free path versus
logarithm (base 4) of the density of scat terers. This graph, obt ained
with a 64 x 64 T TA lattice, shows the inverse dependence of the
mean-free path on the density of scatterers. Each point represents an
average over 400 configurations of acatterers.

this result an infinite-time limit. The results for all three models are almost
exact ly the same; only the numbers for the 64 x 64 TTA lattice are shown.
This figure shows that the mean free path is proportional to the invers e of
the dens ity of scatterers. This result is easily explained, since the probabil­
ity of a collision is proportional to the number of scatterers present if their
positions are uncorrelated. A derivation of this result is given in section
10.5 of reference 7. Reference 9 shows this resul t implicitly for lattice gases.

Figure 3 shows four complete trajectories of the TTA model (until recur­
rence occurs) in a 252 x 251 lattice, with reflect ing boundary conditions.
We will call these trajectories "cycles" . This figure was obtained with a
CAM-6 cellu lar automaton machine [13). The six directions of motion,
which appear to be 450 apart in the figure, are really multiples of 600 apart
in the model. Figures 3a and c show very different mean-free path lengths,
while 3b shows an almost ergodic trajectory and 3d one very const rained by
scatterers. Figure 4 shows th e distribution (over 400 cycles) of mean-free
paths for the 64 x 64 TTA lattice with 1024 scat terers (average mean-free
path = 4.0). This very narrow distribution is typical of all cases. There is a
related result in section 5,4 of reference 7 that shows a narrow distribution
for the mean-free path in a hard-sphere gas.
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Figure 3: Recurring trajectories in a 252 x 251 TTA lattice with re­
flecting boundary conditions: (a) six ecatterers (length: 81052), (b) 10
percent scatterers (length: 161350) . (e) 25 percent scatterers (length:
85089); (d) 30 percent acat terers (leng th : 4913). F igure (a) shows a
long mean-free path ; (e) and (d) show short ones. Figure (b) shows
ergodic behavio r and (d) a very short cycle, constrained by the scat­
terers.
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2.68 4.55

Figure 4: Distribution of mean-free paths for 64 X 64 TTA lattice
with 1024 scatterers (400 limit cycles) . The narrow distribution is in
agreement wit h the resu lt of reference 7 for hard-sphere gases.

4.2 Displacement Dist r ib u t ion

In the resul ts described above, we restricted the motion of the particle to
the domain of the lattice (i.e., a torus). In the remainder of this section,
we allow the particle to move without spatial restrictions . The space now
consists of replicas of a 64 x 64 domain, put together slightly mismatched
to imitate helical boundary conditions.

F igure 5 is a ty pical displacement distribution (over 800 configurations)
for long times, obtained with a 64 x 64 T TA latt ice afte r 800 mean-free
times. It is consiste nt wit h the centra l limit t heorem results of reference 5.
In ot her runs, we have observed that this form of dist ribution sets in after
80 to 100 mean-free times.

4 .3 D iffusive B eha v ior

The calculation of the diffusion coefficient D given in this section uses the
following definition of Einstein [141:

((r. (t ) - r.(O))' ) ~ 2Dt . (4.1)

F igure 6 shows a plot of the mean-square displacement (averaged over 200
scattere r configurations) versus ti me, which is linear in agreement with
equat ion (4.1). This plot is for the 64 X64 T TA lattice with 128 scatte rers .
The slope of this graph for long times gives the diffusion coefficient.
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Figure 5: Long-time displacement distribution (800 mean-free t imes)
for 64 X 64 TTA model with 64 scatterers. This resu lt (which usually
shows after about 100 mean-free times) agrees with the central-limit
theorem results of reference 5.
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Figure 6: Mean-square displacement versus time (mea n flights) for
64 X 64 TTA mode l with 128 scat terers. The slope of thi s graph gives
the diffusion coefficient.



568 Philippe M. Binder

, I

8

104

2 L--.L ":----'

Figure 7: Natural logar ithm of the dime nsionless diffusion coefficient
versus logari thm (base 2) of the density of scatterers. TJ;1is result
agrees with the prediction of refer ence 8 for the wind-t ree model up
to a dens ity p = ili.

In figure 7, we have plotted the diffusion coefficient versus density of
scatterers. This plot appears to be linear 1 which agrees at low densit ies
with the express ion in reference 8 for diffusion coefficients in the wind-t ree
model,

V-I _ 2p + 6.5p' (4.2)

but disagr ees with this expression for den sities greater than 0.01 or so. This
is to be expected in our model , in which the scattere rs do not occupy any
area.

5. Dynamical p roperties

In this section, we study the p roperties of the Lorentz latt ice gas viewed
as a discrete dynamical system. Since the scatterers are fixed, the state of
the gas is entirely determined by the position and velocity of the moving
particle.' T he total number of states is finite and equal to the product
of the number of nod es and directions of velocity. The trajectory of the
particle is inver t ible; we do not lose informat ion about the state of th e

3Strictly speaking, one must also give the pari ty of the time step in the t ime-a lt.ernating
models, since t he trajectory also depend s on this parity. However, changing the pari ty of
t.he init ial time is equiva lent to moving every scatterer a uni t edge in t he direct ion of
merion ; th e result is anot her configurat ion , ju st as probable as the first . We can th en
ignore this additional complication as long as we are averaging over configurations. This
will be the case for th e first two of the three quantities re porte d in this section .
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system at previous times. (All translation and collis ion steps have unique
outcomes.) It follows that the evolut ion of the syst em will consist of one .
or several cycles, each of length equal to the time needed for the particle
to return to its ini ti al state. This is different from the behavior of discrete
dissipat ive systems 115), in which transients are also present. The length of
these cycles corresponds roughly to the first recurrence t ime in continuous
aperiodic systems (see reference 16 for example). For a fixed number of
scatterers, the average leng th of a cycle and the dist ribution of cycle lengths
over all configurat ions of sca t terers say all there is to be said about t he gas
as a discrete dynamical system . These are the results we will show next for
the Lorentz gas .

Tabl e 1 is a summary of average cycle lengths (expressed as a fraction
of t he total number of states of the system) for several models and la t tice
sizes. These were averaged over 400 scatterer configurations and initial
conditions picked at random. Exce pt for the case of one or two scat terers
(not shown in the table), the average cycle length starting from an arbitrary
init ial condition appears to be one half of the total number of states. This
result is independent of the mo del or system size .

One thing varies with the model: the distribution of cycle lengths for
fixed number of scatterers averaged over randomly picked initial conditions .
F igure 8 shows typical examples for the three models (all for 128 scatterers
in a 64 X 64 lat tice).

F igures 8a and b show this distr ibution for the S and TTA mo dels; it is
essentially uniform , but with a considerable peak for t rajectories that visit
most of the availab le states of the system. F igure 8c, the cycle length dis­
tribution for the TT l mo del, shows a uniform length dis tribution of cycles.
An explanat ion for this difference is that since , in the TTl model, the par­
ticle t ravels in all six di rections in the process of suffering six consecut ive
collisions, it is likely for a trajectory to cur l aroun d and recur fas ter than
in the other models.

Tabl e 2 shows results for the number of cycles in a given configuration for
16 X 16 and 32 X 32 TTl lat tices; we have picked these to avoid the apparent
do ubling of phase space ca used by the time-alternating rules. T hese results
were averaged over 40 configurations each. The number of cycles increases
with the density of scatterers; this density may play the same role as the
nonlinearity parameter in a chaotic map. The expected number of cycles
for a random mapping in systems of these sizes wou ld be 7.3 and 8.7 cycles
respec t ively.

We will now compare this state-transition desc ript ion with the results
for random maps of integers 1171 and for the discrete stand ard map [181. T he
standard map is a one-parameter, two-var iab le Hamilton ian map which can
exh ibit chaotic behavior. These resu lts are the same in both cases, excep t
tha t in the st andard map they only apply for sufficiently high values of the
nonlinearity parameter:

1. Starting from an init ial con dition picked at random, there is a uniform
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Number of scatterers Average fraction of phase space
per cycle (random ly picked init ial po int )

64 x 64 TTA lat t ice (245776 states)
4 0.47
16 0.57
64 0.55
256 0.53
512 0.54

32 x 32 TTA lat t ice (6144 states)
4 0.48
16 0.54
64 0.52
256 0.54

16 x 16 TTA latt ice (1536 states J

8 0.50
16 0.54
32 0.52
64 0.54

64 x 64 S lattiCe (16384 states )
16 0.48
64 0.48
256 0.54

1024 0.51
64 x 64 TTl lattice (24576 states )

16 0.52
32 0.51
64 0.49
128 0.50

Table 1: Average of limit cycle lengths divided by total phase space
for rando mly picked initial configurat ions.
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Figur e 8: Distribution of limit cycle length s starting from an arbitrary
init ial cond it ion for 64 x 64 lattice with 128 scatterera: (a) S lattice;
(b) TTA lattice; (e) TTl lattice. T hese distributions, especially the
th ird one , agree with the predictions for ran dom or chaotic maps.
(400 randoml y picked scatterer configura t ions and init ial condi tions) .
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Number of scatterers Average number of cycles
to cover all of phase space

16 x 16 TTl lat t ice (1536 states)
2 1.8
4 2.9
8 2.7
16 3.0
32 3.9
64 5.55
128 9.0
200 9.5
32 x 32 TTl lattice (6144 states)

4 2.5
8 2.8
16 3.2
32 3.8
64 4.8
128 6.4
256 12.2

Table 2: Average number of cycles per configuration versus number
of scatterers.

probability distribution for the length of cycles.

2 . The average length of a cycle that starts from an init ial condition
picked at random is Tl where m is the total number of states.

3. The average number of cycles is equa l to In(m).

For t he Lorentz gas , we see that property (2) ho lds for all models, property
(1) holds fa irly well (especially for the T Tl model), and property (3) is in
fair agreement with the behavior of a chaotic map, and at high scatterer
densities agrees well with the result for a random mapp ing. Altho ugh some­
what indirect , these results are consistent with the analytica l and numerical
resu lts that the Lorentz gas exhib its chaotic behavior [191.

6 . Summary

In this paper1 we have studied some properties of three cellular automaton
models of the Lorentz gas. This problem seems to have been overlooked in
the simulat ions of lattice gases because it does not yield the Navier-Stokes
equation, and because it does not take advantage of the parallelism inherent
in these models.

It is essential, though, that good agreement exists between theory and
lattice simulations for such a simple problem. We find such agreement in
the physical and dynamical behavior of the latt ice models presented in this
paper.
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We studied three physical properties of our mode ls: (a) the dependence
of mean-free path on the density of scatterers, which agrees with analytical
results; (b) the long-time displacement distr ibution, which is consistent
with analytical results; and (c) the diffusion coefficient. Although the t ime
dependence of the mean-square displacement shows that this coefficient is
well-defined, its dependence on density of scatterers disagrees somewhat
with analytical results for a very similar mode l, the Ehrehfest wind-t ree
mode l. This is to be expected from the nature of our mode l, which does
not restrict particle motion at high density of scatterers.

We also studied the state-transition graphs of the gas viewed as a dis­
crete dynamical system; these graphs share to a large extent the properties
of chaotic and random discrete maps for the distribut ion of limit cycles .
Our results agree with the analytica l prediction that the Lorentz gas ex­
hibits chaotic behavior.

Some interesting work remains to be done, especially in the calcula­
tion of the Lyapunov exponent (to show explicitly chaot ic behavior) and
the computation of the velocity autocorrelation funct ion, in which there is
disagreement between theory and simulations.

In conclusion , the behav ior of the lattice models of the Lorentz gas
agrees well with that of their continuous counterpart, especially at low
densities; this paper provides more evidence of the usefulness of cellular
automata in simulating fluid mechanics.
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