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Abstra ct. For the simplest of the disc rete mod els of the Boltzmann
equations , the Broad well model, exact solutions have been obtained
by Co rnille [15.16] in the form of bisolitons. In the present paper , we
build exact solutions for more complex mod els .

1 . Introduction

For the las t twenty years, t he st udy of discrete mo dels of the Bolt zmann
equat ion has attracted the attent ion of many scient ists . The first mo dels,
with six or eight velociti es , were proposed in 1964 by J. Bro adwell [1,2].
After Broadwell, R . Gatignol has writ ten the general form of equat ions
which represent the discrete models of the Boltzmann equat ion [3,4]. T hose
models are obtained by assuming that the mo lecules of a gas can have only
a fin ite number of velocit ies, iii' With this assumption, the Boltzmann
equat ion is replaced by a semi-linear hyperbolic system of par t ial di fferent ial
equat ions . We denote the density of molecules with velocity iii by Ni(t,X)
(t t ime,:i posit ion), and the discrete mo dels of the Boltzmann equation are
also written in the following form:

aN· -- -' + Uj . V N, = L A;':(N,Nm - NjN.)at ill

(j = 1, 2, .. . . p]. (1.1)

The coefficients A;1\ t ransit ion probabiliti es, are cons tants , positive or zero;
they depend on three of the ind ices i, k,l ,m . T he equations of R . Gatignol,
(1.1), are the kineti c equat ions. Since 1974 , the global ex iste nce of solu­
ti ons of equat ion (1.1) has been proved for more and more complex mod­
els by Nish ida and Mimura [5], Crandall and Tar tar [6], Cabannes [7,8],
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Kawashi ma [9], Illner [10], and Tartar [11]; more recent ly, the bounded
char acter of solutions has been proved by Beale [12,131 and Alves [14] .

For the simplest discrete model, the Broadwell model [I], exac t non­
trivial and physically acceptable solutions have been obtained by Cornille
[15,16]; those solutions which depend on one space variable are rational
functions of one or two exp onent ial vari ables of th e form exp(pt + -rr }:
so litons or bisolitons . In this paper, we obtain in a similar way exact solu­
tions of the R. Gatignol equations for some models more complex than the
Broadwell mod el.

2. Stu dy of the general case

We look for solut ions of equat ion (1.1), which have the following form:

N; (t , x) = "; + 2Re{a; tan(>.x + il"t)} , i = H . (2.1)

The coefficients Ct; and the two parameters oX and J.L are real constants; the
coefficients aj are complex constants; Re(z) denotes the real part of the
complex number a, the conjugate of which is noted Zj the right-hand side
of equat ion (2.1) represents bisolitons. The explicit form of the densit ies is
also:

N () 13; sin X - "I; sh T
t t , x = (Xj + 2 '-'--c-o-s -X"""'+-c"'h-cT:;;--

(2.2)

where X = 2>'x, T = 21"t, a; = 13; + i "I; (13; and "I; real). If we define
D = cos X + ch T, we obtain:

D' ~ = - 41" {13; sh T sin X + "1; (1 + ch T cos X )}

D' ~ = 4>' {13;(1 + ch T cos X) - "I; sh T sin X}

D'N,Nm = (1 + ch T cos X )"'''m
+ 2D sin X(",13m + "m13,)

2D sh T( "'''1m + " m"l')
+ sin' X(4 13,13m - " '''m)
+ sh' T (4"1l"1m+"'''m)

4 sin X sh T( 13l"1m + 13m"I,)

(2.3)

(2.4)

If we denote by p the number of discrete velocities u; (with components
11.; on the axis of abscissae x), the set of the functions N;(t, x) depends on
3p + 2 unknowns; the densities are periodic functio ns of the variable x .

In order that equation (1.1) is satisfied, it is sufficient to identify the
terms in: 1 + ch T cos X, D sin X , D sh T, sin2 X , sh2T, sin X sh T.
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We obtain also six relations:

4>'11.;/3; - 4J.4 I; = L A~~ (alam - a;a.t)
ki m

L:A;'r(a,{im+ amfJ, - a;fJ. - a.fJ;) = 0
kim

I: A~':(af"Ym+ a ml l - a; lk - a kl; ) = 0
ki m

L:A;'r(4fJ' fJm - a,am- 4fJ;fJ. + a;a . ) = 0
ki m

L A~':(4,f"Ym + a,am - 4,;lk - a;ak ) = 0
ki m

4>.uj'Y; + 41'fJ; = 4 L:A;'r("llfJm + 'ImfJ, -'I; fJ. - 'I.fJ; )
>1m
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(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

The introduction of conservation equations, which are related to the sum­
mational invariants, allows to replace the system (1.1) by a simpler one
[3,4]. To each summational invariant v (r) , vector ofR(P), with components
vt ), corresponds a conservation equation:

f-yl ,j(aN; + "aN;) = 0
L..J, at ' ax,=1

(r=1 ,2 , .. . , q). (2.11)

The number q of the conservation equations is equal to the dimension of
the space of summat ional invariants (1 :::; q < pl . Equation (2.11) will be
satisfied if the two following relations are verified:

p

L:vt1p."j'Y; + I'fJ;) = 0
;=1

(r = 1, 2, ... ,q),

[r = 1,2, .. . ,q).

(2.12)

(2.13)

Each conservation equation can replace one of the equations (1.1) . There
remain 6(p-q)+2q relat ions (2.5) through (2.10) and (2.12) through (2.13)
to determine 3p + 2 constants . The number of relations is smaller or equal
to the number of unknowns a;, a;, >. , and JJ. One has 3p :::; 4q + 2. To be
physically acceptable, the densities N;(t, x) must be positive for all z , and
for all t 2: t, .
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3. Examples of exact solutions

From a cube, one can build 14-velocity mod els: 6 velocities orthogonal
to the faces, with moduli u and densiti es M k ; and 8 velocities parallel to
the diagonals, with moduli v and densities Nj . Two of those models, and
only two , allow mixed collisions. Mixed collisions are defined as collisions
between molecules with density N; and molecules with density M. 117) .
The first model has uv'3 = v, and the second model has uv'3 = 2v . For
both models, one has p = 14 and q = 5. The functions, (2.1) , depend on
44 real parameters which must sat isfy 64 equations. Although the number
of equat ions is greater than the number of unknowns, solutions exist and
we will describe them.

If we assume that, for both sets of molecules, the densities of the
mo lecu les are equal for those veloc it ies whi ch have the same component
on the axis of abscissae, then there exist only p = 5 different densiti es, and
the number of conservat ion equations is equal to q = 3. In the case of the
first model, the kinetic equations, equations (l.1), are the following 1181:

en, en, >!!- (N,M, - N,M,) (3.1)- ----at ax
aN, eu, >!!-(N,M, - N,M,) (3.2)-at + ax =
eu, eu,

2 v'6(N,M, - N,M,) +~ (Mi - M,M,) (3.3)- - + - -=at ax
ou, aM, 2J6(N,M! - N,M,) +j(Mi -M,M,) (3.4)----- =at ax

aM, +HM,M,-Mi) (3.5)=at
The variables x and t are dimensionless . The conservation equations, de­
du ced from equations (3.1) through (3.5), are

aN, + aN, = _(aN, _ aN, )
at ax at ax

eu, aM, 4 (aN, _ aN,) _2 aM,
at + ax = at ax at

_aM_, _ _aM_, = - 4 (aN! _ aN!) _2aM,
at ax at ax at (3.6)

To present the results, we adopt the numbering of index j in formulae (2.1)
according the order of equations (3.1) through (3.5) , that means that we
put Ns = M l, N. = M., and N s = M 2 . If we change x to -x, the flow is
reversed, and N 1 becomes N 2" Ns becomes N• . Therefore, we can assume
a2 = a ll P2 = - Ph '12 = '111 a. = a~h P. = - Ps, '1. = '1s and Ps = o.
We use next the relations (2.5) through (2.1O) in equat ions (3.1) and (3.5)
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and the relations (2.12) and (2.13) in equ ation (3.6). We obtain the nine
following homogeneous relations:

A{3, + ",A, = 0

A'1' ",{3, = V6 ({3,'1' + {33'1,)

a ,{33 + a3{3, = 0

41-''1' a: ~ - a;
as/s 0:5'15 = a

4{3; + o:; - o:~ =o

41; + o:; - a~ - 4'1~ = 0 (3.7)

",{3, + A'13 = 4(",{3, - A'1,) (3.8)

"''13 A{3, = 2",'1,

There are ten unknowns. The meth od of solut ion consists of eliminating
aj, 13;, and I; to obtain an algebraic equation, the unknown of which is the
rati o 0 = AIJ.L . We find two possibilities. F irst, for (tl = /3 1 = "11 = 0, we
obtain:

a ' + 6a' - 3 = 0; that is, a ' = 2v3 - 3. (3.9)

a, = a(l - v3),

as = a,
3 - v3

A= UJ.L = u a - - ­
4

(3.10)

That solu tion is the solution of Cornille [151. If {3, # 0, the elimination of

a ll Pil "11 g ives

(1 + a ') '" + V6 h, - a{33) = 0

2'1' + '1, + a{3, = 0

3J.L"'fs = o:~ - 0:; = 4f3i

0:3'13 0:5'1'5 = aand ')': = '1;- pi
and we obtain

5(3 - 2V6) a' - 2(3 + 8V6) a'+ 3 (5 - 2V6) = 0,

(3.11)

(3.12)

0 2 is again the positive root of equation (3.12), and after introduc tion of
two constants T and w defined by formulae (3.13), we obtain the definitive
results (3.14); we have in fact a = ± 0.082, w = 1.128 and T = ± 1.043. The
numerical values given in formulae (3.14) correspond to the case a > 0 and
T > OJ 0: is an arbitrary numerical const ant (positive or negative) .

(10 - 3V6 ) a' - 3(2- V6)
T = I

16a
2w(1 + aT) = V6 (3.13)
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ooa = 0.092 0:, J.J. = iaa = 1.128 ex.
wr(l + cr')

a, ( ) r;; a = 0.126 a
4 r-cr v6

- ii, = wr~~icr) a = ( - 0.120 + 0.010 i) a

(1 + cr' )
a, = ( ) a = -0.464 a

2 1 + o r

-ii, = !.( cr - r _ i) a = - (0.443 + 0.500 i )a
2 1 + o r

iW(l+cr' ) .
a, = r;; = 0.232 • a

2v 6
(3.14)

(4. 1)

To finish , we mus t show that the dens ities so dete rmined are posit ive for all
z and for t 2: to' We assume that T is pos itive; we have then cos X + ch T >
0, and it is sufficient to satisfy the conditions :

P; = a; cos X + 2 13; sin X + a; ch T - 2 '1; sh T > O.

(3.15)

For a fixed va lue of T, Pi varies between two extreme values, which are
functions of T: we show that the smallest of those values is positive. In
the case where the three constants w, a, and CI. are positive, we find that
the conditions P; > 0 are realized for all values of the index i, if we take
to 2: 0.22. The variation of the density N j with X is periodic and oscillates
between the two extreme values:

N'!' = a; _ 2 '1; ch T ± 1a; I. (3.16)
, sh T

Wh en T increases , the min imum increases and the maximum decreases: the
differenc e between the two values tends to zero, as T app roaches infinitely.

4. Study of the second 14-velocit y model

For the seco nd 14-velocity mode l, the kinet ic equations (3.1) through (3.5)
must be replaced by the following:

en, en, rr: { }at ax = v 11 N,(M, + M, ) - N, (M, + M ,)

aN, en, rr: { }at ax =v11 N,(M,+Md-N, (M,+M, )

a::, + 2 a:;:, = 4 { Mi - M,M, } + 4v'll { N,M, - N,M, }

eu, eu, { ' } rr: { ) }---at 2 ax = 4 M, - M,M, + 4v 11 N,M, - N,M,

a::, = 2 { M, M, - Mi } + v'll {N,M, + N,M, - M,(N, + N, )}
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There are also three conservat ion equat ions:

a a
- (Ml - M . - 4N>l + - (2MI + 2M. + 4N>l = 0at ax
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(4.2)

Using the same notations and procedures used in the former sect ion, we
have again for ,,' two poss ibilities . Fi rst , " 1 = PI = '"11 = 0 and 4,,' = 2,13­
3, which corresponds to the solution of Cornille [15,16] for the dens ities Mit .
Second, 0

2 is a root of the following equat ion:

2184,,' +4264"'+2306'''+226-v'li{696'" + 1562,, ' + 640,, ' + 71} = O.

(4.3)

Equat ion (4.3) , cons idered as a th ird-degree equat ion for the unknown 0 2,

has two complex roots and a real root 0
2 = - 7.56583. As the real root is

negative, a is never real and no solution of the form (2.1) exists for equation
(4.1), that is, for the second 14-velocity model.

5. Other examples

There exist several other models for which the kinetic equations (1.1) pos­
sess exact solutions of the form (2.1) . We consider the four following equa­
tions.

aNI §If..o. = k(N,N. - NIN,)- +at a,

en;
v!l.l:!.:J.. = (NIN, - N,N.)at+ a,

aN, §If..o. = k(N,N. - NIN,)at a,
en,

v fll!..J.. = (NIN, - N,N. ) (5.1 )at a,

k and v are two pos itive constants. Five different discrete models are de­
scribed by equation (5.1) : two-dimens ional regular models with

6 velocit ies (Ox on iiI)
8 velocities (Ox on the bisector of iiI ii, )

k = 2, 2v = 1
k = 1, v = V2-1
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and three-dimensional regular mo dels related to the dodecahedron [171:

12 velocities (Ox on iZtl k 5, 5v =-/5
12 ve locities (Ox on a diagnoal

of the dodecahedron) k = 1, v = -/5-2
20 velocities (Ox orthogonal to

a face of the dodecahedron) k= 1, v = -/5 - 2

Of course, in each case, the number of different densities is only four, be­
cause we consider the solution for which two densit ies are equal if they
correspond to molecules with a veloci ty having the same com ponent on the
ax is of the abscissae. For the mod~ls rep resented by equation (5.1), there
are four kinetic equations (p = 4) and three conse rvation equat ions (q = 3)

aN, + aN, = aN, _aN, = _k(aN, + v aN, ) = _k(aN' - v aN, )
at ax at ax at ax at ax

(5.2)

We put as before N; = a; + 2 Re {a; tan (AX + il' t)} and a, = a" a, =
Q:z, a3 = ~al , a" = - liz ! and a i = /3i + i"1j, >.. = ou: The algebric
equations to satisfy are:

p, + 0'11 = 0, p, + o v'1, = 0,
(1 + o'h, + k (1 + o'v'h, = 0,
2(1 + 0' )1''1, = k(a1 - alJ, an, = an" (5.3)
(1 + 0' )1''1' = k{ (1 + o'v'hi (1 + o'hl},
(1 - o'h1 = (1 - o'v'hil·

From equat ion (5.3) , we deduce the equation:

(5.4)

For all the five cases considered, this equat ion considered as an equat ion
for 0'2 has on ly real roots, and only one pos itive root:

k = 1, v = J2-1
k = 1, v = -/5 - 2
k = 2, 2v = 1
k = 5, 5v = -/5

When u 2 is known, we obta in:

0' = 8.81256
0' = 21.45355
0' = 0.59067
0' = 0.91439

'12 = '1,
{31 = - U'1ll
0:1 = 2e'121

2o't/' I - t/'
JJ- = l + o' t/' 1_ (1 "'1 ,

- - k l ± o't/ ''11 - '1 H 0 2

p, = - ov'1,
0:2 = 2e'12
and

(0 = ±l)
A= 01'.

(5.5)

The limits of densities when t --+ ± oo are
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lim N; (x, t) = <X; - 2')';sgn l'.-=
lim N; (x, t) = <X; + 2')';sgnl'

t-e c-cc

In order to obtain Ctt - 2l'isgnP. for i = 1 and 2, it is necessary to choose
I' < 0, that means ')'(1 - .') > O. Then we have

lim N; (x, t) = 2<b. + ')',)
.~=

lim N. (x, t ) = 2<b, -')'d
f->-oo

lim N, (x,t ) = 2<b. - ')', ) .
t ..... -oo

We choose e in order that the product ~bl + 1'2) is pos it ive. Also there
exists a time, to, so that all the densi ties Ni (x, t) are positive for t ~ to' It
is poss ible to choose the initial time t = h so that two of the densities are
negat ive (the two others are then pos itive) and neverthe less t he solution of
the initial values problem for equat ion (5.1) exists for all values of t 2: t r­
In the classical theorems of global existe nce for the R. Gatignol equations,
one assumes that the initial va lues are posi t ive; but this assumption is not
necessary, as it has been proved by Balabane for the Carleman equations
[201·

6 . Conclusions

With exact solutions of R . Gatignol equations, it is interest ing to compute
t he functions H of Boltzmann:

s
H (t,x ) = L:N;(t,x) log N; (t,x) (6 .1)

;=1

J/(t) = Iof
H (t,x)dx (6.2)

The integra l over one period )( (t ) is found to be a decreasing function of the
ti me, but locally the function H (t, x) is not always monotonic, in particular
for x = 7r/2A; the theorem-H of Boltzmann is, of course, a global theorem.

Bes ide t he bisolltons (2.1) it is possible to find ot her fami lies of exact
solutions of equation (1.1); this has been done by Golse for the Broadwell
model [191 . The solut ions of Golse are self-similar solutions obtained by
putting tN; (t , x ) = N;(E) with E= x/to This transformat ion is also va lid
for the general case of equat ion (1.1) , which are transformed in a system
of pure different ial equations for th e funct ions Nj(E). Unfortuna tely, in
cont rast wit h t he biso litons (2.1), th e self-sim ilar densit ies do not remain
posit ive for all values of x.

An interesting remark can be made from the solut ions we have built .
All the authors who have proved theorems of globa l existence st art with
the assumpt ion that the initi al va lues of densit ies are positive. With the
bisolitons, we have examples of global existence when the values of densities
are not all pos itive.
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