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Abstract. For the simplest of the discrete models of the Boltzmann
equations, the Broadwell model, exact solutions have been obtained
by Cornille [15,16] in the form of bisolitons. In the present paper, we
build exact solutions for more complex models.

1. Introduction

For the last twenty years, the study of discrete models of the Boltzmann
equation has attracted the attention of many scientists. The first models,
with six or eight velocities, were proposed in 1964 by J. Broadwell [1,2].
After Broadwell, R. Gatignol has written the general form of equations
which represent the discrete models of the Boltzmann equation [3,4]. Those
models are obtained by assuming that the molecules of a gas can have only
a finite number of velocities, #@;. With this assumption, the Boltzmann
equation is replaced by a semi-linear hyperbolic system of partial differential
equations. We denote the density of molecules with velocity #; by N;(¢,Z)
(t time, Z position), and the discrete models of the Boltzmann equation are
also written in the following form:

ON; s
¢ % VN =2 AR(NiNn—N;Ny)
skl

(G =1,2,...,p)- (1.1)

The coefficients A;-’;‘, transition probabilities, are constants, positive or zero;
they depend on three of the indices j, k,I,m. The equations of R. Gatignol,
(1.1), are the kinetic equations. Since 1974, the global existence of solu-
tions of equation (1.1) has been proved for more and more complex mod-

els by Nishida and Mimura [5], Crandall and Tartar [6], Cabannes [7,8],
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Kawashima [9], Illner [10], and Tartar [11]; more recently, the bounded
character of solutions has been proved by Beale [12,13] and Alves [14].

For the simplest discrete model, the Broadwell model [1], exact non-
trivial and physically acceptable solutions have been obtained by Cornille
[15,16]; those solutions which depend on one space variable are rational
functions of one or two exponential variables of the form exp(pt + ~z):
solitons or bisolitons. In this paper, we obtain in a similar way exact solu-
tions of the R. Gatignol equations for some models more complex than the
Broadwell model.

2. Study of the general case

We look for solutions of equation (1.1), which have the following form:
N;(t,z) = aj + 2Re{a; tan(Az +iut)}, i=+—1. (2.1)

The coefficients o; and the two parameters A and p are real constants; the
coefficients a; are complex constants; Re(z) denotes the real part of the
complex number z, the conjugate of which is noted z; the right-hand side
of equation (2.1) represents bisolitons. The explicit form of the densities is
also:

Bi sin X —~;sh T

Nilt, &) = a;+2 cos X +chT

(2.2)

where X = 2Xz, T = 2ut, a; = B; +1¢ ; (B; and ~; real). If we define
D =cos X + ch T, we obtain:

D? %‘:i = —4,u{,6,- shT sin X +~;(1+ ch T cos X)} i
2.3

D? “%‘:1 = 4)\{,8,—(1 +ch T cos X)—~; shT sin X}
D*N\N,, = (1+chT cos X)aan

+ 2D sin X(ogfm + anfi)

— 2D sh T(o4¥m + am)

+ sin® X(481fm — 1)

+ sh’T(4yvm + )

— 4 sin X sh T(Bivm + P) (2.4)

If we denote by p the number of discrete velocities @; (with components
u; on the axis of abscissae z), the set of the functions N;(t,z) depends on
3p + 2 unknowns; the densities are periodic functions of the variable z.

In order that equation (1.1) is satisfied, it is sufficient to identify the
terms in: 14+ ch T cos X, D sin X, D sh T, sin® X, sh®T, sin X sh T.
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We obtain also six relations:

4B —4p v = ) Al (am — aj0n) (2.5)
kim

E A;T(a!ﬁm + amfB — ajf — apf;) =0 (2.6)

klm

> AR (wYm + em i — @1 — ;) =0 (2.7)

klm

> AR (4B1Bm — c1om — 48 + ajoy) =0 (2.8)

klm

ZAJE 4'7“1!71 + ajam — 41;')'& — t!,ak) =0 (2_9)

klm

4y +4pB; =4 AT (MBm + YmbBr — Vi Be — NeB;) (2.10)
klm

The introduction of conservation equations, which are related to the sum-
mational invariants, allows to replace the system (1.1; by a simpler one
[3,4]. To each summational invariant V{"), vector of R(), with components

V}("], corresponds a conservation equation:

P
ZVJ,(rJ(aN i aN) =i (r=1,2...,4). (2.11)
P at 3

The number g of the conservation equations is equal to the dimension of
the space of summational invariants (1 < ¢ < p). Equation (2.11) will be
satisfied if the two following relations are verified:

P

z‘/j(r)('\ujﬁj —uB;) =0 (F=1,2:559) (2.12)
=1

Z V_T(')()«uﬂ, + uﬁi) =0 (r =1,2,... ,q). (2'13)
i=1

Each conservation equation can replace one of the equations (1.1). There
remain 6(p— q) +2q relations (2.5) through (2.10) and (2.12) through (2.13)
to determine 3p + 2 constants. The number of relations is smaller or equal
to the number of unknowns e;, a;, A, and p. One has 3p < 49 + 2. To be
physically acceptable, the densities N;(t,z) must be positive for all z, and
for all t > ¢,.
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3. Examples of exact solutions

From a cube, one can build 14-velocity models: 6 velocities orthogonal
to the faces, with moduli v and densities M}; and 8 velocities parallel to
the diagonals, with moduli v and densities N;. Two of those models, and
only two, allow mixed collisions. Mixed collisions are defined as collisions
between molecules with density N; and molecules with density M, [17].
The first model has uy/3 = v, and the second model has uy/3 = 2v. For
both models, one has p = 14 and g = 5. The functions, (2.1), depend on
44 real parameters which must satisfy 64 equations. Although the number
of equations is greater than the number of unknowns, solutions exist and
we will describe them.

If we assume that, for both sets of molecules, the densities of the
molecules are equal for those velocities which have the same component
on the axis of abscissae, then there exist only p = 5 different densities, and
the number of conservation equations is equal to ¢ = 3. In the case of the
first model, the kinetic equations, equations (1.1), are the following [18]:

% e % s @(N,m = NIM,) (3.1)
9;’72 + a;: 2= f(Mn - WM (3.2)
'9;;’1 a;f - \/E(N,m = NlMl) +4§ (M-_? - MIM.) (3.3)
% — % = 2\/6(1\111\4,l - NgM.‘) +§(M§ - M1M4) (3.4)

% = +§ (M1M4 = Mzz) (3.5)

The variables z and ¢ are dimensionless. The conservation equations, de-
duced from equations (3.1) through (3.5), are

at az -

dN, ON; _ _(aNl BNl)
ot oz

oM, | oMy _ (aN1 B BNI) _ M,

at "oz ‘\at oz at

oM, oM, _ _, (aNl - aNI) _ M (35)

ot 3z ot dz ot

To present the results, we adopt the numbering of index j in formulae (2.1)
according the order of equations (3.1) through (3.5), that means that we
put N3 = My, Ny = My, and N5 = M,. If we change z to —=z, the flow is
reversed, and N; becomes Ny, N3 becomes N;. Therefore, we can assume
o = o, o= —B1, Y2 = M, 0 = as, fs = —Ps, ¥4 = 73 and f5 = 0.
We use next the relations (2.5) through (2.10) in equations (3.1) and (3.5)
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and the relations (2.12) and (2.13) in equation (3.6). We obtain the nine
following homogeneous relations:
ABy + pAi=0
M = wB =6 (Birs + Bsm)
a1ffs + a3f =0

4pys = a§ - ag
azys — o5V =0

4 + ol—al=0

42 + aj—al—44i=0 (3.1
uBs + Ays = 4(pfr — Am) (3.8)

pys — Afs = 2u~s

There are ten unknowns. The method of solution consists of eliminating
@;, B;, and ~; to obtain an algebraic equation, the unknown of which is the
ratio ¢ = Afu. We find two possibilities. First, for oy = f; = 11 =0, we
obtain:

o+ 602 —-3=0; thatis, o*=2V3-3. (3.9)
ao o
a3=a(1—\/§), ﬂs:_-a T8 57
2 2
3—3
as = a, ¥5 = M%, A=ou=oa 4f (3.10)

That solution is the solution of Cornille [15]. If 8; # 0, the elimination of
ay, }613 M gives

(14+0))u + V6(ys—afs) =0
2 + Y+ ofz=0
3uvs = of —of =4f;

asys — asys =0and 4 =5 — 63 (3.11)
and we obtain
5(3 — 2v/6) o* — 2(3 + 8v6) 0% + 3 (5 — 2v6) = 0, (3.12)

o? is again the positive root of equation (3.12), and after introduction of
two constants 7 and w defined by formulae (3.13), we obtain the definitive
results (3.14); we have in fact o = £0.082, w = 1.128 and 7 = +1.043. The
numerical values given in formulae (3.14) correspond to the case & > 0 and
7 > 0; a is an arbitrary numerical constant (positive or negative).

o (10 — 3v/6) o® — 3(2 — v/6)

160 ’

2w(1 + o7) = V6 (3.13)
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A = woa=0.092 ¢, p=we=1128 o

1 2
o = QQM)—&=0.126&
4(r — 0)V6
o = —@a ——Ma—(_0120+0010i)a
1 2 2\/6 = - 3
(1+0%
= q=—=t "L y=-0464
e a 2(1+ar)a *
l1/0—7
= —04 = — — = — 0.443 0.50 )
R (5 N
it o
™ . e (TR (3.14)

2v/6

To finish, we must show that the densities so determined are positive for all
z and fort > t,. We assume that T is positive; we have thencos X +chT >
0, and it is sufficient to satisfy the conditions:

P; = ajcos X + 28;sin X + ajchT — 2+;shT > 0.
(3.15)

For a fixed value of T, P; varies between two extreme values, which are
functions of T'; we show that the smallest of those values is positive. In
the case where the three constants w, o, and o are positive, we find that
the conditions P; > 0 are realized for all values of the index j, if we take
t, > 0.22. The variation of the density V; with X is periodic and oscillates
between the two extreme values:
7 ch T+ | g |
sh T ’
When T increases, the minimum increases and the maximum decreases; the
difference between the two values tends to zero, as T' approaches infinitely.

N;."‘:aj—2

(3.16)

4. Study of the second 14-velocity model

For the second 14-velocity model, the kinetic equations (3.1) through (3.5)
must be replaced by the following:

% _ % =/ {Nz(Mg +M,) - NI(M2+M1)}

% - % =11 {Nl(Mz + M) — Np(M; + M“)} il
62:& < 3 3;51 i {Mg —M1M4} +4v/11 {NzMz "NlMl}
My _ 5O (g - ) + AV (Mt~ o))
M,

=g {M1M4 s M;} % \/H{lrleI + N;M, — My(N, + Ng)}
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There are also three conservation equations:

Ny 8N, (6N2+6N2)
ot dzr at z

7] a

E(MI — M, —4N,) + i(21';»151 +2M,;+4N;) =0 (4.2)
at dz

Using the same notations and procedures used in the former section, we
have again for ¢ two possibilities. First, ¢; = f; = 4, = O and 4¢? = 2¢/3—
3, which corresponds to the solution of Cornille [15,16] for the densities Mj.
Second, o* is a root of the following equation:

21840°+42640% +2306%0+226—+/11{6960°+15620* +6400°+71} = 0.
(4.3)

Equation (4.3), considered as a third-degree equation for the unknown ¢?,
has two complex roots and a real root ¢® = - 7.56583. As the real root is
negative, ¢ is never real and no solution of the form (2.1) exists for equation
(4.1), that is, for the second 14-velocity model.

5. Other examples

There exist several other models for which the kinetic equations (1.1) pos-
sess exact solutions of the form (2.1). We consider the four following equa-
tions.

AN

Sh+ 4 = k(N2N4 i N1N3)

AN,

—é-t-i v & :(NlNg—N2N¢)

AN,

a—;— Ny = k(N2N4 —~ N1N3)

aN.

3—;— v 6T1\;1 =(N1N3 e NgNg) (51)

k and v are two positive constants. Five different discrete models are de-
scribed by equation (5.1): two-dimensional regular models with

6 velocities (0z on ) k=2 2v =
8 velocities (Oz on the bisector of @ #;) k=1, v = v2—1
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and three-dimensional regular models related to the dodecahedron [17]:

12 velocities (0z on @) k=5 50 =+/5
12 velocities (0z on a diagnoal
of the dodecahedron) k=1v = /5—-2

20 velocities (0z orthogonal to
a face of the dodecahedron) k=1, v =+1/5—2

Of course, in each case, the number of different densities is only four, be-
cause we consider the solution for which two densities are equal if they
correspond to molecules with a velocity having the same component on the
axis of the abscissae. For the models represented by equation (5.1), there
are four kinetic equations (p = 4) and three conservation equations (g = 3)

8N1+6N1 __ON; 9Ns k(aNz iy BNg) k(aN., UBN4)
at ' 8z~ At Iz at dz ot 3z
(5.2)
We put as before N; = a; + 2 Re {a; tan (Az+iut)} and oz = oy, @y =
oy, a3 = —dy, @4 = —8&, and a; = f; + ¢v;, A = op. The algebric
equations to satisfy are:
B1+om =0, B2 + ovy, =0,
1+ 6®)n + k(1 + 0*v?)y, =0,
2(1 + oB)py = k(a? — ), oy = a1,  (5.3)

X+ o) pyr = k{(1 + o*v*)¥: — (1 + o*)~i},
(1—a*)7i = (1 - **)3).

From equation (5.3), we deduce the equation:

L S 2,252
e =k2{-—--—1+”} (5.4)

1—o? 1+o0?
For all the five cases considered, this equation considered as an equation
for ¢? has only real roots, and only one positive root:

k=1, v=+v2—-1 : o%=8.81256
1, v=+5—-2 : o%=21.45355
2, 2v=1 : o? = 0.59067
5, 5u=4/5 o? = 0.91439

When o? is known, we obtain:

Uﬂuﬂ
i oy ==k
B = —o1, By = —0UY, (55)
oy = 2e7s, oy = 267, (e = £1) :
02 2 ”
B 11--’i-|7;"u2 i oz and A=op.

The limits of densities when ¢ — +oco0 are
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t]im N;i(z,t) = a; — 2y;sgnp
Jim Ni(z,t) = e + 2sgnp
——00

In order to obtain a; —2+;sgnu for ¢ = 1 and 2, it is necessary to choose
p < 0, that means (1 — v?) > 0. Then we have

‘131030 N;i(z,t) = 2e(n1 + 12)
tEE}n Ny(z,t) = 2e(y2 — 1)
lim Ny(z,) = 2¢(v1 — ma)-

We choose ¢ in order that the product e(+; + ;) is positive. Also there
exists a time, ¢,, so that all the densities N;(z,t) are positive for ¢t > ¢,. It
is possible to choose the initial time ¢t = ¢; so that two of the densities are
negative (the two others are then positive) and nevertheless the solution of
the initial values problem for equation (5.1) exists for all values of ¢ > ¢;.
In the classical theorems of global existence for the R. Gatignol equations,
one assumes that the initial values are positive; but this assumption is not
necessary, as it has been proved by Balabane for the Carleman equations
[20].

6. Conclusions

With exact solutions of R. Gatignol equations, it is interesting to compute
the functions H of Boltzmann:

H(t,2) = 3" Ny{t,) log Ny (t,2) (6.1)
He = ¥ H(t,2)dz (6.2)

The integral over one period X (t) is found to be a decreasing function of the
time, but locally the function H (¢, ) is not always monotonic, in particular
for z = m/2X; the theorem-H of Boltzmann is, of course, a global theorem.

Beside the bisolitons (2.1) it is possible to find other families of exact
solutions of equation (1.1); this has been done by Golse for the Broadwell
model [19]. The solutions of Golse are self-similar solutions obtained by
putting tN;(t,z) = N;(¢£) with £ = z/t. This transformation is also valid
for the general case of equation (1.1), which are transformed in a system
of pure differential equations for the functions JV,-(E). Unfortunately, in
contrast with the bisolitons (2.1), the self-similar densities do not remain
positive for all values of z.

An interesting remark can be made from the solutions we have built.
All the authors who have proved theorems of global existence start with
the assumption that the initial values of densities are positive. With the
bisolitons, we have examples of global existence when the values of densities
are not all positive.
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