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Abstract. We present results of numerical simulat ions of the Frisch,
Hasslacher, and Porneau lattice gas model and of som e of its variants.
Equilib rium distributions and several linear and nonlinear hydrody­
namics flows ar e presented . We sho w that interesting phenomena can
be studied with this class of mod els, even for lattices of limited sizes .

1 . Introdu ction

Since Frisch , Hasslacher, and Pomeau II] have shown that particles moving
on a triangu lar lattice with very simple collisions on the nodes of the lat t ice
obey the Navier-Stokes equation, th e use of lat t ice gas models to study
hydrodynamics has received considerable interest during th e last two years
12]. However, the Navier-Stokes equat ion is recovered only in the limit
of large systems and for incompressible flows. More theoretical analysis
remains to be done to bound the errors of the lattice gas numerical scheme
for finite lat t ice sizes and velocities. At pr esent, some partial answers to
this question can be obtained by numerical simulat ions of the dynamical
behavior of the triangular lat t ice gases an d by compar ison of t hese results
with classical hydrodyn amics.

In section 2, we will describ e precisely the models we have studied and
recall briefly their theoretical properties obtained with the Boltzmann ap­
proximation [2,3]. Section 3 will be devoted to a detailed description of how
these models can be simu lated on general-purpose computers. In section
4, numerical evidence of the Fermi-Dirac distribution for equilibrium will
be presented. The measurement of the transport coefficients will be given
in section 5. Finally, we will report in section 6 some examples of non­
linear flows either for stationary or nonstationary situations for moderate
Reynolds numbers.
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2. The models

We cons ider particles moving on a triangular lattice with unit velocity c,
in dir ection i between a node and one of its six neighbors (i = 1, ... ,6). At
each t ime st ep , part icles incoming on a node interact together according
to collision laws assumed to conserve the number of particles and the total
linear momentum on the nod e. The particles then propagate according to
the ir new velocity. In addit ion, there is an exclus ion principle such that no
two particles with the same velocity may occupy the same node at the same
time (0 or 1 particle per cell, as defined in reference 2. Thus, each node of
the la t t ice can be described by a six-b it word whose ones represent particles
moving with the velocit ies assoc iated with their bi t posit ions within the
wor d .

We have also used variants of these six-b it models which allow addit ional
particles with zero velocity at each site (i = 0 for notational purposes) .
T hus ,·we can introduce seven-bit models with at most one "res t particle"
per lattice node, or eight-bit models with up to three rest particles per
nod e.' In the eight-bit models, two bits are used to code the presence
of rest part icles, one for mass-one particles and one for a new kind of rest
particle of mass two , equivalent to two rest particles of mass one . To handle
the case of particl es with zero velocity and different masses , the theoretical
results of reference 2 need some modifications, given in Appendix A. Here,
we will give t he general resul ts for the case of bm moving particles with
un it mass and b,. rest particles with mass m.l: = 2.1: , k E {O, . . . , b,. - I} . The
macroscopic quantities: density p and momentum pu, are related to the
local average populat ions Ni.l: of particles with mass 2.1: and velocity c., by

p = L2.1: Ni.l: ;pu = L2kN
i .l:Ci '

i, k i ,k

(2.1)

T hese popu lations are given by the following Fermi-Dirac d ist ributions

1
N,« = ---~""':---~7

1 + exp (2'(h + q ' eil)
(2.2)

where h and q are nonlinear functions of p and u. When u = 0, the
average density is t he same for all the particl es with same mass 2k and will
be denoted d.l:; taking the mass of the lightest particles as un it mass and
do = d, one gets

(2.3)
d"

d. = <p' + (1 - dl"

Thus, when particles with mass greater than one are added, the density
is re lated by a nonlinear law to the average density of particles of mass one,

IThese particles ma.y be considered to have an int ern al energy to satisfy energy con­
servation whi ch is undist inguishable from mass conservation.
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which will be called "density per cell" in what follows, as was done for the
case where all the particles have the same mass . This nonlinear relat ion
implies that all the expans ions around equilibrium cannot take the simple
expressions used in reference 2. The density of moving and rest particles ,
Pm and P" respectively, can be defined as

br-l

Pm = bmd and P" = L: 2kdJ., with P = Pm+ p,, ;
.1:=0

For small u , the expans ion of (2.2) up to first order gives

(2.4)

N ";0

N "0'

2p
d(1 + -c; . u),

Pm
d,. (2.5)

The speed of sound is given by

2 bm d(1 - d) ( )
C, = 2(bmd(1 - d) + Z~::0'4'd, (1 _ d, )) 2.6

and, up to second-order terms in velocity and gradients, the lattice gas
dynamics is described by2

a,p + div(pu) = 0

(2.7)

with

p 1 - 2d 2 Pm P 2 2
g(p) = 2Pm 1 - d ,P(p,u ) = 2 - "2 g(p)(4c. - 1)u ,

1 1
and v =-- - ­

4'" 8
(2.8)

where the kinematic shear viscosity v is related to the eigenvalue A of the
linearized collision matrix [Au] corresponding to the eigenvecto r [ci:J::ci1l1,
and t he kinematic bu lk viscosity I is related in a complicated way to [Au l,
as shown in Appendix A.s

2Greek and Roman indice s refer respectively to components, and ve locity labels and
the su mmations over repeated Greek indices are implicit .

"Capital Roman indi ces I and J refer to double lowercase rom an indices i k and i t
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2.1 Six-bit model: model I

Table 1 gives all the possible configurations of the six-bit models, listing
only the cases such that j. :::: j, :::: 0 [41 . The first three columns give the
number of particles and the total momentum:' The fourth column shows
the different configurations, the legal collisions exchanging configurations
appearing within the same row, and the last column gives the number of
different configurations obtained by the application of the symmetry group.
To avoid bit representation of the collision probabilities A(s -+ s'} between
states sands', we have chosen to write this probability A1(i -+ k} I where I is
an index representing the number of particles , and the total momentum as it
is given in the three first columns of table 1 and i and k are the positions of
configurations in the rows of this table. The legal collision rules exclude the
exchange of configurations belonging to different rows of the configuration
table, and in the case of only one configuration, A/(l ---+ 1) = 1. With this
notation, the semi-detailed balance is written:

L:A/(i ---+ k) = L:A/(i ---+ k) = 1 VI
; .

The original FHP (model I) model uses only the collision rules exchang­
ing the configurations within rows 3 and 6:

VI i' {200, 300} ;

. 1 - 6;.
A".,(J ---+ k) = -2- j ,k E {1, 2, 3};

A300(i ---+ k) = 1 - 6;. j ,k E {1,2} .

These collision rules: three two-body head-on collisions and two sym­
metric three-body collisions, changes five configurations among the 64 poss i­
ble ones. They are the minimal set of rules to prevent spurious conservation
laws.

For this model, the transport coefficients are given by

P = Pm = 6d,
1

c, = y!2'

g(p) = (p - 3)/(p - 6), P = ~( 1 - g(p)u') (2.9)

1 1
v=

12d(1 - d)' 8' ~=O (2.10)
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" jx jy rolds

0 o 0* 1

1 2 0* 6

2 o 0*** 1

2 2 0 * 6

2 J 2 * 6

J o 0** 1

J 2 0** 6

J , 0 * 6

, J 2 * 6

, 2 0 * 6

4 o 0 *** 1

S 2 0 * 6

6 o 0 * 1

Tabl e 1: List of configurations for the six-bit FHP model. Column
1 gives the numb er of particles, column 2 gives 2;"~, column 3 gives
4;",JiV3, and the last column gives the number of equivalent collisions
that can be obtained by successive j rot atio ns when "fold" =1= 1.
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0 j~ 'n '0""
0 o 0 * ,

, o 0 * ,

, , 0 * •

a o 0 *** ,

z z 0 ** ,

z ) ,

* •

) o 0 ***** ,

) , 0 *** •

) ) z*
,

1 • 0 * •

Table 2: List of configurations for th e seven-bit models . Configura­
tions with four particles and more are obtained by du ality replacing
particles by holes and holes by particles .
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2.2 Seven-bit models: models II and ill

Actually, most of the computer simulations were done with the mode l that
includes rest particles. Table 2 lists all the configurations up to three par­
ticles; the configurations for more than three particles are obtained by du­
ality (exchange of particles and holes) from the listed configurations. For
the seven-bit mode ls, the "universal" transport coefficients are given by

Pm = 6d,p = 7d,

77 - 2p
g(p) = 12 7 -p'

c. =~,

p = 3p (1 _ ~g(p)u')
7 6

(2.11)

Model II is defined by the following collision rules:

VI f {200, 2;(;, 300, 400};

1 - 6,.
A200 (j ~ k ) = - 2-'- j , k E {1,2 ,3} ;

A,;; (j ~ k) = 1- 6;. j ,k E {l, 2};

A ( . k) _ 1 - 6;.
300 J""-'+ - - -2- j ,k E {1,2 , 3};

A300 (j ~ k) = 1 - 6;. j,k E {4,5};

A300 (j ~ k) = A,oo(k~ j) = a j E {1,2,3} k E {4,5};

A,oo(j~ k) = 6;. i ,k E {I, 2, 3};

A,oo(j ~ k) = 1 - 6;. j, k E {4,5};

A ,oo(j ~ k ) = A'oo(k~ j ) = a j E {1,2,3} k E {4,5};

representing 22 configurations giving act ive collisions: ten identical to model
I with or without rest particles as "spectator" plus twelve two-body colli­
sions changing the number of rest particles . The viscosities are given by

1 1
v = "'28;-;d'-(I- --d");;'3(:-1-_--;4""7djT.:7') 8" '

1 1
~ = 98d(1 - d)' - 28 (2.12)

Model III is defined using effective collision rules for all the possible
configurations, with the following rules:

4To use only integers, 1": is multiplied by two and i" by 4/ ..;3. Start ing from momentum
(2,0), successive "5' rotations give (1, 2), (-1, 2), (-2,0), (-1, -2), and (1, -2). In this paper,
such sets of configurations with p particles will be denoted P2'O .
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A,(l --> 1) = 1
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'II such that q, = 1;

1 - 0',A,(i --> k) = - -'- 'II such that 1 « q, < 4 , j, k E [ L,. . . ,q,};
q, -1

A"",(i --> k) = l -/;'j,k E {l,2,3};A.oo(i --> k) = 1- D;d , k E {4,5};

A"",(i --> k) = A"", (k --+ j) = OJ E {l,2,3}k E {4,5};

A,oo (i --> k) = l -/;'j,k E {l ,2,3};A,oo(i --> k) = 1-D;,j,k E {4,5};

A,oo(i --> k) = A'oo(k --> j) = 0 j E {I , 2, 3} k E {4, 5};

where 91 is the number of configurations in the ph row of table 2. With
these rules, which are self-dual, 76 configurations give active collisions . The
viscosities are given by

1 1
v = - -

28d(1 - d)(l - 8d(1- d)/7) 8'

1 1
I" = 98d(1 - d)(l - 2d(1 - d)) 28

(2.13)

2.3 E ight-bit model : model IV

We also used a mode l wit h rest particles of mass two in addit ion to the
seven particles used in mode ls II and TIL Table 2 lists all the configurations
up to four particles; the configurations for more than four part icles can
be obtained taking the dual of the listed configurations . For th e eight-bit
models, the "universal" transport coefficients are given by

2d
p=d(7+ d' + (l -d)')' Pm = 6d,

1 ( 2d) 1 - 2d
g(p) = 12 7 + d' + (1 - d)' 1- d '

p ( 5(d' + (1 - d)')' - 4d(1 - d)) ,
P = 3d - 2g{P) 7(d' + (I _ d)')' + 4d{1 - d) U .

Model IV is defined by the following collision rul es:

(2.14)

'11# {200, 2;0, 300, 3;0, 400,4;0, 500, 600};
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j , k E {2, 3, 4};

. 1- 0;.
A,oo{J -+ k) = - 2-;

A'oo(l-+ j) = 0 j E {2, 3,4};

A,~ (j -+ k) = 1- 0;. j ,k E {1, 2};

Asoo{1 -+ 1) = 1 ;
1- 0"

Asoo(j -+ k) = -2-'- j ,k E {2, 3, 4};

Asoo(j -+ k) = 1 - 0;. j, k E {5, 6};

Asoo(1 -+ j) = 0 j E {2, 3, 4, 5 , 6};

Asoo(j -+ k) = A' oo{k -+ j) = 0 j E {2, 3, 4} k E {5, 6};

A,~(j -+ k) = 1- 0;. j ,k E {1, 2};

A,~(j -+ k) = 0;. jk E {3,4};

A,~(j -+ k) = A,~ (k -+ j) = 0 j E {1, 2} k E {3,4};

A (. k) 1 - 0;. . k { }
400 J~ = - 2- J, E 1,2, 3 ;

A,oo(j -+ k ) = 1 - o;,j, k E {4,5} ;

A,oo(j -+ k) = o;,j, k E {6,7, 8};

A,oo(j -+ k) = A,oo {k -+ j) = 0

j E {1,2,3} k E {4, 5, 6, 7, 8};

A,oo(j -+ k) = A'oo {k -+ j) = 0 j E {4,5} k E {6,7, 8};

A,~ (j -+ k) = 1 - 0;. j ,k E {1, 2};

A,~(j -+ k) = 0;. j ,k E {3,4,5} ;

A,~(j -+ k) = A,~(k -+ j) = 0 j E {1, 2} k E {3,4,5};

A,oo(j -+ k ) = 0;. j,k E {1, 2, 3}; A ,oo(j -+ k) = 1-0;. j ,k E {4, 5};

A,oo (j -+ k) = o;,j,k E {6,7, 8}; A ,oo (j -+ k) = A'oo{k -+ j) = 0

j E {1, 2, 3} k E {4, 5,6, 7,8};

A,oo(j -+ k) = A'oo {k -+ j) = 0 j E {4, 5} k E {6, 7, 8};

A600 (j -+ k) = 0;. j ,k E {1, 2, 3,4};
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A 600 (i ~ k ) = 1 - OJ' j , k E {5,6};

A 600 (i ~ k) = A 600(k ~ j) = 0 j E {1,2,3,4} k E {5,6};

representing 56 configu rations giv ing collisions: 20 ident ical to model I with
or without rest particles as "spectator" ,24 two-body collisions changing the
number of rest particles of mass one with or without rest part icles of mass
two as "spectator" , an d 12 two-body collisions exchang ing the numbe r of
rest particles of mass one and two. T he viscosit ies are given by

1 1
v = 28d( d )3( " (1 d(l d) )) 81 - 1 - 1" - d2+(1 dF

2c: (1 1 5 2 1 d(l - d) ) 1 1 2
<;= d(l -d)' 16(C; - 3) +9(d2+(1 -d)' )' - 2" (2" - c, ) . (2.15)

3. Computer s im u la tions

T he prese nt work was do ne by simulat ion of the lattice gas models on an
FPS-164 us ing la t t ices of order 106 nodes with a typical speed of 106 updates
per second [5-8]. The evolut ion of the lattice gas is computed according to
a parallel itera tion in five steps.

1. T he states of the nodes of obs tacles and boundaries are saved in a
temporary storage.

2. Dur ing this second step, the collision step, the new state of each node
is computed as a funct ion of its old state accord ing to t he collision
rules.

3. The third step is use d to determine the new states of the nodes of
obstacles and boundaries which are computed as a function of the
saved states and the collis ion rul es on obstacles .

4. Duri ng the fourth step , the propagation step, the bi ts of states of each
node are propagated toward one of the neighb or nodes according to
the physical interpret at ion of the different b its .

5. This last step is use d to set the lat t ice boundary condit ions .

All the programs were wr itten in FORT RAN, using a few tricks to
t ake advantage of the arch itecture of the computer. Since t hese tricks are
int roduced to make the best use of a pipe line arch itecture, they can be
used for most of the vectorize d machines and thus will be desc ribe d in
some detail.
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3.1 Boundary con d itions on the lattice edges and o n t he ob sta­
cles

The basic boundary condit ions on the lattice edges can be pe riodic in the
two dir ections; the particles exit ing from one edge are reinjected into the
other edge in t he same dir ection. In what follows, we refer to t h is case as
per iod ic boundary condit ion.

Another situat ion, related to a wind-tunnel expe riment, cons ists in pro­
vid ing a flux of fresh particles on one side of the lat tic e and allowing an
ou tput flux on the other side.? The exact distribution of input and output
particles is der ived from equat ion (2.5) with an appropriate density and
velocity. The balance between the input and output fluxes leads to an ad­
justment of the average speed of the flow inside the "wind tunnel", wh ich
depends upon the presence of lateral bound ar ies or obstacles.

Obstacles are first decomposed into a series of cont inuous links which
approximate its geometrica l shape. At nodes which represent an obstacle,
particles are either bounced back (Ci ~ - ei) or can be reflected by the
boundary of the obstacle. T he first case corresponds to a very strict "no­
slip" con dit ion, whereas the second case is more closely relat ed to the "slip"
con dition. One could also diffuse the particles by re-emit t ing them at ran­
dom on available links , but t hat would be more complicated to imp lement.
Momentum transfer between t he gas and the obstacle can be computed
during step one, leadin g to forces experienced by the obst acle.

For the pr esent, triangu lar lattice of t he FHP latt ice gas, the natural
way to label nodes uses nonorthonormal coordinates so that la t t ices are
diamonds. As this is awkward for most sit uat ions, we have used lattices
whose shape is rectangular. This can be implemented by taking different
propagation rul es for lines of odd or even parity. On even lines, dir ections
2 and 6 imply a change of the horizontal coordinate, whereas on odd lines,
directions 3 an d 5 are assoc iated with a cha nge of the hori zon tal coord in ate.
T his is d isplayed in figure 1. This feature complicates only very slight ly
the computer program corresponding to step 4 of the simulation. However,
when a spec ialized hardware is designed , p rovision must be made for dif­
ferent propagation rules on odd and even lines as is done in the RAP -l
machine [9J. When work ing with rectan gular physical space, the number
of nodes has to be mu lt iplied by ~ to measure leng ths along the vertical
ax is.

3.2 Collision a n d propagation step s

During the secon d ste p, the post-collision state is computed using either
a look-up table or the appropriate combination of Boolean opera tors. In
the case of a look- up table, the states are coded with eight bi ts (one byte)

5More precisely, in orde r to keep the densit.y almost. const ant , particles ar e also injected
on the output side along th e links directed toward th e inside of the lat t.ice. Th e physical
meanin g of these boundary condit ions remains to be clarified.
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*.
2 3

even lines

odd lines

6 51:t4
2 3

2 3

Figure 1: Schematic representation of the six velocity directions and
of t he lattice used in t he FHP lat t ice gas : Left with 60° angles, Right
adapted to orthonormal coordinates.
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and eight no des ar e packed in each of the 64-bit words of th e FPS. During
the collision st ep, the bytes are ext racted from the word and used as an
address to fetch their new value stored in a look-up table compu ted once
at the beginning of the program. For t he six- or seven-b it models, the
eighth bit is used as a "random" bit to obtain probabilities 1/ 2 when it
is needed. This bit is initially set at random with an aver age density 1/ 2
and is compl emented each t ime a collision occurs. For the eight-bit models ,
two different look-up tables are used for th e odd and even iterations of the
whole latt ice. It was checked on the seven-b it models that this pro cedure
does not sign ificant ly bias the resul ts. Dur ing the propagation step , the
bits coding the different particles are ext ract ed from the word usin g masks
and moved as a whole , thus sav ing comput at ion steps .

When Boolean operators ar e used to code the collision rules, 64 nodes
are packed in a word and six to eight words are used to code the different
particles . The noninteger probabilities of transition are implemented using
a new collision rule at each iteration of the lattice. The min imum number
of Boolean op erat ors" needed to implement models I to III are given in
App endix B along with the basic tools we used to obtain good results
with a reasonable amount of work. The propagation step is obt ained by
the motion of a full word; thus, dur ing the collision and th e propagation
steps, 64 nodes are compute d simu ltaneously, allowing high computation
speed to be reach ed. The use of the Boolean rules needs more work than
that of the look-u p table to obtain efficient codes, but is more suited to
pipeline or vector computers; thus, we used the first solut ion for the mature
programs, while the latter was used for preliminary invest igations of the
various models.

3.3 Initialization and m easurements

Initial flows were generated by Monte-Carlo pro cedure with average popu­
lat ion N.. related to the local density and velocity by equat ion (2.5). The
use of the linear expansion restricts the available speeds to -t-,greater val­
ues giving negative or great er-than-one probabilit ies which will introduce
initial conditions far from equilibr ium . Note that we do not t ake int o ac­
count th e correct ions of the equilibrium distributions with the gradients
of the density and velocity fields, since they require the knowledge of the
viscosit ies and are considered along with the nonlin ear terms as correct ions
to the leading orders. Macroscopic quantities are obtained by averaging the
N il: according to equation (2.1) over rectangular regions with shapes and
sizes adapted to the flow under study. For nonlinear flow simulat ions, we
always used the momentum instead of the velocity, since the momentum is

6We have used only the Boolean operators available on a general purpose computer:
and, or , exclusive-or, and complement. More compact rules can cer tainly be obtained
on computers with mor e Boolean operators as the Connection Machine [101. In addition,
minimum must be taken as the lowest numb er of operators we found; some operat ors may
probably be saved working harder than we did.
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, " * •

, ..****** ,

, aro **** •
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*
s
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*
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• ot o
-y- y ****** ,
r. 1\

· " *X *** •

· " ** •

• • •* •

Table 3: List of configurations for the eight-bit model . Configurations
with five particles and more are obtained by duality replacing part icles
by holes and holes by particles .
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the relevan t var iable in the incompress ible steady cases 13,I I J. Moreover,
it naturally comes out of th e simulations.

4. E quilibrium distrib u t ion s

T heoretically, the equilibrium distributions of the local averaged dens it ies
Nil: in direct ion i are given by Fermi-Dirac functions depending upon the
dens ity p and the average velocity u . This property was checked by the
simulation of the time evolution of a 512 x 256 latt ice with per iodic bo und­
ary condit ions in both direct ions . The first 24 time steps were discarded to
remove the transient behavior. We checked that this number of t ime steps
was larger than the duration of the t ransient . We then measured t he av­
erage pop ulatio ns for each direction averaged on the next eight t ime steps .
These simulations were done on model II for densities per moving cell 0.2
and 0.5 for velocities from -6/7../3 to 6/ 7../3 and for velocities along the
bisector of two c. . In th is case, the average dens ities of rest particles and
par ticl es moving in the directions perpendicular to the velocity are equal.
T he densi ties of particles moving on symmetric direct ions are also equal;
thus, there are only three independent unknowns which can be obtained
exact ly from the solut ion of a third-degree equat ion [12J. Figure 2 shows
the equilibrium distributions as a function of the velocity for the different
populations along with the theoretic al curves obtained from the exac t so­
lution. These distributions were normalized by the average population at
rest . Clearly, the results of the simu lations agree very well with the pre­
dicted Fermi-Dirac distributions with an error smaller than one percent.
Note that for d = 0.5, the nonlinearity vani shes du e to the Fermi-Dirac
distributions and the particular orientation of the velocit y with respect to
the lattice.

Another test was performed with model IV in which the population of
rest particl es of mass two depends upon the population of moving particles
in a nonlinear way, given by equat ion (2.3) . Figure 3 shows the variation
of d1 as a functi on of d toge ther with its value obtained by simulations.

5. Linear hydrodynamics

The velocity of sound c, and the kinemat ic shea r and bulk viscosities 11

and ~ of the lat tice gas models describ ed above have been meas ured using
the re laxation of an initial periodic perturbation u (r , 0) of the velocity
field (131: u(r, 0) = (u ll + u~) cos(k . r ), where k is the wave vector of
the perturbation and u ll and u i, are the velocity components parallel and
perpend icular to the wave vector (141.

The relaxation in time of the velocity u (r1t) and of the density pertur­
bat ion 6p(r , I) are given by

u (r, l ) =

(u ll cos(wl + '1') exp( - k' (v + , )1/2) + u~ exp(- k' v I)) cos(k . r ), (5.1)
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Figure 2: Variation of the dens ity Ni versus velocity. Closed triangles
correspond to angle 600 between u and Ci , apex correspond to angle
900 betwee n u and Cj. Solid lines are obtained theoretically (a) at a
mean density of 0.2, (b) at a mean density of 0.5.
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Figure 3: Comparison of theoretical and measured values of the den­
sity of rest particles versus densi ty of moving particles for the eight- bit
model.

8p(r , t) = (pu ll /c) sin(wt ) exp( - k' (v + ~)t/2) sin(k . r) , (5.2)

with w = c,k, tan \0 = k(v + ~ ) /2c•.
Starting from the initial conditions, at each time step, the momentum

and the density are averaged along lines perpendicular to the wave vector.
The result is Fourier transformed to get the components of the momentum
and density corresponding to k. From the relaxation curves, c, 1I , and ~

are measured by least squares fits of equations (5.1) and (5.2) to the time
evolution of u.L(k), ulI(k), and p(k).

The measured sound velocit ies are isotropic and agree with theoretical
values 1/V2 for model I and j3fi for models II and m. Figure 4 shows
the dependence of the speed of sound with. the density per cell for the
eight-bit model, compared to the theoretical given by equation (2.14) . The
measured values of the viscosities are summarized in figures 5a to d, along
with the theoretical curves computed from equations (2.10), (2.12), (2.13),
and (2.15) . These measurements were obtained on 256 x 512 lat tic es with
periodic boundary conditions and for wavelength between 30 and 80 nodes,
with no observable effects of the wave numbers on the viscosities over a
factor ten on the relaxation times. The size of the symbo ls corresponds
roughly to the error bars. Without rest particles, the experimenta l values
of v are above the theoretical curve for the measurements corresponding to
sound waves, while those corresponding to shear waves are below. Thus,
the kinematic bulk viscos ity ~ is found negative, which is an unphysical
result. At present , no convincing explanation has been found for this ef­
fect, which may be related to the fact that there are few triple symmetric
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Fig ure 4: Theoretical and experimental values of the speed of sound
for the eight-bit model.

collisions needed to remove a spurious invariant, leading to very long relax­
ation times of the associated microscopic quantity in comparison w it h t he
hydrodynamics t ime scales. T he meas ured viscosities ag ree with theoretical
pred ict ions for models II, III , and N . Thus, the presence of rest part icles
ap parently improves the beh avior of the lattice gas wh ile decreas ing the
viscosity significantly, leading to h igher Reynolds numbers [15]. Moreover,
these results show th at the Boltzmann approximat ion is well ver ified, even
for high densities.

In many simulat ions, we have considered several disturbances at t he
same time, taking as initial conditions :

3

L (u,"cosk,r + ullcos k,r)
1=1

and found essentially no coupling between these var ious waves. Further­
more, we foun d t hat the acoustic propert ies are par ticularly insensit ive to
th e amplitude of waves.

A uniform motion of th e fluid, at speed u, advects sound or shear waves
at speed g(p)u, as discussed in reference 16.

6. Nonlinear flow sim ulat ion s

We now present a few examples of flows computed by the lat tice gas
method. These flows were chosen in order to perform quantit ative com-
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Figure 5: Th eoretical shear (solid lines) and bulk (dashed lines) re­
duced viscosit ies as a function of th e reduced density, compared with
the resul ts of numerical simulations for different lat tice gas models:
(a) original FHP model, (b) model II with rest particles and limited
collision rules, (c) model III with rest par ticles and all poss ible colli­
sions , and (d) eight-bit model IV.
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parisons with results obtained either in real experiments or using standard
solutions of the Navier-Stokes equations. Three problems are considered
here:

1. the formation of boundary layers and the deve lopment of a Poiseuille
flow in a two-dimensional duct [17],

2. the flow after a backward facing step, and

3. the development of eddies behind an impulsively started flat plate.

6 .1 Two-dimensional duct

We consider a 3072 x 512 lattice, taking the longer side as the horizontal
direct ion. The lat t ice is in it ially filled with a gas of density 1.54 (d = 0.22)
and uniform velocity 0.30 along the horizontal direction. Collision rules
correspond to model II. The system is periodic in the vertica l direction.
Wind-tunnel conditions are considered, and one plate with st ick conditions
is set on the axis of the channel, starting from posit ion 300. As we are
interested in the transverse distribution of the horizontal component of the
particle flux J·z, we perform averages of i, over boxes of size 48 x L

After a large enough number of iterations , the flow reaches steady st ate,
as the Reyno lds number in the channel is much smaller than that corre­
sponding to the appearance of turbulence. We first verify that on the plate
jz = 0, as it shou ld for the stick condition. Furthermore, the width of the
boundary layer increases as ..;x if z the distanc e to the inlet of the duct .
Very close to the inlet , we find good agreement between the profi le of the
particle flux and that determined by the standard solut ion of Blasius [181
for laminar boundary layers. When we go down the channel , each bound­
ary layer is affected by the presence of the other and leads at first to a
compression of the boundary layers and eventually to the formation of a
parabolic profile, known as Poiseu ille flow.

The complete description of such an experimental situ ation has been
performed by Slicht ing 1191. We have followed his solu t ion by calculating the
profile of the flow versus distance to the inlet of the duct using an iterative
method to solve the Navier-Stokes equations . The velocity of the incoming
fluid is measured in the ste ady-state regime, and the viscosity is measured
in a separate experiment performed at the same density; thus, there is no
adjust able parameter for the comparison of theory and experimenta l data
obtained with the lattice gas. Figure 6 shows successive profiles of the
horizonta l component of the particle flux for different values of the relative
distance to the inlet of the duct z = »[u» . Very good agreement between
theory and experiment is obtained provided one uses veff = v/g (p).

6 .2 Backward facing step

Another well-known flow situation is that of a two-dimensional backward
facing step at low Reyno lds number. This situation was considered as a
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Figure 6: Velocity component parallel to a plate set in t he middle of
a channel at relative distance from the apex of the plate (a) 0.525 ,
(b) 1.67, and (c) 5.74. The dots are obtained by the lattice gas simu­
lations; the solid lines are calculated using the Slichting method.
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T
Fig ure 7: P lots of equal values of the component of t he flux j z par­
allel to th e axis of the channel cor responding to the bac kward facing
experiment. The dash-dot cu rve corresponds to jz = o. The arrow
points the location of the reat tachment point determined in a real
experiment.

test case for a GAMM workshop [201on numerica l methods to solve Navler­
Stokes equat ions. Here, we have used a channel of size 4608 x 512 with an
inlet part of length 512 and width 256. T he lateral boundar ies of the
cha nnel and of the backward facing step are set with the st ick condition.
At the in let, we use the wind- tunnel situation with inj ection of particles
dist ribu ted with uniform dens ity and a parabo lic velocity pro file. The ex­
pe riments that have been performed correspond to Reynolds numbers of
50, 100, and 150. Adj ust ment of the Reynolds number is done either by
changing the velocity or the density (due to dependence of g(p) versus pl.

The system reaches steady state after a large number of t ime steps.
We the n determine t he horizontal component of the particle flux j% and
plot se ries of eq ual values of j%. We find, as observed experimentally, t hat
the re is a recircul ation zone behind the step an d determine the loca t ion
of the reat tachment point . F igure 7 shows curves of equal values of j%,
with the particular va lue J"% = 0 indicated by a dash ed line" This a llows
us to deter mine the reat t achment point . F igure 7 is shown for a Reynolds
number of 150 and indi cates the experimentally determined location of that
point . The de ns ity of the gas was determined and found to vary by less
than 3 percent over the entire lattice, indicating that the flow is essent ia lly
incompress ible . As seen in figure 7, the lat t ice gas behaves like a real one.
Simi lar ag reement is obtained for a Reynolds number of 50. Here again,
it was necessary to use an effective value Veff = vjg(p) of the kinematic
viscos it y in order to successfully compare the lat tice gas and a rea l system.

6.3 Impulsiv ely start e d fla t plate

T his is the simplest case of interact ion of a lattice gas flow with an obstacl e.
He re, we consider a 2816 x 1024 latti ce with periodi c condit ions along y
and t he wind-tun ne l condit ion at the left and righ t edges . Ini t ially, the
lattice is filled with a gas of un ifor m density and speed. Her e we take
d = 0.30 , (p = 2.1), and v = 0.428. The collision ru les correspond to mode l
III, so that the Mach number is 0.654 and the effective Reynolds number is
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Figure 8: Map of the flux of particles in a 886.8 X 2048 channel 3000
time steps after t he introd uction of a fiat plate of real size 216.5. The
distance between th e back of the plate and th e point where j~ = 0 on
the axis of t he channel is de fined as the size of t he wake.

approximatively 300. The value of d is close to th at of the minimum of the
effect ive kinematic viscosity Velf = V/g (P), so th at small compressibility
effects should not be important .

Now, at t = 0, we inser t a flat plate of real width w = 216.5 perpen­
dicular to the input flow. It is set with stick conditions. The presence of
the plate first produces shock waves due to the reflection of particles at t he
surface of the plate, then eddies start to develop symmetr ically on either
edges of the plate, as shown in figure 8.

Here, we present detailed data concerning the location of the wake,
defined as t he po int where the horizontal component of the particle flux J~

is 0 for the symmetry ax is of t he problem. If s is the distance from this
po int to the plate, we consider the relative size of the wake s j w. We then
measure s/w as a funct ion of a reduced time 0 = vt /w , where v is the
incoming velocity and t the real t ime. This choice of variables corresponds
to that used in the analysis of real expe riments performed in water by
Tan eda and Ronji [21J. These au thors found that

s / w = 0.S9(vt /w) 2f3

independently of the Reyn olds number Re, when IS < Re < llOO.
We show in figure 9 the "experimental" value of sjw determi ned for

the lattice gas flow versus (vt /w) ' /' for a Mach number equal to 0.327
(v = 0.214). We find a linear relationsh ip, with a slope of 0.46.

To compare our value of the slope to that of a real experiment, we have
again to consider th at a lattice gas follows the Navier-Stokes equation ,
provided the velocity is multiplied by a factor g(p). This means we have to
compare the slope measured with th e lat t ice gas (0.46) with a renormalized
slope 0.S9g2/ . = 0.423 in the present case .

Again, we reach almost quantit ati ve agreement between a lattice gas
flow and a real experiment, provided we use a properly renormalized value
of the velocity.

When time reaches sufficiently large values, it is foun d that the sym­
metry of the flow is broken and vor tex shedding by the plate occurs. This
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Figure 9: Relative size of the wake behind an impu lsively started flat
plate s/w as a function of (vt j w)2jS.

leads to t he format ion of a two-dimensional Von Karman street, an example
of which is shown in figure 10.

In another experiment, performed at a la rger inp ut speed, we have de­
termined the period of the vortex shedding. The va lue corresponds to a
Strouhal number of approximately 0.20 , to be compared to a measured
va lue of 0.16 for a truly incompressible flow at roughly the same Reynolds
number.

Detailed comparisons between lattice gas flows and real flows like those
presented here should be performed at higher velocities to find out which
effects are produced by a breakdown of the incompressibility condit ions.

7 . Conclusion

Quantitative agreement be tween t heory and simu lation has been demo n­
strated in both the linear and nonlinear regimes for moderate Reynolds
numbers , provided a properly renormalized value of the fluid velocity (v -+

g(p)v) is used in the non linear advection t erm of the Navier-Stokes equa­
tion. It should be noted t hat the introduction of obstacles into the flow is
particular ly simple and represents , for the cases studied, a computational
overhead of a few percent . The present models are limited to Reynolds
numbers of ord er of 103 and incompressible flows. Moreover, sinc e local
equilibrium is a function of p and pu only, such models cannot simu late
thermal phenomena. However, more complicated mod els der ived from the
FHP model [22-24J may overcome most of these limitations in a near future.
In this case , lattice gas simu lations will be a new too l for exp erimental work
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Figure 10: Similar to figure 8, but after 40000 it erations showing the
formation of a Karman street. To emphas ize th e vortices, t he mean
momentum has been subtracted from the local ones.

in hydrodynamics, with the main advantage of being inherently stable.
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A p p endix A. Boltzmann a p p r ox imat ion with r es t p artiCles

In this appendix, we will indicate how the theoretical results of reference
2 must be modified to handle the cases wit h part icles with zero velocity
and different masses. These modificat ions will be given for th e Boltzmann
approximat ion only.

The macroscopic quantities dens ity, P, and momentum, pu , are related
to the local average popul ations N iJc of particles with mass m Jc and velocity
Ci , by

p = L: mJcNi Jc i
i ,Jc

pu = L: m Jc NiJc ci.
i,Jc

(A.I)

The demonstrat ion used in Appendix C of reference 3 proves that , at
equilibrium and for uniform density and velocity, {log(Nik ) - log(1 - N,.)}
is a collision invariant if the collisions verify the semi-detailed balance. The
conclusion is now

IN,. = )) '1 + exp(m.(h + q ' c,
(A.2)

where h and q are nonlinear fun ctions of p and u . Wh en u = 0, the
average density is the sa me for all the particles with same mass mJc and
will be denoted dJc . Taking the mass of the lightest particles as unit mass
and do = d, one gets
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dm ,

d, = dm, + (1 _ d)m, (A.3)

The general expansion of the Fermi-D irac distribut ions around small
u is quite complicated , and we will restrict it to the case of bm moving
part icles with unit mass and velocity c and b; rest particles with mass
rnk = 2k , k E {O, . . . , br - I } . The dens ity of mov ing and rest particles, Pm
and Pr respectively, can be defined as

Let

6, -1

Pm = bmd and Pr = L m,l;:dk ,
,1;:=0

with P = Pm + Pr (AA)

, bm d(1 - d)c'
c, = D(b md(1 _ d) + L:~::O' m;d, (1 - d, ))

(A.5)

For small u , th e expansion of equatio n (A.2) up to second order gives in D
dimens ions :

(A.5)

where

if ito
if i = 0

(A.7)
D' p' (1 - 2d)

an d G(p) = 4 ' ( d) '2c Pm 1 -

When there are dens ity and veloc ity gradients, th is equilibrium dist ri­
bution is mod ified by first-order correction in gradients:

where

1 6, -1

X = b L: m,x,
m k= O

(A.8)

(A.9)

Using the same Chapman-Enskog expans ion as in references 2, 3, and
25 up to second-order terms in velocity and gradients, one gets
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a,p + div(pu) = 0

a,(pua) + ap(g(p)puaup) =

D-2
- aaP(P, u') + ap(vap(pua)) + aa((rt:: + , )d iv(pu)),

with

2 Pm2 C~ D C
2
),P(p,U ) = -c - pg(p)- (I + - - - u

D c2 2 2c;
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(A.lO)

(A.H )

and where the kinematic shear and bulk viscosities, v and ~, are given by

v =
bm c4 c2

D(D + 2),p - D(D + 2)

and the speed of sound is C6, since:

(ap) bm d(1 - d)c' ,
ap . =0 = D (bmd(1 - d) + l:t~ol mid, (1 _ d, )) = c•.

(A.13)

Since the density is no longer linearly relate d to the density per cell d,
the perturbat ion N,~) must be taken as dk(l - dk)N,:(l ),

,p = d(l - d),p',

X =d(l -d)X'

and , in the Boltzmann approximation, N;(l) is related to N? by

a N " aN"" , . N·! l)tl / + Cia l a / = LJ J1/J J
J

where the linearized collision matrix is given by

(A.14)

(A.15)

It is more convenient to rewrite the matrix IAiJ] as

(A.17)
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where [Rkd and [M;i ] are square submatrices with respect ively b,. and bm

rows, IC.;! is a submatrix with b, rows of bm identical columns IC.!, and
IC;;! is the t ransposed of IC.;]. Since [mIl is an eigenvector of l;liJJwith a
zero eigenvalue, one must have

bmC. + L m,J'., = 0,
L m,C, + L M,; = 0, ;

Vk

(A.1S)

Then,1/;- and xZ: are obtained by the solubility condition of the following
linear system:

Dc: d. (l - d.) ( )
bmc' m. d(l _ d) a" p = bmC. X · - L:, R.,xi a"p

D c'
bmc' ((c; - D)a"p + Q,.~a,.(pU~)) = - L:,(C,(m,X' + xillallP

+ L:; M,;Q;.~",·al.(pU~)
(A.19)

Using equation (A. 1S), this condition gives

(A.20)

(A .21)

Thus, ,p. is simply related to the eigenvalue Aof the linearized collision
matrix Aj] corresponding to the eigenvector [c;zciul:

(A.22)

but the X; are given by the solution of the linear sys tem of b,. equat ions
given by equation (A.20) . We will only sket ch how t he values of • were
obtained for equations (2.12) , (2.13), an d (2.15).

The following resu lts are valid when m. = 2' and when t he collisions
are such that they chang e the total mass of rest part icles only by one mass
unit . In this case, the submatrix IR.,] and C. can be wr itten
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b. -l

[R,,] = bm L an[Rl:,'lj
n= O

b. -l

C l: = a l: - L an
n=l: +l

wit h:

b. -n-l tim.e' n tim.e"
~ ~o 0 0 0 0
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(A.23)

o
o
o

o 0 0 . .. 0
o - 1 1 1
o 1 - 1 - 1

(A.24)

o

Equati on (A.20) becomes

o 1 -1 - 1

' -1
bm( X' + X. - L Xi )a,

1=0
b.- l n- l

- bm L (X' + X~ - L xi) an
n=k +l 1= 0

(A.25)

since the solution of the linear syst em

' - 1
Y' -LY, =A,

1=0

is given by

1 l: k- I
Y, = - (A, + L 2 A,) .

2 l= O

Equation (A.25) gives:

' -1 D' E
• ~. C" k X.

X l: - L- XI = --, -- -
1=0 2bmc m ka k

with

E _ ~ ( ,d,(1 -d,) '~' , d,(l- d, ))
, - b

m
m, d(l _ d) + 6. m, d(l - d) ,

then

(A.26)

(A.27)
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Dc' E • E. - . ( • + " 2. - 1 I) X.X. - -- -- L. - - - m.
4bm c2 mka,i; 1=0 m,al

(A.28)

(A.29)

and, finally,

Dc' 1 c2 1 ~. -l E 2 1 c2

>= d(l - d)--f( - (- , - 1+ -)' + L ----'-,-) - -(- - c~).
4c ao DC8 bm 1::= 1 akmk 2 D

(A.30)

Thus, for D = 2, c2 = 1, bm. = 6, and b,. = 1 and 2, equation (A.3D)
respe ct ive ly gives

an d

d(l - d) 1
>= 98"0 - 28' (A.31)

.( 1 1 5 , 1 d;(l -dl ) ' ) 1 1 ,>= d(l- d)c -(- - - ) + - - (- - c) . (A.32)
• 16"0 c; 3 9al d'(1 - d)' 2 2 •

Appendix B. Boolean laws

The basic concept used to look for minimal set of Boolean functio ns to
implement the collision rules is a derivat ion of the algorithm used by Hardy,
de Pazzis, an d Pomeau [261 for t he four-bit model on a square lattice. A
basic collision operator can be written

whe re a . b, a + b, a EEl b, and b correspond resp ect ively to the and , OT,

exclus ive-or, and not operators . The new states are then obtained by

(B.2)

Th e computation of the new configuration needs only nine Boolean op­
erators. This basic algorithm can be extended to the triangu lar case by the
definition of several collision operators. Each collis ion exchanges at least
two particles and two holes, when this exchange does not change the total
momentum; thus, we can define four-bit collisions operators similar to the
one given in equ ation (B.1).
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Appendix B.l Model I
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In this model, the basic collision operators give the possibility of head-on
collisions "'fi and of triple symmetric collisions 6:

t, = aj E9 ~+1 i = {I" , " 6}

Ui t,·ti+3 i ={1,2,3}

7. = u•. (a'+l Ell a.+3) i = {1,2,3}
(B.3)

Note that these operators are unchanged by duality, and for two- or
four-body collisions, two of them are non-zero. Thus , for a model with
all the possible collisions, the collision operators must choose between the
different possible collisions using two different sets of collision operators:

Ci = 6 +i, + ii+2 ' '"l'i+l , i = { 1,2,3}

or

c, = 6 + "'fi+2 + "'fi ' 'li+l ' i = { I , 2,3}

and the new configuration is given by

a, = c, E9 Q.j,

aHS = c, E9 a H 3,

• = {1,2, 3}

(B.4)

(B.5)

(B.6)

for a total of 35 elementary Boolean operators.
For model I, the collision operators defined in equation (B.4) must be

modified to allow collisions only for two-body configurations. This requires
checking the absence of particles in the two directions not used to define
the ru:

or

C.=6 + 7, ·(a;+, + ai+5)' i = {1, 2,3} (B.7)

(B.8)

The algorithm to compute the collision step for mode l I, uses equat ions
(B.3), (B.7) or (B.8) and (B.6), for a tot al of 35 element ary op erators.
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Appendix B.2 Model ill

The algorithm for t he model III can be easily derived for the algori thm for
the six-bit model with all the possible collisions. A new step must be added
to equation (B.3) to handle t he case of rest particles:

<; = t, . tH'· (ao al <1;+ ,) i = {I"" ,6} (B.9)

The choice between two possible collisions is now done by the collision
operator Co of the rest particles:

Co 5 + ("11 + « 1 al <,)) . ("I, + « , al <, )) . ("I, + (es al <6)),
Ci 8 + Co . (-Y, + '1i +2 . "l'i+d + Co . (f'i+ 5 + £, .t i+2 + Ei+l . Ei+ 3)

i ={1, 2,3},

Ci+3 6 +Co' bi + "Yi+2 . "Yi+I ) + CO' (fi+2 + f i+3 ' fi+5 + fiH ' E, )

i = {1, 2, 3}

(B.1O)

or

Co 5 + ("11 + [ea al <,)) . ("I, + [es all.)) . ("I, + « 1al <,)),
Ci = 8 + Co ' bi+2+ '1i . '1i+l) + Co' ( f i+1 + £i ' fi+4 + f iH · l i +3 )

i = {1, 2,3},

Ci+3 = S + Co ' b i+2 + "t.c : "Yi+I) + CO ' (£H 4 + fi+3 ' liH + £i+2 · l i )

i = {1, 2, 3}.
(B.11)

The new configurations are computed using equation (B .5) and

no = Co al ao. (B.12)

Thus, the algorithm for the modellII uses equation s (B.3) , (B.9), (8.10),
or (B.11) , (B.6) , and (B.12), for a total of 103 elementary Boolean ope ra tors,'
if f i' £i' fi+-4 and 0 + Co'hi + 7iH . i i+l) are computed only once.

Appendix B.3 Model II

The algorithm for the model n is slightly different of the previous one, since
many possible configurations must be removed.

t , = eli E9 a;+1, Ui = t i ' ~H

Vi = (ti . t i + S) . Ui+l . Ui+ (

i = {I" " ,6}
i = {1,2,3} (B.13)

The choice between head-on collisions is done by

"Two additional operat ors can be saved in equation (B.9) using ao $ a2 for i = 1,3 and
ao$ 43 fori=2,4.
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i= {1,2,3} (B.14)

or

i = {1,2,3} (B.1S)

and 6 is computed using only two and operators (the quant ities inside
parentheses being computed during (B.13) step) by

6 = (I, . t.) . (t, . t,) . (Is . t.)

<; = t; ·t;+5 ·(ao Ell<1;+1) ·ii;+2 i ={1, .. · , 6}

The collision operators c, are given by

Co = £1 + £2 + £S + f-t + £5 + £6

c; = (6 +'1;)+<; +<;+1 +<;+5 i ={1,2,3}

Ci+ 3 = (6 +/i) + £i+S +fH-t+ f i+2 i={1,Z ,3}

(B.16)

(B.17)

The new configurations are computed us ing equations (B.6) and (B.12) .
Thus, the algorithm for the model II uses equat ions (B.13), (B.14) , or
(B.1S), (B.16), (B.17), (B.6), and (B.12), for a total of 82 elementary
Boolean operators, if some or operations are computed only once in equa­
ti on (B.17) .
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