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Abstract. We present results of numerical simulations of the Frisch,
Hasslacher, and Pomeau lattice gas model and of some of its variants.
Equilibrium distributions and several linear and nonlinear hydrody-
namics flows are presented. We show that interesting phenomena can
be studied with this class of models, even for lattices of limited sizes.

1. Introduction

Since Frisch, Hasslacher, and Pomeau [1] have shown that particles moving
on a triangular lattice with very simple collisions on the nodes of the lattice
obey the Navier-Stokes equation, the use of lattice gas models to study
hydrodynamics has received considerable interest during the last two years
[2]. However, the Navier-Stokes equation is recovered only in the limit
of large systems and for incompressible flows. More theoretical analysis
remains to be done to bound the errors of the lattice gas numerical scheme
for finite lattice sizes and velocities. At present, some partial answers to
this question can be obtained by numerical simulations of the dynamical
behavior of the triangular lattice gases and by comparison of these results
with classical hydrodynamics.

In section 2, we will describe precisely the models we have studied and
recall briefly their theoretical properties obtained with the Boltzmann ap-
proximation [2,3]. Section 3 will be devoted to a detailed description of how
these models can be simulated on general-purpose computers. In section
4, numerical evidence of the Fermi-Dirac distribution for equilibrium will
be presented. The measurement of the transport coefficients will be given
in section 5. Finally, we will report in section 6 some examples of non-
linear flows either for stationary or nonstationary situations for moderate
Reynolds numbers.

© 1987 Complex Systems Publications, Inc.
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2. The models

We consider particles moving on a triangular lattice with unit velocity c;
in direction ¢ between a node and one of its six neighbors (i = 1,...,6). At
each time step, particles incoming on a node interact together according
to collision laws assumed to conserve the number of particles and the total
linear momentum on the node. The particles then propagate according to
their new velocity. In addition, there is an exclusion principle such that no
two particles with the same velocity may occupy the same node at the same
time (0 or 1 particle per cell, as defined in reference 2. Thus, each node of
the lattice can be described by a six-bit word whose ones represent particles
moving with the velocities associated with their bit positions within the
word.

We have also used variants of these six-bit models which allow additional
particles with zero velocity at each site (¢ = 0 for notational purposes).
Thus, we can introduce seven-bit models with at most one “rest particle”
per lattice node, or eight-bit models with up to three rest particles per
node.! In the eight-bit models, two bits are used to code the presence
of rest particles, one for mass-one particles and one for a new kind of rest
particle of mass two, equivalent to two rest particles of mass one. To handle
the case of particles with zero velocity and different masses, the theoretical
results of reference 2 need some modifications, given in Appendix A. Here,
we will give the general results for the case of b,, moving particles with
unit mass and b, rest particles with mass m; = 2¥,k € {0,...,b, — 1}. The
macroscopic quantities: density p and momentum pu, are related to the
local average populations N of particles with mass 2* and velocity ¢;, by

p=2_2" Ny ;pu=>)_2"Nyc;. (2.1)
ik ik
These populations are given by the following Fermi-Dirac distributions

1

ST hTa-c)) (22)

Ny

where h and q are nonlinear functions of p and u. When u = 0, the
average density is the same for all the particles with same mass 2* and will
be denoted di; taking the mass of the lightest particles as unit mass and
dy = d, one gets

dﬂh

SFTa-OF (2:8)

d

Thus, when particles with mass greater than one are added, the density
is related by a nonlinear law to the average density of particles of mass one,

IThese particles may be considered to have an internal energy to satisfy energy con-
servation which is undistinguishable from mass conservation.
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which will be called “density per cell” in what follows, as was done for the
case where all the particles have the same mass. This nonlinear relation
implies that all the expansions around equilibrium cannot take the simple
expressions used in reference 2. The density of moving and rest particles,
Pm and p, respectively, can be defined as

|
Pm=bnd and p, = > 2%, with p=pn+p; (2.4)

k=0

For small u, the expansion of (2.2) up to first order gives

2
NZF d(1+ p—pc,- -u),

"

N = d. (2.5)

The speed of sound is given by
2 b, d(1 — d)

% T 2 (bmd(l — d) + S 4%y (1 — dy))

(2.6)

and, up to second-order terms in velocity and gradients, the lattice gas
dynamics is described by?

8¢p + div(pu) =0

Ot(puq) + 9p(g(p)puaus) =

8.P(p,u?) + 95(rds(pua)) + 8a(c¢div(pu)) (2.7)
with
Wt 2y _ Pm _ P 2 _ )2
g9(p) = T b »Pleyuf) = =5 = Sa(p) (e — 1)u’,
11
a.nd V= —a — g (2.8)

where the kinematic shear viscosity v is related to the eigenvalue A of the
linearized collision matrix [A;s] corresponding to the eigenvector [c;zciy],
and the kinematic bulk viscosity ¢ is related in a complicated way to [A;s],
as shown in Appendix A.2

2@Greek and Roman indices refer respectively to components, and velocity labels and
the summations over repeated Greek indices are implicit.
3(Capital Roman indices I and J refer to double lowercase roman indices ik and jl.
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2.1 Six-bit model: model I

Table 1 gives all the possible configurations of the six-bit models, listing
only the cases such that j. > j, > 0 [4]. The first three columns give the
number of particles and the total momentum.* The fourth column shows
the different configurations, the legal collisions exchanging configurations
appearing within the same row, and the last column gives the number of
different configurations obtained by the application of the symmetry group.
To avoid bit representation of the collision probabilities A(s — s') between
states sands', we have chosen to write this probability A;(j — k), where I is
an index representing the number of particles, and the total momentum as it
is given in the three first columns of table 1 and j and k are the positions of
configurations in the rows of this table. The legal collision rules exclude the
exchange of configurations belonging to different rows of the configuration
table, and in the case of only one configuration, A;(1 — 1) = 1. With this
notation, the semi-detailed balance is written:

ZA!(f—"’k) =Zt:AI(J-—Pk) =1 VI

The original FHP (model I) model uses only the collision rules exchang-
ing the configurations within rows 3 and 6:

Ar(f — k) = i VI # {200, 300};

6:]

. 1-—- ;
Aﬁoﬂ(.? - k) = s J!k € {1$2a3};

Asm(j — k) =1- 6,1,- J,k (S {1,2}.

These collision rules: three two-body head-on collisions and two sym-
metric three-body collisions, changes five configurations among the 64 possi-
ble ones. They are the minimal set of rules to prevent spurious conservation
laws.

For this model, the transport coefficients are given by

1
=m=6d: s T =y
P By

o) =(p—3)/(p—6), P=2(1-g(p)u?) (2.9)

1
T 12d(1 - d)®

v -5 =0 (2.10)
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Table 1: List of configurations for the six-bit FHP model. Column
1 gives the number of particles, column 2 gives 27, column 3 gives
45,/ /3, and the last column gives the number of equivalent collisions
that can be obtained by successive § rotations when “fold” # 1.
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Table 2: List of configurations for the seven-bit models. Configura-
tions with four particles and more are obtained by duality replacing
particles by holes and holes by particles.
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2.2 Seven-bit models: models II and III

Actually, most of the computer simulations were done with the model that
includes rest particles. Table 2 lists all the configurations up to three par-
ticles; the configurations for more than three particles are obtained by du-
ality (exchange of particles and holes) from the listed configurations. For
the seven-bit models, the “universal” transport coefficients are given by

3
p=17Td, pm = 6d , c,=\/;,

T7T—2p

P =220 290 (2.11)

Model II is defined by the following collision rules:
A7 — k) = ik VI # {200, 2;31 300, 400};

Awalj = 1) = T2

5, ke{1,2,3}

Apg(§ — k) =1-6; 5,k €{1,2};

1-—45;
Asoo(y — k) = 2 =

5,ke{1,2,3}

Aspo(s — k) =1—6u 3,k € {4,5};

Asco(j — k) = Aswo(k — j) =0 j€{1,2,3} ke{4,5}

Ao = k) =6 j,k €{1,2,3};

Aswo(f = k) =1—6; 7,k € {4,5};

Agpo(7 = k) = Asoo(k — 7) =0 j€{1,2,38} ke{4,5}
representing 22 configurations giving active collisions: ten identical to model

I with or without rest particles as “spectator” plus twelve two-body colli-
sions changing the number of rest particles. The viscosities are given by

_ 1 _1 e . NG
T 28d(1—-dpP(1—4d/7) 8’ S o8d1—d)f 28

v (2.12)

Model III is defined using effective collision rules for all the possible
configurations, with the following rules:

4To use only integers, 7, is multiplied by two and j, by 4/\/5 Starting from momentum
(2,0), successive I rotations give (1, 2), (-1, 2), (-2, 0), (-1, -2), and (1, -2). In this paper,
such sets of configurations with p particles will be denoted pag.
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Afl—=1)=1 VI such that ¢; = 1;

3 1-6; .
A7 — k)= q;_—Jlk-VI such that 1<g¢r<4,5,ke{l,---,ar}h;

L
Asoo(s = K) = T2,k € {1,2,3); Asools — ) = 1=k € {4,5);

A300(J. - k) = Asno(k - .7) =0j¢ {1a2!3} ke {4a5}§

1—6; . ’ 2
2 i k€ {1,2,3); Auo(j — k) = 1-8;15, k € {4,5};

Ago(f — k) =

A(oo(] — k) — A“)o(k — ]) = OJ & {1,2,3} k (S {4, 5},

where g is the number of configurations in the I'*" row of table 2. With
these rules, which are self-dual, 76 configurations give active collisions. The
viscosities are given by

- 4 §

"~ 28d(1 —d)(1—8d(1—d)/7)

B 1 1
$=98d(1-d)(1—2d(1—d)) 28"

1
v _E)

(2.13)

2.3 Eight-bit model: model IV

We also used a model with rest particles of mass two in addition to the
seven particles used in models II and III. Table 2 lists all the configurations
up to four particles; the configurations for more than four particles can
be obtained taking the dual of the listed configurations. For the eight-bit
models, the “universal” transport coefficients are given by

2d

P=d(7+m)s Pm = 6d,

B 3(d? + (1 — d)?)?
“TNT(@+ (1—d)?)? +4d(1 —d)°

1 2d  \1-2d
= —|T
9(e) = 55 +d’~'+(1~d)=) 1-d°

(2.14)

5(d? + (1 — d)?)* —4d(1 — d))uz.

p
P=3d- EQ(P)(T(dz +(1—d)?)? + 4d(1 — d)

Model IV is defined by the following collision rules:

A7 = k) =8 VI # {200, 255, 300,35, 400,4,5, 500, 600};
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; 1-—6;
Ago(1l = 1) =1; Ase(f — k) = _‘2,—Jki

.7'1 ke {2’ 3=4}; Azoo(l =* j) =0 J € {2a 314};

Apo (G — k) =1-6 5 ke{l,2}

1—5,*
2

Asgoj — k) =1—64 j, ke {5,6};

Aso(l — 7) =0 j€{2,3,4,5,6};

Asoo(s — k) = Aseo(k —7) =0 j€{2,3,4} ke {56}
A (7= k) =1-64 jke{1,2)

Agso (F — k) =8 Jk € {3,4);

Aggo (1 = k) = Agpo (k> 7) =0 je{1,2} ke{3,4}

U e _25’* gk € {1,2,3);

Ago(f — k) =1- 6 5,k € {4,5};

Agolj — k) = 61, 7,k € {6,7,8};

Ago(j — k) = Agoo(k — 7) =0

j€{1,2,3} ke{4,56,7,8}

Agof = k) = Ago(k —7) =0 je{4,5} ke {6,7,8};
Ape(f— k) =1-6p J5,ke{l,2}

Ao (7 — k) =6 4,k € {3,4,5};

Apo(J = k) =Aps(k—3) =0 je{L,2} ke{3,4,5}

Asoo(d = k) =65 7,k € {1,2,3};  Asoo(fj — k) =16, 5,k € {4,5};
Asoo(j = k) = 6; 5,k € {6,7,8};  Asea(j — k) = Asea(k — 7) =0
j€{1,2,3} ke {4,5,6,7,8};

Asoo(j = k) = Aseo(k = 7) =0 je{4,5} ke{6,7,8);

Asoo(7 — k) = 65 7,k €{1,2,3,4};
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ABOD(J‘“*k) == lwéjk j,kE{S,G};
Aﬁw(j s k) = Asgo(k =k j) =40 j e {1,2, 3,4} k e {5,6};

representing 56 configurations giving collisions: 20 identical to model I with
or without rest particles as “spectator”, 24 two-body collisions changing the
number of rest particles of mass one with or without rest particles of mass
two as “spectator”, and 12 two-body collisions exchanging the number of
rest particles of mass one and two. The viscosities are given by

1 1
28d(1—d)}(1- 201 - FA=0)) 8
2t (1.1 &y01 di-d) Ll @
T - a)r (Té(?f "3 g (@+(1-d?)°) Al

3. Computer simulations

The present work was done by simulation of the lattice gas models on an
FPS-164 using lattices of order 10° nodes with a typical speed of 10° updates
per second [5-8]. The evolution of the lattice gas is computed according to
a parallel iteration in five steps.

1. The states of the nodes of obstacles and boundaries are saved in a
temporary storage.

2. During this second step, the collision step, the new state of each node
is computed as a function of its old state according to the collision
rules.

3. The third step is used to determine the new states of the nodes of
obstacles and boundaries which are computed as a function of the
saved states and the collision rules on obstacles.

4. During the fourth step, the propagation step, the bits of states of each
node are propagated toward one of the neighbor nodes according to
the physical interpretation of the different bits.

5. This last step is used to set the lattice boundary conditions.

All the programs were written in FORTRAN, using a few tricks to
take advantage of the architecture of the computer. Since these tricks are
introduced to make the best use of a pipeline architecture, they can be
used for most of the vectorized machines and thus will be described in
some detail.
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3.1 Boundary conditions on the lattice edges and on the obsta-
cles

The basic boundary conditions on the lattice edges can be periodic in the
two directions; the particles exiting from one edge are reinjected into the
other edge in the same direction. In what follows, we refer to this case as
periodic boundary condition.

Another situation, related to a wind-tunnel experiment, consists in pro-
viding a flux of fresh particles on one side of the lattice and allowing an
output flux on the other side.® The exact distribution of input and output
particles is derived from equation (2.5) with an appropriate density and
velocity. The balance between the input and output fluxes leads to an ad-
justment of the average speed of the flow inside the “wind tunnel”, which
depends upon the presence of lateral boundaries or obstacles.

Obstacles are first decomposed into a series of continuous links which
approximate its geometrical shape. At nodes which represent an obstacle,
particles are either bounced back (¢; — —¢;) or can be reflected by the
boundary of the obstacle. The first case corresponds to a very strict “no-
slip” condition, whereas the second case is more closely related to the “slip”
condition. One could also diffuse the particles by re-emitting them at ran-
dom on available links, but that would be more complicated to implement.
Momentum transfer between the gas and the obstacle can be computed
during step one, leading to forces experienced by the obstacle.

For the present, triangular lattice of the FHP lattice gas, the natural
way to label nodes uses nonorthonormal coordinates so that lattices are
diamonds. As this is awkward for most situations, we have used lattices
whose shape is rectangular. This can be implemented by taking different
propagation rules for lines of odd or even parity. On even lines, directions
2 and 6 imply a change of the horizontal coordinate, whereas on odd lines,
directions 3 and 5 are associated with a change of the horizontal coordinate.
This is displayed in figure 1. This feature complicates only very slightly
the computer program corresponding to step 4 of the simulation. However,
when a specialized hardware is designed, provision must be made for dif-
ferent propagation rules on odd and even lines as is done in the RAP-1
machine [9]. When working with rectangular physical space, the number
of nodes has to be multiplied by 3‘2—5 to measure lengths along the vertical
axis.

3.2 Collision and propagation steps

During the second step, the post-collision state is computed using either
a look-up table or the appropriate combination of Boolean operators. In
the case of a look-up table, the states are coded with eight bits (one byte)

5More precisely, in order to keep the density almost constant, particles are also injected
on the output side along the links directed toward the inside of the lattice. The physical
meaning of these boundary conditions remains to be clarified.



610 Dominique d’Humiéres and Pierre Lallemand
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Figure 1: Schematic representation of the six velocity directions and
of the lattice used in the FHP lattice gas: Left with 60° angles, Right
adapted to orthonormal coordinates.
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and eight nodes are packed in each of the 64-bit words of the FPS. During
the collision step, the bytes are extracted from the word and used as an
address to fetch their new value stored in a look-up table computed once
at the beginning of the program. For the six- or seven-bit models, the
eighth bit is used as a “random” bit to obtain probabilities 1/2 when it
is needed. This bit is initially set at random with an average density 1/2
and is complemented each time a collision occurs. For the eight-bit models,
two different look-up tables are used for the odd and even iterations of the
whole lattice. It was checked on the seven-bit models that this procedure
does not significantly bias the results. During the propagation step, the
bits coding the different particles are extracted from the word using masks
and moved as a whole, thus saving computation steps.

When Boolean operators are used to code the collision rules, 64 nodes
are packed in a word and six to eight words are used to code the different
particles. The noninteger probabilities of transition are implemented using
a new collision rule at each iteration of the lattice. The minimum number
of Boolean operators® needed to implement models I to III are given in
Appendix B along with the basic tools we used to obtain good results
with a reasonable amount of work. The propagation step is obtained by
the motion of a full word; thus, during the collision and the propagation
steps, 64 nodes are computed simultaneously, allowing high computation
speed to be reached. The use of the Boolean rules needs more work than
that of the look-up table to obtain efficient codes, but is more suited to
pipeline or vector computers; thus, we used the first solution for the mature
programs, while the latter was used for preliminary investigations of the
various models.

3.3 Initialization and measurements

Initial flows were generated by Monte-Carlo procedure with average popu-
lation N;; related to the local density and velocity by equation (2.5). The
use of the linear expansion restricts the available speeds to -‘%‘:, greater val-
ues giving negative or greater-than-one probabilities which will introduce
initial conditions far from equilibrium. Note that we do not take into ac-
count the corrections of the equilibrium distributions with the gradients
of the density and velocity fields, since they require the knowledge of the
viscosities and are considered along with the nonlinear terms as corrections
to the leading orders. Macroscopic quantities are obtained by averaging the
N;i according to equation (2.1) over rectangular regions with shapes and
sizes adapted to the flow under study. For nonlinear flow simulations, we
always used the momentum instead of the velocity, since the momentum is

SWe have used only the Boolean operators available on a general purpose computer:
and, or, exclusive-or, and complement. More compact rules can certainly be obtained
on computers with more Boolean operators as the Connection Machine [10]. In addition,
minimum must be taken as the lowest number of operators we found; some operators may
probably be saved working harder than we did.
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Table 3: List of configurations for the eight-bit model. Configurations
with five particles and more are obtained by duality replacing particles
by holes and holes by particles.
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the relevant variable in the incompressible steady cases [3,11]. Moreover,
it naturally comes out of the simulations.

4. Equilibrium distributions

Theoretically, the equilibrium distributions of the local averaged densities
N;; in direction ¢ are given by Fermi-Dirac functions depending upon the
density p and the average velocity u. This property was checked by the
simulation of the time evolution of a 512 x 256 lattice with periodic bound-
ary conditions in both directions. The first 24 time steps were discarded to
remove the transient behavior. We checked that this number of time steps
was larger than the duration of the transient. We then measured the av-
erage populations for each direction averaged on the next eight time steps.
These simulations were done on model II for densities per moving cell 0.2
and 0.5 for velocities from —6/7+/3 to 6/ 7+/3 and for velocities along the
bisector of two ¢;. In this case, the average densities of rest particles and
particles moving in the directions perpendicular to the velocity are equal.
The densities of particles moving on symmetric directions are also equal;
thus, there are only three independent unknowns which can be obtained
exactly from the solution of a third-degree equation [12]. Figure 2 shows
the equilibrium distributions as a function of the velocity for the different
populations along with the theoretical curves obtained from the exact so-
lution. These distributions were normalized by the average population at
rest. Clearly, the results of the simulations agree very well with the pre-
dicted Fermi-Dirac distributions with an error smaller than one percent.
Note that for d = 0.5, the nonlinearity vanishes due to the Fermi-Dirac
distributions and the particular orientation of the velocity with respect to
the lattice.

Another test was performed with model IV in which the population of
rest particles of mass two depends upon the population of moving particles
in a nonlinear way, given by equation (2.3). Figure 3 shows the variation
of d; as a function of d together with its value obtained by simulations.

5. Linear hydrodynamics

The velocity of sound ¢, and the kinematic shear and bulk viscosities v
and ¢ of the lattice gas models described above have been measured using
the relaxation of an initial periodic perturbation u(r, 0) of the velocity
field [13]: u(r, 0) = (uj + uy)cos(k - r), where k is the wave vector of
the perturbation and uj and u, are the velocity components parallel and
perpendicular to the wave vector [14].

The relaxation in time of the velocity u(r,t) and of the density pertur-
bation ép(r,t) are given by

u(r,t) =

(uy cos(wt + ©) exp(—k*(v + ¢)t/2) + uy exp(—k*vt)) cos(k - r), (5.1)
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Figure 2: Variation of the density N; versus velocity. Closed triangles
correspond to angle 60° between u and c¢;, apex correspond to angle
90° between u and c;. Solid lines are obtained theoretically (a) at a
mean density of 0.2, (b) at a mean density of 0.5.
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Figure 3: Comparison of theoretical and measured values of the den-
sity of rest particles versus density of moving particles for the eight-bit
model.

6p(r,t) = (puy/c) sin(wt) exp(—k*(v + ¢)t/2) sin(k - 1), (5.2)

with w = ¢,k, tan = k(v + ¢)/2¢,.

Starting from the initial conditions, at each time step, the momentum
and the density are averaged along lines perpendicular to the wave vector.
The result is Fourier transformed to get the components of the momentum
and density corresponding to k. From the relaxation curves, ¢,, v, and ¢
are measured by least squares fits of equations (5.1) and (5.2) to the time
evolution of u, (k), u(k), and p(k).

The measured sound velocities are isotropic and agree with theoretical
values 1/+/2 for model I and \/?:ﬁ for models II and III. Figure 4 shows
the dependence of the speed of sound with the density per cell for the
eight-bit model, compared to the theoretical given by equation (2.14). The
measured values of the viscosities are summarized in figures 5a to d, along
with the theoretical curves computed from equations (2.10), (2.12), (2.13),
and (2.15). These measurements were obtained on 256 x 512 lattices with
periodic boundary conditions and for wavelength between 30 and 80 nodes,
with no observable effects of the wave numbers on the viscosities over a
factor ten on the relaxation times. The size of the symbols corresponds
roughly to the error bars. Without rest particles, the experimental values
of v are above the theoretical curve for the measurements corresponding to
sound waves, while those corresponding to shear waves are below. Thus,
the kinematic bulk viscosity ¢ is found negative, which is an unphysical
result. At present, no convincing explanation has been found for this ef-
fect, which may be related to the fact that there are few triple symmetric
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Figure 4: Theoretical and experimental values of the speed of sound
for the eight-bit model.

collisions needed to remove a spurious invariant, leading to very long relax-
ation times of the associated microscopic quantity in comparison with the
hydrodynamics time scales. The measured viscosities agree with theoretical
predictions for models II, III, and IV. Thus, the presence of rest particles
apparently improves the behavior of the lattice gas while decreasing the
viscosity significantly, leading to higher Reynolds numbers [15]. Moreover,
these results show that the Boltzmann approximation is well verified, even
for high densities.

In many simulations, we have considered several disturbances at the
same time, taking as initial conditions:

3
Z(“IH coskir + uyy coskir) (5.3)
=1

and found essentially no coupling between these various waves. Further-
more, we found that the acoustic properties are particularly insensitive to
the amplitude of waves.

A uniform motion of the fluid, at speed u, advects sound or shear waves
at speed g(p)u, as discussed in reference 16.

6. Nonlinear flow simulations

We now present a few examples of flows computed by the lattice gas
method. These flows were chosen in order to perform quantitative com-
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Figure 5: Theoretical shear (solid lines) and bulk (dashed lines) re-
duced viscosities as a function of the reduced density, compared with
the results of numerical simulations for different lattice gas models:
(a) original FHP model, (b) model II with rest particles and limited
collision rules, (c) model III with rest particles and all possible colli-
sions, and (d) eight-bit model IV.
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parisons with results obtained either in real experiments or using standard
solutions of the Navier-Stokes equations. Three problems are considered
here:

1. the formation of boundary layers and the development of a Poiseuille
flow in a two-dimensional duct [17],

2. the flow after a backward facing step, and
3. the development of eddies behind an impulsively started flat plate.

6.1 Two-dimensional duct

We consider a 3072 x 512 lattice, taking the longer side as the horizontal
direction. The lattice is initially filled with a gas of density 1.54 (d = 0.22)
and uniform velocity 0.30 along the horizontal direction. Collision rules
correspond to model II. The system is periodic in the vertical direction.
Wind-tunnel conditions are considered, and one plate with stick conditions
is set on the axis of the channel, starting from position 300. As we are
interested in the transverse distribution of the horizontal component of the
particle flux j., we perform averages of j, over boxes of size 48 x 1.

After a large enough number of iterations, the flow reaches steady state,
as the Reynolds number in the channel is much smaller than that corre-
sponding to the appearance of turbulence. We first verify that on the plate
Jz = 0, as it should for the stick condition. Furthermore, the width of the
boundary layer increases as +/z if = the distance to the inlet of the duct.
Very close to the inlet, we find good agreement between the profile of the
particle flux and that determined by the standard solution of Blasius [18]
for laminar boundary layers. When we go down the channel, each bound-
ary layer is affected by the presence of the other and leads at first to a
compression of the boundary layers and eventually to the formation of a
parabolic profile, known as Poiseuille flow.

The complete description of such an experimental situation has been
performed by Slichting [19]. We have followed his solution by calculating the
profile of the flow versus distance to the inlet of the duct using an iterative
method to solve the Navier-Stokes equations. The velocity of the incoming
fluid is measured in the steady-state regime, and the viscosity is measured
in a separate experiment performed at the same density; thus, there is no
adjustable parameter for the comparison of theory and experimental data
obtained with the lattice gas. Figure 6 shows successive profiles of the
horizontal component of the particle flux for different values of the relative
distance to the inlet of the duct z = z/w. Very good agreement between
theory and experiment is obtained provided one uses v g = v/g(p).

6.2 Backward facing step

Another well-known flow situation is that of a two-dimensional backward
facing step at low Reynolds number. This situation was considered as a
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Figure 8: Velocity component parallel to a plate set in the middle of
a channel at relative distance from the apex of the plate (a) 0.525,
(b) 1.67, and (c) 5.74. The dots are obtained by the lattice gas simu-
lations; the solid lines are calculated using the Slichting method.
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Figure 7: Plots of equal values of the component of the flux j, par-
allel to the axis of the channel corresponding to the backward facing
experiment. The dash-dot curve corresponds to 7. = 0. The arrow
points the location of the reattachment point determined in a real
experiment.

test case for a GAMM workshop [20] on numerical methods to solve Navier-
Stokes equations. Here, we have used a channel of size 4608 x 512 with an
inlet part of length 512 and width 256. The lateral boundaries of the
channel and of the backward facing step are set with the stick condition.
At the inlet, we use the wind-tunnel situation with injection of particles
distributed with uniform density and a parabolic velocity profile. The ex-
periments that have been performed correspond to Reynolds numbers of
50, 100, and 150. Adjustment of the Reynolds number is done either by
changing the velocity or the density (due to dependence of g(p) versus p).

The system reaches steady state after a large number of time steps.
We then determine the horizontal component of the particle flux j, and
plot series of equal values of 7,. We find, as observed experimentally, that
there is a recirculation zone behind the step and determine the location
of the reattachment point. Figure 7 shows curves of equal values of j.,
with the particular value j; = 0 indicated by a dashed line. This allows
us to determine the reattachment point. Figure 7 is shown for a Reynolds
number of 150 and indicates the experimentally determined location of that
point. The density of the gas was determined and found to vary by less
than 3 percent over the entire lattice, indicating that the flow is essentially
incompressible. As seen in figure 7, the lattice gas behaves like a real one.
Similar agreement is obtained for a Reynolds number of 50. Here again,
it was necessary to use an effective value v,y = v/g(p) of the kinematic
viscosity in order to successfully compare the lattice gas and a real system.

6.3 Impulsively started flat plate

This is the simplest case of interaction of a lattice gas flow with an obstacle.
Here, we consider a 2816 x 1024 lattice with periodic conditions along y
and the wind-tunnel condition at the left and right edges. Initially, the
lattice is filled with a gas of uniform density and speed. Here we take
d = 0.30,(p = 2.1), and v = 0.428. The collision rules correspond to model
III, so that the Mach number is 0.654 and the effective Reynolds number is
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Figure 8: Map of the flux of particles in a 886.8 x 2048 channel 3000
time steps after the introduction of a flat plate of real size 216.5. The
distance between the back of the plate and the point where 7, = 0 on
the axis of the channel is defined as the size of the wake.

approximatively 300. The value of d is close to that of the minimum of the
effective kinematic viscosity v.g = v/g(p), so that small compressibility
effects should not be important.

Now, at ¢ = 0, we insert a flat plate of real width w = 216.5 perpen-
dicular to the input flow. It is set with stick conditions. The presence of
the plate first produces shock waves due to the reflection of particles at the
surface of the plate, then eddies start to develop symmetrically on either
edges of the plate, as shown in figure 8.

Here, we present detailed data concerning the location of the wake,
defined as the point where the horizontal component of the particle flux 7,
is 0 for the symmetry axis of the problem. If s is the distance from this
point to the plate, we consider the relative size of the wake s/w. We then
measure s/w as a function of a reduced time & = vt/w, where v is the
incoming velocity and ¢ the real time. This choice of variables corresponds
to that used in the analysis of real experiments performed in water by
Taneda and Honji [21]. These authors found that

s/w = 0.89(vt/w)*/?

independently of the Reynolds number Re, when 18 < Re < 1100.

We show in figure 9 the “experimental” value of s/w determined for
the lattice gas flow versus (vt/w)?® for a Mach number equal to 0.327
(v =0.214). We find a linear relationship, with a slope of 0.46.

To compare our value of the slope to that of a real experiment, we have
again to consider that a lattice gas follows the Navier-Stokes equation,
provided the velocity is multiplied by a factor g(p). This means we have to
compare the slope measured with the lattice gas (0.46) with a renormalized
slope 0.89¢%/3 = 0.423 in the present case.

Again, we reach almost quantitative agreement between a lattice gas
flow and a real experiment, provided we use a properly renormalized value
of the velocity.

When time reaches sufficiently large values, it is found that the sym-
metry of the flow is broken and vortex shedding by the plate occurs. This
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Figure 9: Relative size of the wake behind an impulsively started flat
plate s/w as a function of (vt/w)?/3.

leads to the formation of a two-dimensional Von Karman street, an example
of which is shown in figure 10.

In another experiment, performed at a larger input speed, we have de-
termined the period of the vortex shedding. The value corresponds to a
Strouhal number of approximately 0.20, to be compared to a measured
value of 0.16 for a truly incompressible flow at roughly the same Reynolds
number.

Detailed comparisons between lattice gas flows and real flows like those
presented here should be performed at higher velocities to find out which
effects are produced by a breakdown of the incompressibility conditions.

7. Conclusion

Quantitative agreement between theory and simulation has been demon-
strated in both the linear and nonlinear regimes for moderate Reynolds
numbers, provided a properly renormalized value of the fluid velocity (v —
g(p)v) is used in the nonlinear advection term of the Navier-Stokes equa-
tion. It should be noted that the introduction of obstacles into the flow is
particularly simple and represents, for the cases studied, a computational
overhead of a few percent. The present models are limited to Reynolds
numbers of order of 10° and incompressible flows. Moreover, since local
equilibrium is a function of p and pu only, such models cannot simulate
thermal phenomena. However, more complicated models derived from the
FHP model [22-24] may overcome most of these limitations in a near future.
In this case, lattice gas simulations will be a new tool for experimental work



Numerical Simulations of Hydrodynamics 623

Figure 10: Similar to figure 8, but after 40000 iterations showing the
formation of a Karman street. To emphasize the vortices, the mean
momentum has been subtracted from the local ones.

in hydrodynamics, with the main advantage of being inherently stable.
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Appendix A. Boltzmann approximation with rest particles

In this appendix, we will indicate how the theoretical results of reference
2 must be modified to handle the cases with particles with zero velocity
and different masses. These modifications will be given for the Boltzmann
approximation only.

The macroscopic quantities density, p, and momentum, pu, are related
to the local average populations Ny of particles with mass m; and velocity
Ciy by

p=_ mNy;  pu=Y mNic;. (A1)

ik ik

The demonstration used in Appendix C of reference 3 proves that, at
equilibrium and for uniform density and velocity, {log(NV;:) — log(1 — Ny )}
is a collision invariant if the collisions verify the semi-detailed balance. The
conclusion is now

1
T 14 exp(mi(h +q-c;))’

(A.2)

Ny

where h and q are nonlinear functions of p and u. When u = 0, the
average density is the same for all the particles with same mass m; and
will be denoted d;. Taking the mass of the lightest particles as unit mass
and dy = d, one gets
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dmx

%= e F (= d)

(A.3)

The general expansion of the Fermi-Dirac distributions around small
u is quite complicated, and we will restrict it to the case of b,, moving
particles with unit mass and velocity ¢ and b, rest particles with mass
my = 25,k € {0,...,b. — 1}. The density of moving and rest particles, p,,
and p, respectively, can be defined as

b,—1
Pm = bmd and Or = z mkdl:w with P = Pm T Pr (A-4)
Let

1 b d(1 — d)c?
? D(bmd(l —d) + Ti ot midi(1 — di))

(A.5)

For small u, the expansion of equation (A.2) up to second order gives in D
dimensions:

: D p ¢
Nig = d(1+ 5-er u+ G(o)(Ques + (5 = c2)bas)taty)

1—d
—kémﬁuaug) (A.6)

Ngi = dk(l — mpctG(p) ¥

where

2 . .

e C;&C;ﬁ = %63,6 if 7 ?’1 0 ;
i {0 if{=0
D? p? (1 - 2d)
2etp}, (1—d)

When there are density and velocity gradients, this equilibrium distri-
bution is modified by first-order correction in gradients:

and G(p) = (A.T)

N,-[g} = (YQiap — Xbs5)01a(pup) = VQiapBralpup) + X8,50:,p

Nék = XibapBia(ptis) = —Xibupd:,p (A.8)
where
b=
= — z MEXE (A‘g)
bm =0

Using the same Chapman-Enskog expansion as in references 2, 3, and
25 up to second-order terms in velocity and gradients, one gets
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&p +div(pu) =0
di(pua) + 8p(g(p)pauy) =

— 0 P(p,u?) + 95(vds(pua)) + Ga((ﬂu + ¢)div(pu)), (A.10)

D
with
—2d
D+Zp l—d

g9(p) =

D c
Pl u’} = %c — pg(p)-—-(l + = 5 2c2)uz (A.11)

and where the kinematic shear and bulk viscosities, v and ¢, are given by

bt - ¢? bc 1 ¢?
= — h — . :—————X'—————2 A.12
and the speed of sound is ¢,, since:
by d(1 — d)c? 2

GO
8p/u=0 D(bnd(1— d) + iy mide(1 — d))

=5 (A.13)

Since the density is no longer linearly related to the density per cell d,
the perturbation N{!) must be taken as di(1 — di) N;{",

P =d(1—d)J",
xe = di(1 — di) x5,
X = d(1 - d)X" (A.14)

and, in the Boltzmann approximation, N;m is related to N{¥ by

By, N + ;o1 NFT = Eﬂ”N*“’ (A.15)
where the linearized collision matrix is given by

i = =3 Sor =)o = 5)Als = ) [T (1~ d)' ™ (410

ss'

It is more convenient to rewrite the matrix [A};] as

[Ru) [Cis]
[#:]=1 - (A.17)
[Cal [Mi;]
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where [Ry] and [M;;] are square submatrices with respectively b, and b,,
rows, [Ci;] is 2 submatrix with b, rows of b,, identical columns [C;], and
[Ca) is the transposed of [Ci;]. Since [m;] is an eigenvector of [4},] with a
zero eigenvalue, one must have

|
=]

bmCr + E mRy = Vk
1

Smli+Y My= 0 Vi (A.18)
[ i

Then, ¢* and x} are obtained by the solubility condition of the following
linear system:

Dcz dj;(l = dk}

)

e F d(1—d)

3,0 = (bmCeX* — X, Ruxi)dup

D 2
bt (4 5900 + Quapdralpug)) =~ Tu(CilmuX" +xi))up
+ X MijQjap¥’ 01a(pus)
(A.19)

Using equation (A.18), this condition gives

De?  di(1—dy) :

Be? my d(l = d) = (mekX"' = Z]: Rﬂxk) y (A.20)
D ;

gt Qe = 2 MiiQjapd”. (A.21)
m i

Thus, v¥° is simply related to the eigenvalue A of the linearized collision
matrix A}, corresponding to the eigenvector [e;z¢yy]:

D1
bnc? A

v = (A.22)

but the x; are given by the solution of the linear system of b, equations
given by equation (A.20). We will only sketch how the values of ¢ were
obtained for equations (2.12), (2.13), and (2.15).

The following results are valid when m; = 2* and when the collisions
are such that they change the total mass of rest particles only by one mass
unit. In this case, the submatrix [Ry] and Ci can be written
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be—1

IRM] = by Z an[kg)l
n=0

by—1

Cr=ar— ) o,
n=k+1

with:
by—n—1 times n limes
e
o -+ 0 0 O -+ 0
m]_ | O 0 0 0 0

[R“ ] ~ 10 0 -1 1 1
0 0 1 -1 -1
0 --- 0 1 =1+ —1

Equation (A.20) becomes

Dcz dk (1 = dk) ity
] — bm X  _ *
e R
b —1 n—1
— bn Y (XX — D X))
n=k+1 i=0
since the solution of the linear system
k-1
Vi— D> V=4
=0
is given by

1 k
Y= E(Ak 4 22*’_‘}1;).

=0

Equation (A.25) gives:

* =i % DCE Ek *
X X = g G X
with
i 2d,§(1—dk) bl 2d;(1—d1)
By =5 (mi =g Li™MGTH ):

then
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(A.23)

(A.24)

(A.25)

(A.26)

(A.27)
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. ch E, ) -t B .

a8 4l;'mc2 (mkai =0 : m) B ka (A.zs)
. D% % g2

X'=2tYy =t (A.29)

4bmc E—p @M
and, finally,
Det 1, ¢ sl 1 .::2

=d(1—d L —(—=— — — — %),

¢ =d )4c2 (ag(Dcf ) * Z:l akmk) D )

(A.30)

Thus, for D = 2, ¢ = 1, b, = 6, and b, = 1 and 2, equation (A.30)
respectively gives

L= 'd(;-T;;i)_‘ A %a (A.31}
and
2(1 2
¢ =d(1—d)c} (1;%(; g)z 9—;——‘2,((11 _cf;)), )= %{1 —¢1)- (A.32)

Appendix B. Boolean laws

The basic concept used to look for minimal set of Boolean functions to
implement the collision rules is a derivation of the algorithm used by Hardy,
de Pazzis, and Pomeau [26] for the four-bit model on a square lattice. A
basic collision operator can be written

c= 01'&2'83'a4+61'ﬂ2'ﬁ3'ﬂ4 s (a1$a2)-{a2®a3)-(a3®a4)(B.1)

where a-b, a + b, a ® b, and b correspond respectively to the and, or,
exclusive-or, and not operators. The new states are then obtained by

a=c®a;. (B.2)

The computation of the new configuration needs only nine Boolean op-
erators. This basic algorithm can be extended to the triangular case by the
definition of several collision operators. Each collision exchanges at least
two particles and two holes, when this exchange does not change the total
momentum; thus, we can define four-bit collisions operators similar to the
one given in equation (B.1).
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Appendix B.1 Model I

In this model, the basic collision operators give the possibility of head-on
collisions ~; and of triple symmetric collisions §:

t: = ;®ay, t={1,---,6}

u = ti-tys ©={1,2,3}

Y = (G @ aigs) 1= {1,2,3}

§ = wup-up-ug (B.3)

Note that these operators are unchanged by duality, and for two- or
four-body collisions, two of them are non-zero. Thus, for a model with
all the possible collisions, the collision operators must choose between the
different possible collisions using two different sets of collision operators:

=06+ +Yisz-TWesr» §=1{1,23} (B-4)
or
c; = ') + Yi+2 +%" '_Yi-t-l. 3 1= {1’2’3} (BS)

and the new configuration is given by

a; = C; @ s,
Qip3 = ¢ @ ai3,
i= {1,2,3} (B.6)

for a total of 35 elementary Boolean operators.

For model I, the collision operators defined in equation (B.4) must be
modified to allow collisions only for two-body configurations. This requires
checking the absence of particles in the two directions not used to define
the ~;:

c; = 6+'7i 3 (at'+2 + at'+5) 3 ‘ e {15253} (BT)
or
i =6+ %2 (i1 +aipq) , 1=791,2,3} (B.8)

The algorithm to compute the collision step for model I, uses equations
(B.3), (B.7) or (B.8) and (B.6), for a total of 35 elementary operators.
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Appendix B.2 Model III

The algorithm for the model III can be easily derived for the algorithm for
the six-bit model with all the possible collisions. A new step must be added
to equation (B.3) to handle the case of rest particles:

& =1 't-‘+s'(ﬂo®ﬁi+1) ’::{11'“:6} (B'g)

The choice between two possible collisions is now done by the collision
operator ¢y of the rest particles:

o = b+(Mm+ (@) -(2+(298)) - (s + (e D &)),

¢ = 8+T - (% + Vw2 Vig1) + o (€45 + & - Egz + €ig1 - Eiys)
1= {1,2,3},
Civs = 64T+ (W + Yotz - Fit1) + o (€ipa + €iys - Eiys + €ipq* &)
o= {1:2;3}
(B.10)

or

c0 = §+(mt (@) (121 (D)) (13+ (a1 @ &),
¢ = §+T- (Virz + % - Fira) +co- (641 + & - Epa + Eiys - Eigs)

i={1,2,3},
ciys = 6+Co- (Yivz + % - Virr) + o (€iga + €iys - Eigr + €42 - &)
1= {1,2,3}.

(B.11)

The new configurations are computed using equation (B.5) and
g = €p @ ag. (B.IZ)
Thus, the algorithm for the model III uses equations (B.3), (B.9), (B.10),
or (B.11), (B.6), and (B.12), for a total of 103 elementary Boolean operators,”
if &, € - €4q and 8 + T - (% + Vit2 - Vi+1) are computed only once.
Appendix B.3 Model II

The algorithm for the model II is slightly different of the previous one, since
many possible configurations must be removed.

ts'= al'eai+la ul'=t|"a'l'+4 £={1:"'a6}
v = (t.‘ . t|'+3) S Ujpy  Ujpq = {1,2, 3} {B13)

The choice between head-on collisions is done by

"Two additional operators can be saved in equation (B.9) using ag@ag for i = 1,3 and
ap @ ag for 1 = 2,4.
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% = Vi + Vi, i ={1,2,3} (B.14)
or
Vi = Ui + Viga, i={1,2,3} (B.15)
and § is computed using only two and operators (the quantities inside

parentheses being computed during (B.13) step) by

§ = et ek < ots)
& = ti-tiss (@0 ® @iy1) "Biy2 1={1,---,6} (B.16)

The collision operators ¢; are given by

co = €+ €2+€3+€4+¢€54 €
¢ = (5 +")f,') +e&+ €6 tEys 1= {172’3}
ciss = (6+%) +eassteaatean 1={1,2,3} (B.17)

The new configurations are computed using equations (B.6) and (B.12).
Thus, the algorithm for the model II uses equations (B.13), (B.14), or
(B.15), (B.16), (B.17), (B.6), and (B.12), for a total of 82 elementary
Boolean operators, if some or operations are computed only once in equa-
tion (B.17).
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