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Abstract. In t his paper, we first describe an extens ion of the stan­
d ar d Fr isch, Hasslac her, Pomeau hexagonal latti ce gas to study reac­
t ion-diffusion problems. Some num erical results are presented. We
then conside r the question of Galilean invarian ce from an "experi­
mental" po int of view I show ing cases where the standard. model is
inadeq uate . F inally, we introd uce a way to cure the Galilean d isease
and present some res ults of simulations for a few typical cases.

1. Introduction

T he lattice gas technique first introduced by Pomeau et a l. [I] and late r
refined by Fr isch, Hasslacher, and Pomeau (F HP ) [2] is now considered as
an efficient way to simulate viscous flows at moderate Mach numbers in
situations involving complex boundaries. However, it is u nabl e to repre­
sent thermal or diffusional effects since all part icles have the same speed
and are of the same nat ure . In additio n, the macroscopic behavior of the
FHP (or standar d) model is not Galilean invarian t in the sense that the
nonlinear advection term in the momentum equation involves an the or ig­
inal FHP model to study reaction-diffus ion prob lems and then discuss the
implications of g(d) =f 1. Finally, we shall present a way to design a mode l
that is Galilean invarian t at least for low Mach numbers .

2. Extension of the FHP model

T he orig inal FHP model involves particles whose velocit ies c , have the
same modu lus and point in the six possible directions corresponding to
the links between one node of t he lattice and its six neares t ne ighbors.
It is useful to add rest particles (0 or 1 in the Boo lean model) that are
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involved in collisions of the type rest particle and ni, with i E {I, . . . , 6},
represents one of the six possible moving particles. Using the Rivet-Frisch
method [3] to calculate the viscosi ty, or measuring it by relaxation of shear
waves, it has been shown [4] that the maximum possible Reynolds number
is obtained using the seven-b it model with all poss ible non-transparent
collisions. With th is cr iterion, the above model is thus preferred over the
simpler models, and t here are 76 non-transparent collisions among the 27

possible precollision states.
In a way similar to that of Burges and Zaleski [S], who introduced

cellular automata adapted to the description of fluid mixtures, we start
now from the or iginal seven-bit FHP model and add seven ot her bits, one
for each bit of the basic model, that may be interpreted as the type (or
color) of the particle [61. The state of the system is thus fully determ ined
by giving at each node of the lat ti ce {(n"I, )}, i E {O,... ,6} where I, = 0
for nj = 0 and i, = 0 or t, = 1 for n, = 1, (i, = 0 particle of type A, t, = 1
part icle of type B). There are now 37 possible states.

The bit t, is attached to and propagates as bit ni' The collision rules
can be of several types according to the type of problem being invest igated.

This new model can be analyzed in the same way as the basic model.
One may define as macroscopic quantities:

P=Lini
pu = Linici
C = *Liniii

total dens ity
total flux
concentration of B parti cles.

At the macroscopic level, these quantit ies sa tisfy the continuity equa­
tion, the Navie r-Stokes equat ion with a factor g(d), and a concentration
equation .

o,p + divpu = 0

o,pUa + o~ (pg (d) uau~) = -oaP + o~ (I/ (p)o~PUa )

o,pC + oapCUa = OaD (p)aaPC + '" (C)

where D is a diffusion coefficient and tv (C ) a source t erm when type ex­
change collisions are includ ed.

Here, d is the average densi ty of particles per cell, so t hat

(d) = 7(1 - 2d)
9 12(1- d).

2.1 D efin ition of collisions

The general rules that allow one to determine the output of any precollision
situation are t he following:

1. The total number of particles is conserved.
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2. The total linear momentum is conserved.
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Now the collisions can be nonreactive, which means that the numbers
of A and B particles are conserved, or they can be reactive, which means
that the numbers of A and B particles can vary.

Note that even for nonreactive collisions and distributions of velocities
that correspond to no change in the {nil , the values of the {til can be
redistributed when E t, differs from a or E nj. In some cases , it is found
that there are as many as 35 equivalent distribu tions of t he {til . This means
that a poor model from the point of v iew of the viscosity (few efficient
velocity redistributin g collisions) may nevertheless lead to a small value of
the diffusion coefficient.

The choice for the redistribution of the { tj } by reactive collisions is
obviously huge. Here, we have first cons idered situations of the type:

,+
A+A+ B ,- A+A+A

,t
A+B+B::: B +B +B

'.where either A or B acts as some sort of catalyzer. In that case, the
product ion rate is given by

", (C) = k; C(l - C)' + k,C' - k; (l - C)' - k;;C'(l - C).

If we assume symmetry in the reaction rates, k~ = kt = k+ and k;; = k6" =
k- 1 then tv is an odd function of C - 0.5.

Let us define X =k- /k+. If X < 1/3, '" has three roots C" C, =1-C,
an d 1/2. For X = 0, C, = 0 and C, = 1, which means that the system will
exhibit segregation into regions which are filled with pure A or pure B.

This result can be extended to situations where all reactions

A+nB

nA+ B

o

,+

o

(n + l)B

(n + l)A

with n > 1 are included.
Note th at this model implies no coupling between the type exchange

and the dynam ics of the particles and thus cannot represent such effects as
surface tension.
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Figure 1: Measured value of the diffusion coefficient D vers us density
of moving particles per cell.

:1.:1 Experimental stud y

The dyn ami cs of lat t ice gas m ixtures has been studied by simu lation on
a FPSl64 comp ute r using the "t ab le method" I in which we use the state
of each no de of the la t t ice as an address in a collision table to determi ne
the red istribution of t he {(nilti)}' This method is not very efficient, as
it implies reading the memory in a random mann er , but it is very simple.
The large indetermination in the outcome of some precollisional st ates (up
to 35-fold in this model) is dealt with in the followin g m anner: before each
sweep through the lattice, we choose at random one particular outcome
among tables containing the equivalent states.

2.2.1 B asic properties

We have determined the diffusion coefficient D by studying the time re­
laxation of either a concentrat ion step or a sinusoida l modulat ion of the
concentrat ion. In the first ease, a very good fit of the data with th e stan­
dard solution of the diffusion equat ion is found. The resulting experimental
determinations of D are shown in figure 1. Cont rary to all results on the
standard F HP mo del (which is dual in the sense that they depend only
upon I 0.5 - d Il here D is smaller for d > 0.5. This comes from the fact
that we have taken only t, = 0 for 1ti = O. We could have decided to color
the holes by taking tj = 1 for nj = 1 and t j = 0 or t, = 1 for n j = O. The
model ca n be used to analyze how a t racer is dispersed by a flow 171.

We now allow type exchange reactions to take place. In that ease , sharp

interfaces are observed, the thicknesses of which are on the order of JD / k.
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Detailed results are described in reference 6.
As ment ioned previously, there is no surface tension for the present

mode l when k+ = k-; thus, the interface between A and B exhibits a
diffusive behavior . It can be shown that the dynamics of the interface is
governed by dxjdt = -Dj R if X is a coordinate normal to the inte rface and
R its radius of curvature. A sinusoidal interface will relax exponentially ,
an d the radius of a circular bubble will decrease as R'(t) = R'(O) - 2Dt
[8].

The model will be adequate to study hydrodynamics with free bou nd­
aries, provided that the relevant time scales are short compared to that of
the diffusion of the interfaces. It is therefore preferable to use a density of
0.75 rather than 0.25; the hydrodynamics is the same, but D is smaller.

This model, to which gravity can be added, provides a simple way to
st udy phenomena such as the Ray leigh-Taylor instability [9]. Here we will
illustrate its poss ibilit ies with some results for the Kelvin-Helmholtz insta­
bility.

2.2 .2 Kelvin-Helmholtz instability

Two parallel plates of length 1024, separated by 256 lattice sites, are set
as boundaries for a channel assumed to be periodic in the direction of
the plates . St ick conditions are implemented by imposing velocity reversal
of particles colliding with the boundary. The initial conditions for the
experime nt are

1. half of t he channel is filled with particles of type A and velocit y +v
parallel to the plates, and

2. the other half is filled with B particles and velocity -v.

The mean density of moving particles is 0.75 and v = 0.21. Maps of the
local average of the particle fluxes are computed for various values of time.
Note that color-blind maps are identical to those which would be obtained
with the standard FHP model with the same microscopic initial distribut ion
of the {e.}.

In a first experiment , the collision rules include only nonreactive dif­
fusion of A and B particles . Figure 2 shows isoconcentration curves for
A at time t = 3000. For this particular run, in one port ion of the chan­
nel, the interface was destabilized by the Kelvin-Helmholtz instability and
A part icles were advected by the flow, whereas in another portion of the
channel, the interface remained stable and uniform diffusion took place.
(Th is particular result is not typical; usually, the k = 4 mode is the most
uns t abl e.)

In a second experiment, we use the autoca ta lytic reactive rules. Figure
3 shows the dist rib ution of the flux of B at time t = 2000, an d figure
4 shows several success ive shapes of the interface that remains sharp for
several thousand time steps .
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Figure 2: Isoconcentration curves (for C =a .IOto.90) in the situation
leading to the Kelvin-Helmholtz inst ability at time t = 3000. Purely
diffu sive cas e.

Figure 3: Map of B particle flux at time t = 2000 in th e sit uation lead­
ing to the Kelvin-Helmholtz inst abili ty. using typ e exchange reac t ions
that allow ph ase sep aration.
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Figure 4: Series of shapes of the interface separating phase A and
phase B in the situation leading to the Kelvin-Helmholtz
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T he resul t s shown here need to be supplemented by quantitat ive tests.
T he fact that the advection t erms of t he t otal moment um and conce nt ration
are different should be analyzed in more detail.

3. Experimental study of Galilean invariance

The equat ion for t he total momentum shows t hat vorticity is advected at
speed g(d)u i' u, if u is the mean value of the velocity. It has been pro­
posed t hat nonhomogeneous scaling of velocity, time, and viscosity would
allow "rest ored" Galilean invariance, and t he quantity used to define the
ability of the model to simulate hydrodynamic flows is expressed in terms
of an effective Reynolds number ulg(d)/ v rather than in t erms of the usu al
Reynolds number ul/ u, We will now describe some res ults concerning this
question .

3.1 Measurement of the advection speed

To measure the advection speed, we consider the case of a jet of par ticles
A in a bath of par t icles B. T he densities of particles A and B are identical.
The initi al ve locity of particles A is v+Uo and that of particles B is - v+Uo.
T he lat tice has 1024 X 256 no des, and periodic boundaries are assume d in
both the hori zon tal and vertical d irections. The initial lower and u pp er
interfaces of the j et are modulated so that there is no random effect in
the development of the eddies. The width of the je t is one third of the
heigh t of the system, so that when flat in itial interfaces are us ed, the k = 3
mode is t he most unstable one . We then compare the t ime evolution of
two flows, one for Uo = 0 and one for Uo :f. o. If t he system were Galilean
invari ant , the two flux d ist ributions at time t would on ly differ by a uniform
trans lat ion Uot. Here, we have compared t he particle fluxe s by calculating
the minimum of

z = 2:{j (rlm ) - j (rlm + x)}' ,
1m

where r im is located at the center of the ave raging box (usually 16 X 16
sites are use d). We show in figure 5 the va lue of Xmin corresponding to the
minimum of Z. The dat a on t he top correspond to Uo = 0.215; the ot her
correspond to Uo = 0.128. The mean density per cell is 0 .30. The crosses
are ex perime ntal; the solid lines are given by g(d)Uot . This prov ides a goo d
verification of the non-Galilean nat ure of the system , as the eddies are found
to be advect ed at speed g(d)Uo. Similar resu lts apply up to approximate ly
Uo~ 0 .25, meaning that the higher order terms in the mome ntum eq uat ion
can be neglected in the present situation for Mach numbers up to roughly
0.4 .

We also find that the mi nimum value of Z , t he error, remains approx­
imately equal to that obtained when comparing two different microscopic
realizati ons of the same macroscopic conditio ns.
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Figure 5: Value of the displacement between two flows . Crosses are
determined experimentally; solid curves correspond to the advec tion
speed Uog(d).
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Another way to study non-Galilean invariant problems would have been
to analyze how small eddies are advected by large ones . Significant results
would be obtained only for latt ices much larger than the one used here in
order t o avoid viscous relaxation of the small eddies 11OJ.

We have also considered the Kelvin-Helmholtz situat ion with reac tive
collisions and found dramatic differences between the results obtained for
Uo = 0 and Uo # O. In particular, we find that the roll-up of the interface
does not t ake place when Uo # O.

3.2 N ew lattice gas w ith g(d) = 1

The absence of Galilean invariance of the original model is due to the use
of a finite set of direct ions for the velocity and to the exclusion principle
that leads to the Boole an character of the particles. In general, 9 is given
by

D 2:.d. 2:; d;(1- d;)(1- 2d;)ct
g(d) = (D + 2){2:; d;(1 - d;)c1)'

if d; is the dens ity of particles per cell and D the dimensionality. At equi­
librium for u = 0, t he total density is given by p = 6d + do if do is t he
density of rest particles. The standard seven-bit mode l leads to do = d so
that
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(d) = 7(1 - 2d)
9 12(1 - d).
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One way to increase 9 is to take do > d.
Keeping one bit to describe the rest particles , we can unbalance the

collisions that create rest part icles with respect to those that destroy them.
In the simplest case, we can take

dno '( ' ()'- = 6d 1 - d) (1 - no) - 6xd 1 - d no
dt

so at equilibrium, no = d/(d + x - dx) .
For small d, no = d/x so that 9 = (1+ 1/6x )/ 2, that may be taken equal

to 1 for x = 1/6.

3. 2.1 Collision rules

Here, we propose to use a two-bit word to represent the populat ion of the
center (no,mo) , with the following collis ion rules. Ali collisions conserving
to tal numb er and total linear momentum are included [11]. The collisions
leading to creation and destruction of rest particles are all included, except
a few cases which take place with probability x , y, or a. For details , see
table 1, where all collisions considered here are indicat ed for one of the six
poss ible directions of the velocity vector.

It may be shown that the equilibrium value of no and rno are solut ions
of the following coupled equatio ns:

{( 1-d)'d'+2 (1-d)'d' +(1-d)'d'+(1-d)d'}(1-mo) = x(l-d)'d(l-mo)no

+ z{( l - d)'d + (1 - d)'d' + 2(1 - d)'d' + (1 - d)'d'}mono

((1 -d)'d'+2( I -d)'d' +(I- d)'d'+(I -d)d'}mo(l -no) = Y(l -d)'d(l -mo)no

Analyzing the numerical values of no, mo, and the corresponding g(d),
it is found that for x = 0.5, Y = z = 0.20, there exists a value of d for which
g(d) = 1 and dg(d)/dd = O.

For simplicity of the dynamics, we prefer to use the case x = 1/2, Y =
z = 1/6, which leads to a theoretical value of gmllz = 1.072 for d = 0. 17 and
9 = l.0 for d = 0 .2l.

The model can now be analyzed with the Chapman-Enskog method, as
was done by Rivet and Frisch for the standard model. This allows us to
determine the kinematic shear viscosity

1 1
V = - -

4(Cn - C12 - C13 + C.. ) 8

with
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Table 1: Details of th e collisions considered in the Gali lean invariant
lattice gas model .
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en - e12 - CIS + Cu =

5A.. + lIA., + lOA,. + 6A" + 2Ao5

+ mono( - 2A.. + 4A., + 5A,. - 3A" - 2Ao5)

+ 2(A so + Au) (xmo(1 - no) + y(1 - mo)no)

+ zmono(2A5o + 3A.. - 5A., - 4A,. + 2A,,)

where A;; = (1 - d);d;
We plot in figure 6 the theoretical values of g(d), g(d)/v, and " which

appear in the Reynolds number and characterize the ability of the model
to represent flows. It is interesting to note that we have improved the value
of the Reynolds number.

3.2.2 Numerical results

The new eight-bit lattice gas has been implemented on a computer. The
equilibrium value of p(d) is in fair agreement with the theoretical value
deduced from the equations for no and mo.

We have also measured the advection speed . Instead of using the same
situation used previously, we have studied the relaxation of a moving shear
wave. For this purpose, we consider a 512 X 512 lattice with periodic bound­
ary conditions and impose as initial conditions

v(r,O) = Vz + v.cosk.r with k II Ox.

We determine the spatial phase 4> of the k-Fourier component of v.(t). It
is found to vary linearly with time, and we plot d4>/dt in figure 7 together
with its theoretical value g(d)vzk. Good agreement is obtained, showing
that the model is truly Galilean invariant for a particular but adjustable
density (here, d = 0.21). Moreover, to first order, the invariance is not
destroyed by small density fluctuations.

Preliminary measurements of the speed of sound and of the kinematic
shear viscosity are in good agreement with the theory.

The new model should be very useful but requires further investigation,
especially with regards to the fact that some collision events do not satisfy
semi-detailed balance. Adding color to the new model involves no particular
difficulty.

4. Conclusion

In this paper, we have presented two extensions of the basic FHP lattice
gas model. The first one adds a second bit to each of the seven-bit oc­
cupation numbers. It allows the simulation of various diffusion-reaction
problems and of hydrodynamic flows with free boundaries. The second
allows achievement of true Galilean invariance for a limited range of the
density, at the cost of using an extra bit for the rest particles and the lack
of semi-detailed balance for a subset of the collisions.
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Figure 6: Theoretical values of g(d) (solid lice), 0.2 X g(d)/v (dotted
line) , and 25 X '7 (dash-dot line) versus density of moving particles per
cell for t he new model, when e = 1/2 and y = z = 1/6.
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Figure 7: Comparison of the ex perimental and theoretical values of the
time derivative of the spatial phase of a shear wave versus advection
speed tl z .
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