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Abstract. In this paper, we first describe an extension of the stan-
dard Frisch, Hasslacher, Pomeau hexagonal lattice gas to study reac-
tion-diffusion problems. Some numerical results are presented. We
then consider the question of Galilean invariance from an “experi-
mental” point of view, showing cases where the standard model is
inadequate. Finally, we introduce a way to cure the Galilean disease
and present some results of simulations for a few typical cases.

1. Introduction

The lattice gas technique first introduced by Pomeau et al. [1] and later
refined by Frisch, Hasslacher, and Pomeau (FHP) [2] is now considered as
an efficient way to simulate viscous flows at moderate Mach numbers in
situations involving complex boundaries. However, it is unable to repre-
sent thermal or diffusional effects since all particles have the same speed
and are of the same nature. In addition, the macroscopic behavior of the
FHP (or standard) model is not Galilean invariant in the sense that the
nonlinear advection term in the momentum equation involves an the orig-
inal FHP model to study reaction-diffusion problems and then discuss the
implications of g(d) # 1. Finally, we shall present a way to design a model
that is Galilean invariant at least for low Mach numbers.

2. Extension of the FHP model

The original FHP model involves particles whose velocities ¢; have the
same modulus and point in the six possible directions corresponding to
the links between one node of the lattice and its six nearest neighbors.
It is useful to add rest particles (0 or 1 in the Boolean model) that are
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involved in collisions of the type rest particle and n;, with 7 € {1,...,6},
represents one of the six possible moving particles. Using the Rivet-Frisch
method [3] to calculate the viscosity, or measuring it by relaxation of shear
waves, it has been shown [4] that the maximum possible Reynolds number
is obtained using the seven-bit model with all possible non-transparent
collisions. With this criterion, the above model is thus preferred over the
simpler models, and there are 76 non-transparent collisions among the 27
possible precollision states.

In a way similar to that of Burges and Zaleski [5], who introduced
cellular automata adapted to the description of fluid mixtures, we start
now from the original seven-bit FHP model and add seven other bits, one
for each bit of the basic model, that may be interpreted as the type (or
color) of the particle [6]. The state of the system is thus fully determined
by giving at each node of the lattice {(n;,%:)}, ¢ € {0,...,6} where t; =0
for n; =0 and t; =0 or t; = 1 for n; = 1, (t; = O particle of type A, {; =1
particle of type B). There are now 37 possible states.

The bit ¢; is attached to and propagates as bit n;. The collision rules
can be of several types according to the type of problem being investigated.

This new model can be analyzed in the same way as the basic model.
One may define as macroscopic quantities:

p=>;n total density
pu = 3 ;n;c; total flux
C = %E,. ngt; concentration of B particles.

At the macroscopic level, these quantities satisfy the continuity equa-
tion, the Navier-Stokes equation with a factor g(d), and a concentration
equation.

Oip + divpu =0
Oiptia + Op(pg(d)uatis) = —0aP + 9p(v(p)3ppua)
8:1pC + 8,pCuy = 8, D(p)8apC + w(C)

where D is a diffusion coefficient and w(C) a source term when type ex-
change collisions are included.
Here, d is the average density of particles per cell, so that

7(1 — 2d)
94 = ma—a.
2.1 Definition of collisions

The general rules that allow one to determine the output of any precollision
situation are the following:

1. The total number of particles is conserved.
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2. The total linear momentum is conserved.

Now the collisions can be nonreactive, which means that the numbers
of A and B particles are conserved, or they can be reactive, which means
that the numbers of A and B particles can vary.

Note that even for nonreactive collisions and distributions of velocities
that correspond to no change in the {n;}, the values of the {t;} can be
redistributed when ¥ t; differs from 0 or ¥ n;. In some cases, it is found
that there are as many as 35 equivalent distributions of the {t;}. This means
that a poor model from the point of view of the viscosity (few efficient
velocity redistributing collisions) may nevertheless lead to a small value of
the diffusion coefficient.

The choice for the redistribution of the {t;} by reactive collisions is
obviously huge. Here, we have first considered situations of the type:

s

A+A+B - A+A+ A

=
kS
A+B+B - B+B+B
K
where either A or B acts as some sort of catalyzer. In that case, the
production rate is given by

w(C)=k}C(1-C)* +kC* -k (1-C)® - kfC?*(1 - C).
If we assume symmetry in the reaction rates, k7 =k = k™ and k] = k; =
k™, then w is an odd function of C' — 0.5.

Let us define x = k™ /kT. If x < 1/3, w has three roots Cy, C; = 1-C;
and 1/2. For x =0, C; =0 and C; = 1, which means that the system will
exhibit segregation into regions which are filled with pure A or pure B.

This result can be extended to situations where all reactions

K

A+nB ~ (n+1)B
0
53

nA+B Z (n+1)A
]

with n > 1 are included.

Note that this model implies no coupling between the type exchange
and the dynamics of the particles and thus cannot represent such effects as
surface tension.
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Figure 1: Measured value of the diffusion coefficient D versus density
of moving particles per cell.

2.2 Experimental study

The dynamics of lattice gas mixtures has been studied by simulation on
a FPS164 computer using the “table method”, in which we use the state
of each node of the lattice as an address in a collision table to determine
the redistribution of the {(n;,t;)}. This method is not very efficient, as
it implies reading the memory in a random manner, but it is very simple.
The large indetermination in the outcome of some precollisional states (up
to 35-fold in this model) is dealt with in the following manner: before each
sweep through the lattice, we choose at random one particular outcome
among tables containing the equivalent states.

2.2.1 Basic properties

We have determined the diffusion coefficient D by studying the time re-
laxation of either a concentration step or a sinusoidal modulation of the
concentration. In the first case, a very good fit of the data with the stan-
dard solution of the diffusion equation is found. The resulting experimental
determinations of D are shown in figure 1. Contrary to all results on the
standard FHP model (which is dual in the sense that they depend only
upon | 0.5 — d |) here D is smaller for d > 0.5. This comes from the fact
that we have taken only ¢; = 0 for n; = 0. We could have decided to color
the holes by taking t; = 1 for n; = 1 and ¢; = 0 or {; = 1 for n; = 0. The
model can be used to analyze how a tracer is dispersed by a flow [7].

We now allow type exchange reactions to take place. In that case, sharp

interfaces are observed, the thicknesses of which are on the order of /D /k.
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Detailed results are described in reference 6.

As mentioned previously, there is no surface tension for the present
model when kt = k~; thus, the interface between A and B exhibits a
diffusive behavior. It can be shown that the dynamics of the interface is
governed by dz/dt = —D/R if z is a coordinate normal to the interface and
R its radius of curvature. A sinusoidal interface will relax exponentially,
and the radius of a circular bubble will decrease as R*(t) = R*(0) — 2Dt
8]

The model will be adequate to study hydrodynamics with free bound-
aries, provided that the relevant time scales are short compared to that of
the diffusion of the interfaces. It is therefore preferable to use a density of
0.75 rather than 0.25; the hydrodynamics is the same, but D is smaller.

This model, to which gravity can be added, provides a simple way to
study phenomena such as the Rayleigh-Taylor instability [9]. Here we will
illustrate its possibilities with some results for the Kelvin-Helmholtz insta-
bility.

2.2.2 Kelvin-Helmholtz instability

Two parallel plates of length 1024, separated by 256 lattice sites, are set
as boundaries for a channel assumed to be periodic in the direction of
the plates. Stick conditions are implemented by imposing velocity reversal
of particles colliding with the boundary. The initial conditions for the
experiment are

1. half of the channmel is filled with particles of type A and velocity +v
parallel to the plates, and

2. the other half is filled with B particles and velocity —v.

The mean density of moving particles is 0.75 and v = 0.21. Maps of the
local average of the particle fluxes are computed for various values of time.
Note that color-blind maps are identical to those which would be obtained
with the standard FHP model with the same microscopic initial distribution
of the {n;}.

In a first experiment, the collision rules include only nonreactive dif-
fusion of A and B particles. Figure 2 shows isoconcentration curves for
A at time ¢ = 3000. For this particular run, in one portion of the chan-
nel, the interface was destabilized by the Kelvin-Helmholtz instability and
A particles were advected by the flow, whereas in another portion of the
channel, the interface remained stable and uniform diffusion took place.
(This particular result is not typical; usually, the k¥ = 4 mode is the most
unstable.)

In a second experiment, we use the autocatalytic reactive rules. Figure
3 shows the distribution of the flux of B at time ¢ = 2000, and figure
4 shows several successive shapes of the interface that remains sharp for
several thousand time steps.
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Figure 2: Isoconcentration curves (for C' = 0.10£0.90) in the situation
leading to the Kelvin-Helmholtz instability at time ¢ = 3000. Purely
diffusive case.
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Figure 3: Map of B particle flux at time ¢ = 2000 in the situation lead-
ing to the Kelvin-Helmholtz instability, using type exchange reactions
that allow phase separation.
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Figure 4: Series of shapes of the interface separating phase A and
phase B in the situation leading to the Kelvin-Helmholtz
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The results shown here need to be supplemented by quantitative tests.
The fact that the advection terms of the total momentum and concentration
are different should be analyzed in more detail.

3. Experimental study of Galilean invariance

The equation for the total momentum shows that vorticity is advected at
speed g(d)u # u, if u is the mean value of the velocity. It has been pro-
posed that nonhomogeneous scaling of velocity, time, and viscosity would
allow “restored” Galilean invariance, and the quantity used to define the
ability of the model to simulate hydrodynamic flows is expressed in terms
of an effective Reynolds number ulg(d) /» rather than in terms of the usual
Reynolds number ul/v. We will now describe some results concerning this
questiomn.

3.1 Measurement of the advection speed

To measure the advection speed, we consider the case of a jet of particles
A in a bath of particles B. The densities of particles A and B are identical.
The initial velocity of particles A is v+ Uy and that of particles B is —v+Up.
The lattice has 1024 x 256 nodes, and periodic boundaries are assumed in
both the horizontal and vertical directions. The initial lower and upper
interfaces of the jet are modulated so that there is no random effect in
the development of the eddies. The width of the jet is one third of the
height of the system, so that when flat initial interfaces are used, the k = 3
mode is the most unstable one. We then compare the time evolution of
two flows, one for Uy = 0 and one for Uy # 0. If the system were Galilean
invariant, the two flux distributions at time ¢ would only differ by a uniform
translation Uyt. Here, we have compared the particle fluxes by calculating
the minimum of

s zZ {i(tim) =i (Tim + %)},

where Ty, is located at the center of the averaging box (usually 16 x 16
sites are used). We show in figure 5 the value of z,,;, corresponding to the
minimum of Z. The data on the top correspond to Uy = 0.215; the other
correspond to Uy = 0.128. The mean density per cell is 0.30. The crosses
are experimental; the solid lines are given by g(d)Ust. This provides a good
verification of the non-Galilean nature of the system, as the eddies are found
to be advected at speed g(d)Up. Similar results apply up to approximately
Uy =~ 0.25, meaning that the higher order terms in the momentum equation
can be neglected in the present situation for Mach numbers up to roughly
0.4.

We also find that the minimum value of Z, the error, remains approx-
imately equal to that obtained when comparing two different microscopic
realizations of the same macroscopic conditions.
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Figure 5: Value of the displacement between two flows. Crosses are
determined experimentally; solid curves correspond to the advection

speed Upg(d).

Another way to study non-Galilean invariant problems would have been
to analyze how small eddies are advected by large ones. Significant results
would be obtained only for lattices much larger than the one used here in
order to avoid viscous relaxation of the small eddies [10].

We have also considered the Kelvin-Helmholtz situation with reactive
collisions and found dramatic differences between the results obtained for
Us = 0 and U # 0. In particular, we find that the roll-up of the interface
does not take place when Uy # 0.

3.2 New lattice gas with g(d) =1

The absence of Galilean invariance of the original model is due to the use
of a finite set of directions for the velocity and to the exclusion principle
that leads to the Boolean character of the particles. In general, g is given
by

DYidi ¥idi(1—d)(1—2d;)ef

(D +2){%; di(1 — di)e}}?
if d; is the density of particles per cell and D the dimensionality. At equi-
librium for v = 0, the total density is given by p = 6d + dy if dp is the

density of rest particles. The standard seven-bit model leads to dy = d so
that

g(d) =
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7(1 — 2d)
d=——=
9 = Za=a).

One way to increase ¢ is to take dy > d.

Keeping one bit to describe the rest particles, we can unbalance the
collisions that create rest particles with respect to those that destroy them.
In the simplest case, we can take

dd% = 6d%(1 — d)*(1 — no) — 6zd(1 — d)°nq

so at equilibrium, ng = d/(d + = — dz).
For small d, ng = d/z so that g = (141/6z)/2, that may be taken equal
to 1 for z = 1/6.

3.2.1 Collision rules

Here, we propose to use a two-bit word to represent the population of the
center (ng,mg), with the following collision rules. All collisions conserving
total number and total linear momentum are included [11]. The collisions
leading to creation and destruction of rest particles are all included, except
a few cases which take place with probability z, y, or z. For details, see
table 1, where all collisions considered here are indicated for one of the six
possible directions of the velocity vector.

It may be shown that the equilibrium value of ny and mg are solutions
of the following coupled equations:

{(1—-d)*d*+2(1—d)*d®+(1—d) d*+(1—d)d* } (1—mg) = z(1—d)*d(1—mo)ng
+ z{(1 — d)°d + (1 — d)*d® + 2(1 — d)3d® + (1 — d)?d*}mgny
{(1—d)*d®+2(1—d)*d®+(1—d)*d*+(1—d)d* }mo(1—no) = y(1—d)*d(1—mq)ne

Analyzing the numerical values of ng, mg, and the corresponding g(d),
it is found that for z = 0.5,y = z = 0.20, there exists a value of d for which
g(d) =1 and dg(d)/dd = 0.

For simplicity of the dynamics, we prefer to use the case z = 1/2,y =
z = 1/6, which leads to a theoretical value of g,,.; = 1.072 for d = 0.17 and
¢= 1.0 ford = 021,

The model can now be analyzed with the Chapman-Enskog method, as
was done by Rivet and Frisch for the standard model. This allows us to
determine the kinematic shear viscosity

1 1
N 4(C11 —C12—Ci3+Cu) 8

v

with
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input output probability
moving Test moving Test
particles particles partcles particles
1 0 x
% : % : ;
3 2 z
0,1o0r2 % 1,2or3 1
% 0,1,20r3 % % 0,1,20r3 12 n
% 0,1,20r3 % 0,1,20r3 1
0,lor2 % 1,2er3 1
3 % % 3 2 1z z
0,1lor2 % 1,20r3 ¥
3 % % 3 2 1z z
O0.lor2 % —% 1,20r3 07 2
3 % 2 z
% 01,2003 % % 0,1,20r3 n 12
% 0,1er2 % 1l,20r3 1

Table 1: Details of the collisions considered in the Galilean invariant

lattice gas model.

643
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Cuu—Ci2—Cis+Cu=

5Aqy + 114 + 10455 + 6414 + 2405

+ mong(—2A4 + 4As; + 5435 — 3A14 — 2405)
+ 2(Aso + A1) (zmo(1 — ng) + y(1 — mo)no)
+ zmono(2Aso + 344 — 5A3p — 4455 + 2414)

where A;; = (1 — d)id’

We plot in figure 6 the theoretical values of g(d), g(d)/v, and n which
appear in the Reynolds number and characterize the ability of the model
to represent flows. It is interesting to note that we have improved the value
of the Reynolds number.

3.2.2 Numerical results

The new eight-bit lattice gas has been implemented on a computer. The
equilibrium value of p(d) is in fair agreement with the theoretical value
deduced from the equations for ny and my.

We have also measured the advection speed. Instead of using the same
situation used previously, we have studied the relaxation of a moving shear
wave. For this purpose, we consider a 512 x 512 lattice with periodic bound-
ary conditions and impose as initial conditions

v(r,0) = v; + vy cosk.r withk || Ox.

We determine the spatial phase ¢ of the k-Fourier component of v, (¢). It
is found to vary linearly with time, and we plot d¢/dt in figure 7 together
with its theoretical value g(d)v.k. Good agreement is obtained, showing
that the model is truly Galilean invariant for a particular but adjustable
density (here, d = 0.21). Moreover, to first order, the invariance is not
destroyed by small density fluctuations.

Preliminary measurements of the speed of sound and of the kinematic
shear viscosity are in good agreement with the theory.

The new model should be very useful but requires further investigation,
especially with regards to the fact that some collision events do not satisfy
semi-detailed balance. Adding color to the new model involves no particular
difficulty.

4. Conclusion

In this paper, we have presented two extensions of the basic FHP lattice
gas model. The first one adds a second bit to each of the seven-bit oc-
cupation numbers. It allows the simulation of various diffusion-reaction
problems and of hydrodynamic flows with free boundaries. The second
allows achievement of true Galilean invariance for a limited range of the
density, at the cost of using an extra bit for the rest particles and the lack
of semi-detailed balance for a subset of the collisions.
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Figure 6: Theoretical values of g(d) (solid line), 0.2 x g(d)/v (dotted
line), and 25 x 7 (dash-dot line) versus density of moving particles per
cell for the new model, when z=1/2 and y = z = 1/6.
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Figure 7: Comparison of the experimental and theoretical values of the
time derivative of the spatial phase of a shear wave versus advection
speed vg.
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