
Complex Systems 1 (1987) 649-707

Lattice G as Hydrodynamics
in Two and Thr ee D imensions

U r iel Frisch
CNRS, Observatoire de Nice, BP 139, 06003 Nice Cedex, France

Dominique d'Humieres
CNRS, Laboratoire de Physique de l'Ecole Normale Buperieure;

24 rue Lhomond, 75231 Paris Cedex 05, France

Brosl Hasslacher
Theoretical Division and Center [or Nonlinear St udies,

Los Alamos Na tional Laboratories , Los A lamos, NM 87544, USA

Pierre Lallemand
CNRS, L aboratoire de Physique de I':Ecole Normale Supetie ute,

24 rue Lhomond, 75231 Paris Cedex 05, France

Yves Pomeau
CNRS, Laboratoire de Physique de l'lEeole Norm ale Buperieure;

24 rue Lhomond, 75231 Paris Cedex 05, France
and

Physique Theorique, Centre d'Etudes N ucJeaires de Sac1ay,
91191 Gif-sur-Yvet te, France

Jean-Pierre R ivet
Observatoire de Nice, BP 139, 06003 Nice Cedex, France

and
Ecole Normale Sup6rieure, 45 r ue d'Ulm, 75230 Paris Cedex 05, France

Abstract. Hydrody namical phenomena can be simulated by discrete
latti ce gas models obeying cellular automata rules [1,21. It is here
shown for a class of D-dimensional lattice gas models how the macro­
dynamical (large-scale) equations for the dens ities of microscopically
conserved quantities can be syst emat ically derived from the und er­
lying exact "microdynemicel" Boolean equa tions. Wit h suitable re­
strictions on the crystallogra phic symmetries of th e lat tice and after
proper limit s are taken, various standard fluid dynamical equations
are obtai ned, including th e incompress ible Navier-Stokes equations
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in two and three dimensions. The transport coefficients appearing
in the rnecrodynamical equations are obtained using variants of the
fluctuation-dissipation theorem and Boltzmann form alisms adapted
to fully discrete situations.

1. Introduction

It is known that wind or water tunnels can he indifferently used for test­
ing low Mach number flows, provided t he Reynolds numbers are ident ical.
Indeed, two fluids with quite different m icroscop ic structures can have the
same macroscopic behavior because the form of t he macroscopic equat ions
is entirely gove rned by the m icroscopic conse rvat ion laws and symmetries.
Although the values of the transport coeffi cients such as the viscosity may
depend on th e det ails of the microphysics, st ill, two flows with similar
geometries and identical va lues for t he relevant dimensionless t ransport
coefficients are related by similarity.

Recent ly, such observations have led to a new simulation st rategy for
fluid dynamics: fictitious microworld models obeying discrete cellular au­
tomata rules have been found, such that two- and three-dimensional fluid
dynamics are recovered in the macroscopic limit [1,2J. Cellular automata,
introduced by von Neumann and Ulam [3], consist of a lat t ice, each site
of which can have a finite number of states (usually coded by Boolean
variables); the automaton evolves in discrete steps, the sites being simul­
taneously up dated by a deterministic or nond eterminist ic rul e. Typically,
only a finite number of neighbors are involved in the up dating of any site.
A very popular example is Conway's Game of Life [4J . In recent years,
there has been a renewal of interest in this subject (see, e.g., [5-7J), espe­
cially because cellular automat a can be imp lemented in massively parallel
hardware [8-10] .

The class of cellular automat a used for the simulat ion of fluid dyn am­
ics are here called "lattice gas models" . Histor ically, they emerged from
attempts to construct discre te models of fluids with varying moti vations.
The aim of molec ular dynamics is to simulate the real microworld in or­
der, for example, to calculate transport coefficients; one concent rates mass
and momentum in discrete particles with continuous time, pos it ions, and
velocities and arbitrary interactions [11- 14). Discrete velocity models, in­
troduced by Broadwell [IS] (see also [11>--20)), have been used mostly to
understand rarefied gas dynamics. The velocity set is now finite, space
and time are still continuous, and the evolution is probabilistic, being gov­
erned by Boltzmann scattering rules . To our knowled ge, the first lattice
gas model with fluid dynamical features (sound waves) was introduced by
Kadanoff and Swift [21]. It uses a master-equation model with cont inuous
t ime. The first fully deterministic latti ce gas model (now known as HPP)
wit h discre te t ime, pos it ions, and veloci t ies was introduced by Hardy, de
Pazzis, an d Pomeau [22,23] (see also related work in reference 24). The
HPP model, a presentation of which will be postponed to sect ion 2, was
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int roduced to analyze, in as simple a framework as possible, fundamen­
tal quest ions in statistical mechanics such as ergodicity and the divergence
of transport coefficients in two dimensions 123]. The HPP model leads to
sound waves, which have been observed in simulations on the MIT cellular
automaton machine [8]. The difficul ties of the HP P model in coping wit h
full fluid dyn amics were overcome by Frisch, Hass lacher, and Pomeau [IJfor
the two-dimensional Navier-Stokes equations; models adapted to the three­
dimensional case were introduced by d 'Humieres, Lallemand, and Frisch
12]. This has led to rapid development of the subject [2S-47] . These papers
are mostly concerned with lattice gas mode ls leading to the Navier-Stokes
equat ions. A number of other problems are known t o be amenable to
lattice gas models: buoyancy effects [48], seismic P-waves [49], magneto­
hydrodyn amics [So-S21 , react ion-di ffusion models [S3-SS], interfaces and
combust ion phenomena [S6,S7], Burgers ' model IS8).

The aim of this paper is to present in det ail and without unnecessary
restrictions t he theory leading from a simple class of D-dimensional "one­
speed" lat tic e gas models to t he continuum macroscopic equations of fluid
dynamics in two and three dimensions. The extension of our approach to
multi-speed models, including, for example, zero-velocity "rest particles",
is quite straightfo rward; there will be occas ional brief comments on such
models. We now outline t he paper in some detail while emphasizing some
of t he key steps. Some knowledge of nonequilibrium statistical mechanics
is helpful for reading this paper, but we have tried to make the paper
self-contained.

Sect ion 2 is devoted to various lat tice gas models and the ir symmetries.
We begin with the simple fully deterministic HP P model (squ are lat tic e).
We then go to the FHP model (triangular lat t ice) which may be formulated
with deterministic or nond eterminist ic collision rul es. Finally, we consider a
genera l class of (usually) nondeterminist ic, one-speed mode ls containing the
pseudo-four-d imens iona l, face-centered-hypercubic (FC HC) model for use
in three dimensions [2] . In this section, we also introduce various abst ract
symmetry assumptions, which hold for all three models (HPP, FHP, and
FC HC) and which will be very useful in reducing the complexity of the
subsequent algebra.

In section 3, we introduce the "microdynamical equations" , the Boolean
equivalent of Hami lton 's equations in ordinary statistical mechanics. We
then proceed with the probabilistic descr iption of an ensemble of realiza­
t ions of the lat t ice gas. At this level, the evolution is governed by a (dis­
crete) Liouv ille equation for the probabili ty distr ibut ion function.

In section 4, we show that there are equ ilibrium stat ist ical solutions with
no equal-t ime correlations between sites. Under some mildly restrictive as­
sumptions, a Ferm i-Dirac distribution is obtained for the mean populat ions
which is universal, i.e., independent of collision rules . This distribution is
parametrized by the mean values of th e collision invariants (usually, mass
and momentum) .

Locally, mass and moment um are discrete, but the mean values of the
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density and mass current can be tune d continuous ly, just as in the "real
world". Furthermore, space and time can he regarded as continuous by con­
sider ing local equi libria, slowly varying in space and time (section 5). The
matching of these equilibria leads to macroscopic PDEs for the conserved
quantit ies.

The resulting "macrodynamical equations", for the density and mass
current, are not invariant under arbitrary rotations. HoweverJ in section
6, we show that the essential terms in the macroscopic equations become
isotropic as soon as the lat tice gas has a sufficiently large crystallog raph ic
symmetry group (as is the case for the FHP and pseudo-four-d imensional
models, bu t not for the HPP model).

When the necessary symmetries hold, fluid dynamical equations are
derived in section 7. We consider various limits involving large scales and
times and small ve locities (compared to particle speed). In one limit, we
obtain the equat ions of scalar sound waves ; in another limit , we obtain the
incompressib le Navier-Stokes equations in two and three dimensions. It is
not eworthy that Galilean invariance, which does not hold at the microscopic
level , is restored in these limits.

In section 8, we show how to determine the viscos ities of latt ice gases .
Th ey can be expressed in terms of equilibrium space-time correlation func­
tions via an adaptation to lattice gases of fluctuat ion-dissipat ion relations.
This is done with a viewpoint of "noisy" hydrodynamics, which also brings
out the crossover peculiarities of two dimensions, namely a residual weak
scale-dependence of transport coefficients at large sca les. Alternatively,
fluctu ation-dissipation relat ions can he obtained from the Liouville equa­
t ion with a Green-Kubo formalism [431. Fully expl icit expressions for the
v iscos ities can be derived via the "Lattice Boltzmann Approximation" ,
not needed for any earlier steps . This is a finite-difference variant of the
discrete-velocity Boltzmann approximation. The latter, which assumes con­
tinuous space and time variables , is valid only at low densities, while its
latt ice variant seems to capture most of the finite-density effects (with the
exce ption of two-dimeneional crossover effects) . Further studies of the Lat­
tice Boltzmann Approximation may be found in reference 42. Implications
for the question of the Reynolds number are discussed at the end of the
section.

Sect ion 9 is the concl usion. Various questions are left for the appendices:
detailed technical proofs, inclusion of body forces, cat alog of results for
various FHP models, proof of an H-theorem for the Lat tice Boltzmann
Approximation (due t o M. Henon) .

2. Deterministic and n ondeterministic lattice gas models

2.1 The HPP m odel

Let us begin with a heuristic const ruction of the HPP model [22-241. Con­
sider a two-dimensional square lattice with unit lat tice constant as shown
in figure 1. Particles of unit mass and unit speed are moving along the
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Figure 1: The HPP model. The black arrows are for cell-occupation .
In (a) and (b) the lattice is shown at two successive times.

lattice links and are located at the nodes at integer times. Not more than
one particle is to be found at a given time and node, moving in a given
direct ion (exclusion principle). When two and exactly two particles arrive
at a no de from opposite directions (head-on collisions), t hey immediately
leave th e node in the two ot her, previously unocc upied, direct ions (see fig­
ure 2) . These deterministic collision laws obviously conserve mass (particle
numb er) and momentum an d are the only nontrivial ones with these pro p­
erties. Furthermore, they have the same discrete inva riance group as the
lat t ice.

The above defin ition can be formalized as follows. We take an L by
L square lat ti ce, periodically wrapped around (a nonessential assumption,
made for convenience). Eventually, we will let L --+ 00 . At each node,
labeled by the d iscrete vector z, ; there are four cells labeled by an in­
dex i, defined modulo four. The cells are associated to the unit vectors
c, connecting the node to its four nearest neighbors (i increases counter­
clockwise). Each cell (r., i) has two states coded with a Boolean variab le:
ni(r.) = 1 for "occupied" and ni (r.) = afor "unoccupied". A cellular au­
tomaton updating ru le is defined on the Boolean field n. = {n,(r.), i =
1, ... , 4, r ; E Lattice}. It has two steps. Step one is collision: at each
node, the four-bit states (1, 0, 1, 0) and (0, 1, 0, 1) are exchanged; all other
states are left unchanged. Ste p two is propagation: ni(r.) --+ ni (r. - c. ).
This two-step rul e is applied at each integer ti me, t• . An example of imple­
mentat ion of t he ru le, in wh ich arrows stand for cell-occupation, is shown
in figures La and b.

Collisions in the HPP model conserve mass an d momentum locally,
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Figure 2: Co llision rules {or the HPP model.

whereas propagat ion conse rves them globally. (Actually, momentum is
conserved along each horizontal and vertical line, resulting in far too many
conserve d quantiti es for physical modeling .) IT we attr ibute to each parti­
cle a kinetic energy ~ , the tot al kinetic energy is also conserved. Energy
conservation is, however, indistinguishable from mass conservation and will
not p lay any dynamical role. Mo de ls h av ing an energy conservation law in­
dependent of mass cons ervation will not be considered in th is paper (see
[2,29]).

The dynamics of the HPP model is invariant under all discrete t ransfor­
mations that cons erve the square lattice: discrete t ranslations, rotations by
-j- , an d mirror symmetries. Furthermore, the dynamics is invar iant under
d uaUty, that is exchange of L'e and D's (particles and holes).

2 .2 The FHP models

T he FHP models I, II, and III (see below), introduced by Frisch, Hasslacher ,
and Pomeau [1] (see also [25-31,35,38-44,46]) are variants of the HPP model
with a larger invariance group. The residing lattice is t riangu lar with unit
lattice constant (figur e 3) . Each node is now connected to its six neighbors
by unit vect ors c, (with i defined modulo six) and is thus endowed with
a six-bit state (or seven , see below) . Updating involves again propagation
(defined as for HPP) and collisions.

In constructing collision rules on the triangular la t t ice, we must cons ider
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Figure 3: Th e FHP model with binary head-on and t riple collisions
at two successive ti mes.

bo th deterministic and nondetermin istic rules. For a head-on collis ion with
occupied "input channels" (i , i + 3), there are two possible pairs of oc­
cup ied "out put channels" such that mass and momentum are conserved,
namely (i + 1, i + 4) and (i - 1, i - 4) (see figure 4a) . We can decide al­
ways to choose one of these cha nnels ; we then have a deterministic model,
which is mira!, i.e., not invariant under m irror-symmetry. Alte rnat ively,
we ca n make a nondetermi n ist ic (random) choice, wit h equal probabilities
t o restore mirror-symmetry. F ina lly, we can make a pseudo-random choice,
dependent, for example, on the parity of a time or space ind ex.

We must also cons ider spurious conservation laws. Head-on collisions
conserve, in addit ion to total par ti cle number I the difference of particle
numbers in any pair of opposite directi ons (i , i+3). T hus , head-on collisions
on a t r iangular lat ti ce conserve a to tal of four scalar quantiti es. This means
that in ad dition to mass and momentum conservat ion , there is a spurious
conservation law. T he large-sca le dynami cs of such a model will differ
dr as tically from ord inary hydr odynamics, unless t he spurious conservation
law is removed . One way to ach ieve this is to introduce t rip le collisions
(i, i + 2, i + 4) ~ (i + 1, i + 3, i + 5) (see figure 4b).

Several models can be cons tructed on the t riangular lattice. T he sim­
plest set of collision rules with no spurious conservat ion law, which will
be called FHP-I, involves only (pseudo-random) binary head-on collisions
and triple collisions. FH P-I is not invar iant under duali ty (particle-hole
excha nge), but can be made so by inclusion of t he duals of the head- on
collisions (see figure 4c) . F inally, the set of collision rules can be satura ted
(exhausted) by inclusion of head-on collisions with a "spectator" [59], that
is, a particle which remain s unaffected in a collision; figure 4d is an example
of a head-on collision with a spectator prese nt .
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Figure 4: Co llision rules for the FHP models: (a) head-on collision
with two output channels given equa l weights; (b) t riple collision;
(c) dual of head-on collision under particl e-hole excha nge ; (d) head­
on collision with spectator ; (e) binary collisions involving one rest
particle (represen ted by a circle).

T he model, FHP-II, is a seven-b it variant of FHP-I including a zero­
velocity "rest particle" I the addit ional collision rules of figure 4e, and vari­
ants of the head-on and t riple collis ions of figu res 4a an d 4b wit h a spectato r
rest par t icle. Bina ry collisions involving rest part icles remove spurious con­
servations, and do so more efficient ly at low densities t han t rip le collisions.
F inally, mo del FHP-III is a collision-saturated vers ion of FHP-II [31). For
simplicity , we have chosen not to cover the theory of mo dels with rest par­
t icles in det ail.

The .dynamics of the FHP models are invariant under all discrete t rans­
format ions that conserve the t riangular lat t ice: discrete trans lat ions , ro­
tat ions by 1r/3, and mirror symmetries with respect t o a latt ice line (we
exclude here the chiral variants of the models) .

2 .3 The FCHC four-dimensional and the pseudo-four-dimen sional
models

Three dimensional reg ular lat t ices do not have enough symmetry to ens ure
macroscopic isotropy [1,2,39]_ A suitable four-d imens ional model has been
int roduced by d'Humieres, Lallemand, and Frisch [2]. T he res iding lat t ice
is face-centered-hypercubic (FCHC) , defined as the set of signed integers
( X l, X2, X3, x4 ) such that Xl + X2 + X3 + X 4 is even . Eac h node is connected
via links of length c = y'2 to 24 nearest neighbors, hav ing two coordinates
di ffering by ±l. T hus, the FCHC model has 24-b it states. The 24 poss ible
velocity vectors are again denoted Ci; for the index i, there is no preferre d
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ordering and we will leave the ordering unspecified . Propagation for the
FC HC lattice gas is as usual. Collision rul es should conserve mass and four­
momentum while avoiding spur ious conservations . This can be achieved
with just binary collisions , bu t better strategies are known 132,33}. Non­
deterministic rules involving transit ion probabilities are needed to ensure
that the collisions and the lattice have the same invariance group (precise
definitions ar e postponed to section 2.4) .

The allowed transformations of the FCHC model are discrete transla­
t ions and those isometries generated by permutations of coordinates, rever­
sa l of one or severa l coord inates and symmetry wit h respect to the hyper­
plane Xl + X2 + Xs + X. = O.

To model three-dimensional fluids and maintain the requ ired isotropies,
we define the pseudo-four-dimensional model 12] as the three-dimensional
project ion of an FCHC model with unit periodicity in the x.-direction (see
figure 5). It resides on an ordinary cubic lattice with unit lattice constant.
The full four -dimensional discrete velocity struct ure is preserved as follows.
There is one communication channel to the twelve next-nearest ne ighbors
(correspo nding to the twelve velocity vectors such that V.I, t he fourth com­
ponent of t he velocity, vanis hes) and there are two commun icat ion channels
to the six nearest neighb ors (corresponding respectively to velocit ies with
v. = ± 1). During the propagat ion phas e, particles with v. = ± 1 move to
nearest neighbor nodes, while particles with v. = 0 move to next-nearest
neighbors . The collision strategy is th e same as for the FCHC model, so
that four-momentum is conserved. The four th component is not a spuri­
ous ly conserved quantity because, in th e incompressible limit, it does not
effective ly couple back to th e other conserved quant it ies [2] .

2.4 A general cl ass of nondeterministic models

In most of this paper, we will work with a class of models (generally non­
det erministic) encompassing all the above one-speed models. The relevant
common asp ects of all those models are now listed: there is a regular lat­
t ice, the nod es of which are connected to nearest neighbors through links
of equal length; all velocity directions are in some sense equivalent and the
velocity set is invariant under reversal; at each node there is a cell associ­
ated with each possible velocity. This cell can be occupied by one particle
at mos t; particles are indistinguishable; particles are marched forward in
t ime by successively applying collision and propagation rul es; collisions are
purely local , having the same invariances as the velocity set ; and collisions
conserve only mass and momentum.

We now give a more formal definition of these one-speed models as
cellular automata. Let us beg in with the geometrical aspects. We take
a D-dimens ional Bravais latt ice f, in R D of finite extension O(L ) in all
direct ions (eventually, L ---.. 00); the position vector r ; of any node of such
a lat t ice is a linear combination with int eger coefficients of D independent
gene rating vectors [60]. We furthermore assume that there exists a set of
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v, 0

V4 +1 and - 1

Figure 5: The pseudo-four-dimensional FCHC mod el. On ly th e neigh­
borhood of one node is shown. Along the dotted links, connecting
to next-nearest neighbors, at most one particle can propagate, with
compo nent t/ 4 = 0; along t he th ick black links, connec ting to near­
est neighb ors, up to two particles can propagate, with com pone nts

t1.( =±1.
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b "velocity vectors" c. having equal modulus c, the particle speed. c. has
spat ial components c.; (a = 1, .. . ,D).1 We requir e the following for c.:

1. For any r, E L, the set of the r; + c/s is the set of nearest neighbors
of r • .

2. Any two nodes can be connected via a finite chain of nearest neigh ­
bors .

3. For any pair ( C i, Cj) there exists an element in the "crystallographic"
group 9 of isometries globally preserving the set of velocity vectors,
which maps c, into Cj'

4. For any velocity vector cr, we denote by 9, the subgroup of 9 which
leaves c. invariant and thus leaves its orthogonal hyperplane, IIi, glob­
ally invariant; we assume that (a) there is no non-vanishing vector in
II, invarian t under all the elements of 9, and (b) the only linear trans­
format ions within the space II, commuting with all the elements of
9i are proportional to the ident ity.

Now, we construct the automaton. To each node r ; we at tach a b­
bit state n (r. ) = {ni(r.} , i = 1, .. . ,b}, where the ni's are Boo lean vari­
ab les. The updating of the "Boolean field", n(.), involves two successive
steps: collision followed by propagation. We choose this particular orde r
for technical convenience; after a large number of iterations, it will become
irrelevant which step was first .2 P ropagation is defined as

(2.1)

The spat ia l sh ift ing by c, is performed on a per iodically- wrappe d around
lat tice with O( L ) sites in any dir ecti on; event ua lly, L -+ 00. Collision is the
simultaneous application at each node of nondeterminist ic t ransit ion rules
from an in-sta te s = {Si' i = 1, .. . , b} to an out-state Sf = {sL i = 1, ... , b} .
Each transition is ass igned a probability A(s -+ s') ~ 0, normalized to one
(L:•• A (s --+ s') = 1 Vs), and depending only on s and s' and not on the
node. The following add it ional assumptions are made.

5. Conse rvat ion laws: the only collections of b real numbers ai such that

L)s~ - s,)A(s -+ s')l1j = 0, 'Is,s', (2.2)

1 In this paper, Greek and Roman indices refer respectively to comp onents and velocity
labels. Summation over repeat ed Greek indices, but not Roman ones, is implicit.

2For deterministic lat tice gases, such as HP P, it is poss ible to bring out th e reversibility
of the updatin g ru le by defining the state of t he automaton at half-integer times, with
particles located at the middle of links connect ing nearest-neighbor nodes; updating then
comprises half a propagation, followed by collision, followed by another half propagation
1221·

30ther boun dary conditions at the lattice edge can also be used-for example, 'wind­
tunnel- conditions 125,26,281.
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are linear combinations of 1 (for a ll i) and of Ci h " ' J CiD, i.e. aj is
related to mass and momentum conservation.

6. Invariance under a ll isometries preserving the velocity set :

A(g(s) --+ g(s')) = A(s --+ s'), Vg E 9, 'Is , s'.

7. Semi-detailed balance:

L A(s --+ s' ) = 1, 'Is'.

(2.3)

(2.4)

Va rious comments a re now in order . Semi-detailed balance, a lso used
in discrete velocity Bo lt zmann models [17] , means t hat if before collision
a ll s tates have equa l probabili ti es , they stay so a fte r colli sion. It is trivi ally
satisfied when the collision rule is determini st ic and one-to-one. There
ex ists a lso a stronger ass umption , detail ed balance (th a t is A (5 --+ 5') =
A(s' --+ s )), which will not be needed here. T he HP P, FHP, and FCHP
lattice gases satisfy the above assumpt ions (1) through (4). T he proofs
are given in Appendix A. The other assumptions (5) through (7) hold by
construction with the exception of the chiral vers ions of F HP. The lat ter do
not satisfy (6) because the collision rul es are not invar ian t under the mirror­
symmetries with respect to velocity vectors . Full 9 -invariance holds for the
velocity set of the pseudo-four-dimensional mode l, which is the same as for
the FCHC mode l; however, the spatial structure is only invariant under the
smaller group of the t hree-dimens ional cubic lattice.

The invariance assumptions introduced above have impo rtant conse­
quences for the transformation proper ti es of vect ors and tensors . The fol­
lowing definitions will be used. A tensor is sa id to be g-invarian t if it is
invari ant under any isometry in §. A set of i-dependent tensors of order
p {Ti = tiOl l 012u,ap' i = 1, . . . , b} is said to be § -invariant if any isometry in
§ changing c, int o cs, changes Ti into T;. Not e that this is stronger than
global invar iance under the group g. The velocity moment of order p is
defined as Li CiOl l Cia 2 • •• Cia,. '

We now list the transformation properties following from §-invariance.
The proofs are given in Appendix B.

P 1 Parity-invariance. The set of velocity vectors is invariant under space­
reversal.

P2 Any set of i-dependent vectors ViOl, which is §-invariant, is of the form
ACia'

P 3 Any set of i-dependent tensors tia/h which is 9 -invariant, is of the
form ACia Cill + P,oall .

P 4 Is otropy of second-o rder t ensors. Any 9-invariant tensor t all is of the
form P,oall .

P 5 Any § -invariant third-order tensor vanishes.
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P6 Velocity moments. Od d-order velocity moments vanish. The second­
order velocity moment is given by

be'L Ci.Ci~ = Db.~ . (2.5)
•

There is, in general, no closed form expression for even-order velocity
moments beyond second order, with the assumptions made up to this point
(see section 6).

3 . Microdynamics and proba b ilist ic description

3 .1 Microdynamical equations

It is possible to give a compact rep resentation of the "microdynamics",
describing the application of the up dating rules to the Boolean field. This is
the cellular automaton analog of Hamilton's equations of motion in class ical
statistist ical mechanics. We begin with the HPP lattice gas (section 2.1).
Let ni (t.,r.}, as defined in sect ion 2.1, denote the HPP Boolean field at the
discrete time t• . With i labeling the four cells of an HPP node, the collision
rule can be formulated as follows: If the in-state has i and i + 2 empty and
i + 1 and i + 3 occupied, then the opposite holds in t he out-state; similar ly,
if the in-st ate has i + 1 and i + 3 empty and i and i +2 occu pied; otherwise,
the content of cell i is left unchanged. Thus , the updating of the Boolean
field may be written

ni (t .... + 1, r. + e.) =

(n i A -, (ni A ni+2 A . 1ti+l A -mi+3) ) V (n i+l /\ ni+S /\ ...,ni 1\ ...,niH) (3.1)

whe re t he who le r.h .s. is evaluate d at t; and r •. T he symbols 1\, v , and ...,
stand for A N D, OR, and NOT respectively. It is known that any Boolean
re lat ion can be recoded in arithmetic form (/\ becomes multiplicat ion, ...,
becomes one minus the variable, etc.). In this way, we obtain

ni(t. + 1, r; + c.) = 11; (t., r.) + ai(n). (3.2)

The "collision function" .6. i (n), which can take the va lues ±l and 0, de­
scribes the change in ni(t., r.) due to collisions . For the HPP model, it
depends on ly on i and on the set of n;'s at t .... and r., denoted n; it is given
by

ai(n) =

nHlni+S(1 - ni)(1 - niH) - ni11;+,(1 - ni+,)(1 - ni+S). (3.3)

Equation (3.2) (with ai(n) given by equation (3.3)) will be ca lled the mi­
crodynamical HPP equation. It holds for arbitrary i (modulo four), for
arbitrary integer t., and for arbitrary r ; E f. (f. designates the lat t ice) .

It is easy to extend the microdynamical formalism to other models . For
FHP-I (sect ion 2.2) , we find that the collision function may be written (i
is now defined modulo six)
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(3.4)
+

t.;(n) = ~••e ,

+(1- ~•.r.l
nHln;H(1 - n;)(1 - n;+2)(l - nH, )(1 - n;+5)
n;+,n;+5(l - n;) (1 - n;+l)(1 - n;+5) (1 - n;H)
n;n;+5 (1 - n;+l)(1 - n;+,)(1 - n;H)(1 - n;+5 )
nHln;+,n;+5(1 - 14)(1 - nH,)(l - n;H )
n;nH,n;H(l - n;+l)(l - n;+,)(1 - n;+5)

Here , e,~r. denotes a time- and site-dependent Boolean variable which takes
the value one when head-on colliding particles are to be rotated counte r­
clockwise and zero ot herwise (remember, that there are two possible out­
comes of such collisions) . For the theory, the simplest choice is to assign
equal probabilities to th e two possibilities and to assume independence of
all the €'s. In practical implementations, other chokes are often more con­
ven ient .

We now give t he microdynamical equation for the genera l class of nonde­
terministic models defined in section 2.4. Propagation is as before. For the
collis ion phase at a given node, it is convenient to sum over all 26 in-states
S = {s, = OorI, i = I , ... , b} and 2b out-st ates s'. The nondeterministic
transit ions are taken care of by the introduct ion at each t ime and node
and for any pair of states (s, s' ) of a Boolean variable eul (time and space
labels omitted for conciseness). We assume that

(~...) = A(s ~ s'}, 'Is, s' , (3.5)

where A(s -) Sf) is the t ransition probability introduced in section 2.4j the
angular br acket s denote averaging. We also assume that

L e,,1= 1, 'Vs.
.'

(3.6)

Since the €,s are Boolean, equat ion (3.6) means that, for a given in-state s
and a given realization of eu', one and only one out-state Sf is obtained. It
is now clear that the microdynamical equation can be written as

(3.7)

The factor s~ ensures the presence of a particle in the cell i after the collision;
the various factors in the product over the index J. ensure that before the
collision the pattern of n/s matches that of s/s. Using equat ion (3.7) and
the identity

"s·IIn·j(l - n _)( l- ' j) = n­
L ' , 1 "

;
(3.8)

we can rewrite the microdynamical equat ion in a form that brings out the
collision function

n;(t. + l ,r. + c.) = n; + t.;(n)

t.; (n) = L (s; - s;)~..,II n;'( I - n;)(Hjl.
",1 i

(3.9)
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In th e sequel, it will often he useful to have a compact notation. We
define the collision operator,

C : n; (r.) >-> n; (r.) + ~;(n(r.)) ,

the streaming operator,

S : n;(r.) >-> n;(r. - c.),

and th e evolut ion operator, th e composit ion of the latter,

c = S oC.

The entire updating can now be written as

n(t. + 1,.J = c n(t. , .),

(3.10)

(3.11)

(3.12)

(3.13)

where the point in the second argument of the n's stands for all th e sp ace
vari ab les.

An interesti ng property of the microdynamical equation, not shared by
the Hamilton equations of ordinary statist ical mechanics, is that it remains
meaningful for an infinite lat t ice, since th e updating of any given node
involves only a finite number of neighbors.

3.2 C onservation relations

Conservat ion of mass and momentum at each node in the collision process
can be exp ressed by the following relations for the collision function:

I: ~;(n) = 0, 'In E {O, I}',

I: c;~; (n) = 0, 'In E {O, I}',

(3.14)

(3.15)

where {O, l}b denotes the set of all possible b-bit words. This implies im­
portant conservation relat ions for the Boo lean field :

(3.16)

(3.17)
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3.3 The Liouville equation

We now make the transition, t radit ional in st at ist ical mechanics, from a
deterministic to a prob abilistic point of view. This can be obscured by the
fact that some of our models are already probabilistic. So, let us assume
for a while that the evolut ion operator is deterministic and invertible (as is
the case for HPP).

Assuming that we have a finite lattice, we define the phase space, I',
as t he set of all poss ible assignments s(.) = {s;(r.) , i = 1, ... , b, r. E .c}
of the Boolean field ni(r.). A particular assignment of the Boolean field
will be called a configuration. We now consider at t ime t. = 0 an ensem ble
of init ial conditions, each endowed with a probability p (O , s(.J) ~ 0, such
that

L: p (O , s( .)) = 1.
,(.)er

We let each configur at ion in the ensemble evolve according to the au toma­
ton updating rul e, i.e., with the evolution operat or l of equat ion (3.13) .
The latter being, here, invertible. conservation of probability is expressed
as

(3.19)

This equat ion is clearly the analog of the Liouville equation of statistical
mechanics, and will be given the same name. Alternatively, the Liouville
equat ion can be written

P(t. +1,5s(. )) = p (t. , C- ' s(.)) . (3.20J

To derive this, we have used equation (3.12) and put the streaming operator
in t he l.h.s ., a form which will be more convenient subsequent ly.

In the nondeterministic case , we must enlarge the probability space to
include not on ly t he phase space of initi al condi tions, but the space of all
poss ible choices of th e Boolean variables e(ss' ), which at each t ime an d each
node select the unique transit ion from a given in-state s (see section 3.1).
Since the €,s are indepen dently chosen at each time, the entire Boolean
field n(t., .) is a Markov process (with deterministic rul es, this process is
degenerate) . Wh at we will continue to call the Liouville equ ation is actually
th e Chapman-Kolmogorov equation for this Markov proc ess, namely

p(t. + 1, 5s'( .)) = L:
, (.)Er

II A(s(r.) -+ s'(r.J) p(t., s( .)).
r . E£

(3.21)

This equat ion just expresses that the probability at t; +1 of a given (propa­
gated) configuration s' (.) is the sum of the probabilities at t, of all possible
original configurat ions s(.) times the transiti on prob abili ty. The latter is
a product , because we assumed that the f s are chosen independ ently at
each nod e. In th e deterministic case, A (s(r.) -+ s'(r. ll selects the unique
configuration C-1s'( .)' so that equat ion (3.20) is recovered .
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3.4 Mean quantities
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Having int roduced a probablist ic descr ip t ion , we now turn to mean qu an­
t ities. For an "observable" q(n(t., .J), which depends on the Boolean field
at a single time, the mean is given by ensemble averaging over P (t*,s (.))

(3.22)

An important ro le will be played in t he sequel by the following mean
quantit ies: the mean population

(3.23)

the density, and the mass current (mean momentum)

(3.24)

Note that these are mean quantities per node, not pe r unit area or volume .
The density per cell is defined as d = p/b. Finally, t he mean velocity u is
defined by

j (t. , r .) = p(t.,r.)u (t.,r.). (3.25)

Note that under duality (exchan ge of particles and ho les), p changes
into b - p, d into 1 - d, ,j into - j , and u into the "mean hole-velocity"
UH = -udj(l - d).

Averaging of the microdynamical conservat ion relations 3.16 an d 3.17
leads to conservation relations for the mean populations

(3.26)

(3.27 )

4. Equilibrium solutions

It has been shown by Hardy, Pomeau, and de Pazzis /221 that the HPP
model has very simple statistical equilibri um solut ions (wh ich they call
invar iant states) in which the Boolean variab les at all the cells are indepe n­
dent. Such equilibrium solutions are the lat tice gas equivalent of Maxwell
statesin classical statistical mechanics and are therefore crucial for deriving
hyd rodynamics. There are similar resul ts for the general class of nondeter­
ministic models introduced in section 2.4, which are now discussed.
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4.1 Steady solut ions of t he Liouville equ a t ion

We are interested in equilibrium solut ions, that is, steady-state solut ions
of the Liouville equat ion (3.21) for a finite, periodically wrapped around
lattice. Collisions on the latt ice are purely local (their impact parameter is
zero). This suggests the existence of equilibrium solut ions with no single­
time spatial correlations. The latt ice properties being translation-invariant,
the distr ibution should be the same at each node. Thus , we are looking for
equilibrium solutions of the form.

p (s(.)) = 11P(s(r.)) ,
r.

(4.1)

where p(s) , the probability of a given state , is node-independent . Max­
imizati on of the entropy (see Appendix F) suggests that p(s) should be
complete ly factorized over all cells, that is, of the form

(4.2)

Note that N:'(l - N;)('-") is the probability of a Boolean variable wit h
mean N i .

Now, we must check that there are indeed solutions of the form that we
have been guessing. Substitution of P(.(.)) given by equat ion (4.1) with
p(s) given by equation (4.2) into the Liouville equation (3.21) leads to

II N; ' (l - N;)(l-.,) = LA(s --+ s')II N? (l - N; )(H;) , Vs', (4.3)
i i

where N, is the mean population of cell i , independent of the node and of
the time.

Equation (4.3) is a set 2' (the numb er of different states) equat ions
for b unknowns. The fact that it actua lly possesses solutions is nontrivial.
Furthermore, these solut ions can be complete ly described. Indeed, we have
the following lemma.

Lemma 1 . The following statements are equiva lent :

1. The Ni's are a solution of equation (4.3) .

2. The Ni's are a solution of the se t of b equat ions

L (s: - s;)A(s --+ s'] IIN?(l - N;)(H;) = 0, Vi . (4.4)
u ' ;

3. The Nt's are given by the Fermi-Dirac dis tribution

1Ni = ,
1 + exp(h + q . c.)

(4.5)

where h is an arbitrary real number and q is an arbitrary D -dimensional
vector.
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The proof of the equivalence is given in App endix C; it makes use of
semi-detailed balance an d the absence of spurious invariants. The most
important consequence of the lemma is the Universality Theorem. Nonde­
terministic lattice gas models satisfying semi-detailed balance and having
no spurious invariants admit universal equilibrium solut ions, complete ly
factorized over all nodes and all cells, with mean populations given by
the Fermi-Dirac distributi on (4.5), dependent only on the density P and
the mass cur rent j = pu, an d indep endent of the transition probabilities
A(s .... s').

The proof follows from t he observation that the Lagra nge multipliers
h and q of the Fermi-Dirac distribution can be calcu lated in terms of the
densi ty an d the mass current through the relat ions

1
P=L Ni =L '

i i 1 + exp(h + q . c.)

1
pu = LNici = LCi (h ri i l +exp + q ' Ci

(4.6)

(4.7)

For the HPP model, th is set of equat ions is reducible t o a cubic poly­
nomi al equation, so t hat explicit solut ions are known [221. For the FHP
model, explicit so lut ions are known only for spec ial cases [61].

It is not particularly surprising for models t hat have a built-in exclusion
principle (not mo re than one particl e per cell) to ob t ain a Fermi-Dirac
distribution at equilibrium. Note th at the factorized equilibrium solut ions
remain meaningful on an infinite lattice. There is no proof at the moment
that the only equilibrium solutions which are relevant in the limit of infin it e
latt ices ar e of the above form, namely complet ely fact orized (which then
implies the Fermi-Dirac distribution). There is strong numerical evidence,
for those models that have been simulated , that the Fermi-Dirac is the only
relevant one [8,25,271.

4 .2 Low-speed equilibria

In the "real world" , equilibrium distributions with different mean velocit ies
are simpl y related by a Galilean trans format ion. Galilean invariance does
not hold at the microscopic level for a lattice gas; therefore , there is no sim­
ple relation between the equilibria with van ishing and nonvanishing mean
velocity, For subsequent derivations of fluid dynamical equat ions , we will
on ly need equilibria with low speeds, that is with u = lu i < c, the particle
speed. Such equilibr ia can be calculated perturbatively in powers of u.

We write the equilibrium distribution as

N, = h D(h(p,u ) + q(p ,u) .Ci),
where we have used the Fermi-Dirac function

1
iFD(x) = - - .

1 + eS

(4.8)

(4.9)
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We observe that

(4.10)

Indeed, by assumption (3) of section 2.4, there exists an isometry of the
lattice exchanging any two velocity vectors c, and c;; the vector u = a
being also trivially invariant, the mean population N, is independent of i.
Thus, fFD (h( p, 0)) = d and q (p, 0) = o.

Furthermore, it follows from parity- invariance (u ---+ -U, Ci --+ - Ci )

that

h(p, - u) = h(p ,u), q(p, - u) = - q (p,u).

We now exp and h and q in powers of u

h(p,u) = Ito + h,u' + O(u')

qa(P,u) = q,ua + 0(u3
),

(4.11)

(4.12)

where h OI h2, and ql depend on p. The fact that h2 and qi are scalars rather
than second-order tensors is a consequence of the isotropy of second-order
tensors (property P4 of section 2.4). We substitute equation (4.12) into
equation (4.8) and expand the mean populations in powers of u

N, = [pD + qd~Du· c, + h,[~Du' + ~q;J;D(U . c,)' + 0(ti3) .(4.13)

Here, I FD, f } D , and fpD are the values at Ito of the Fermi-Dirac function
and its first and second derivatives . From equat ion (4.13) , we calcu late the
density p = L:i Ni and the mass current pu = L:i ciNi , using the velocity
moment relations (P 6 of section 2.4) . Identification gives ho, h2, and ql in
terms of p. This is then used to calculate the equilibrium mean populat ion
up to second order in u ; we obtain

Ni' (p, u) = i!-b + pfC'aUa + pG(p)Q'apuaup + 0 (u3
)

c b

where

(4.14)

D' b - 2p
G(p) = 2c' b b _ p and (4.15)

In equat ion (4.14), the superscript "eq" stresses that the mean population
are evaluate d at equilibrium.

Note t hat the coefficient G(p) of the quadratic term vanishes for p = b/ 2,
that is, when the dens ity of particles and holes are the same. Th is result ,
which holds more generally for the coefficients of any even power of u,
follows by duality: Ni' goes into 1 - Ni' and u into - u at p = b/ 2. It
does not matter whether or not the collision rules are duality-invariant ,
as long as they sat isfy semi-detailed balance, since the equilibrium is then
universal.
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5. Macrodynamical equations

In the "real world" J fluid dynamics may be viewed as the gluing of local
thermodynamic equilibria with slowly varying parameters [62,63]. Lattice
gases also admit equilibrium solutions ." These have continuously adjustable
parameters, the mean values of the conserved quant it ies, namely mass and
momentum. On a very large lattice, we can set up local equ ilibria with
density and mass current slowly changing in space and t ime . From the
conservat ion re lat ions, we will derive by a mult i-sca le techn ique macrody­
namical equations, that is , PDEs for the large scale and long-time behavior
of density and mass cur rent.

We cons ider a lat t ice gas sat isfying all the assumptions of section 2.4.
We denote by p(r.) and u (r.) the density and (mean) velocity' at lat ti ce
node r .. We assume that these quantit ies are changing on a spatial scale
f - 1 (in units of lattice constant). This requires that the latt ice size L be
itself at least Ore'). Eventually, we Jet E - O. The spatial change is
assumed to be sufficiently regular to allow interpolations for the purpose of
calculating derivatives." When t ime and space are treated as continuous,
they are denoted t and r . We further assume that the density is 0(1) and
that the velocity is small compared to the particle speed c.7 We expect the
following phenomena:

1. re laxation to local equilibrium on time scale fO,

2. densi ty per turbations propagating as sound waves on time scale cl,

3. diffus ive (an d possibly advective) effects on t ime sca le c 2 •

We thus use a th ree-t ime formalism: t. (discrete) , tl = et. , and t 2 = f 2t. ,
the latter two being treated as continuous variab les. We use two space
variables: r; (d iscrete) and rl = er; (continuous).

Let us denote by NlO) (r.) the mean equilibr ium popul at ions based on
the local value of p and u. They are given by equation (4.14). The actual
mean populations Ni(t, r) will be close to the equilibrium values and may
be expanded in powers of f:

(5.1)

The corrections should not contribute to the local values of density and
mean momentum; thus,

(5.2)

"The qualificat ion "thermodyna mic" is not so appropriate since t here is no relevant
energy var iable.

I> Hencefor th, we will ju st wri te "velocity", since t his mean velocity changes in space .
6The interp olations can be done via th e Fourier rep resentation if the lat ti ce is periodic.
"Eveneuelly, we will assu me t he velocity to be O(e), but at this po int it is more conve-

nient to keep e and tl as inde pendent expan sion parameters .
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We now start from the exact conservation relations (3.26) and (3.27)
and expand both the Ni's and the finite differences in powers of E. Note
that all finite differences must be expanded to second order; otherwise, the
viscous terms are not correctly captured. Time and space derivatives will
be denoted 0, and Or = {o. , a = 1... . .D}. For the multi-scale formalism,
we make the substitutions

at --+ EOtt + E20t" and ar --+ Ear t "

The components of Orl w ill be denoted ala'

To leading order, O(E), we obtain

O " (0) 0" (0)
t 1 L....JN; + l/J ~ci{JNi = 0,

and

(S.3)

(S.4)

(S .S)

We now substitute the equilibrium valu es (4.14) for the N,l°)·s and use the
velocity momen t relations P6 of section 2.4 . We obtain the "m acrodynam­
ical Euler equa tions"

(S.6)

and

PaP is the momentum-flux tensor,s

P r:z{J == L CiaCi/JN; 'l.
;

c'
D P8.p + pG(p)T.p" ",'" + 0 (,,' ),

with

(S.7)

(S.8)

(S.9)

and G(p) and Qh' given by equation (4.1S) of section 4. Note t hat the
corr ecti on term in the r .h.s. of equation (S.8) is 0(,,') ra ther than O(u') ;
indeed, it follows from the parity-invariance of the lattice gas that first­
order spatial derivative terms do not contain odd powers of u .

We now proceed to th e next order, 0«'). We expand equations (3.26)
and (3.27) to second order ; collecting all 0« ') t erms. we obtain

O " (0) 1 ,,(0) ,, (0)
t, L.J N, + -a t l e., L.J N, + at l alP L.J c,pN,

, 2, ,

8 Actually, this is only the leading order approximation to the momentum-8ux.
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(5.10)

(5.11)

By equation (5.2) , Ei N i(l) = 0 and L.i ciaNPl = O. For the N i(O) ,s, we
substitute their low-speed equilibrium form (4.14), leaving out O( ..') terms.
Re-expressing derivatives of p and pu with respect to t l in terms of space
derivatives, using equations (5.6) and (5.7), we obtain

and

a"p = 0 (5.12)

Equat ion (5.12) tells us that there is no mass diffusion (there is a single
spec ies of part icles) . Equation (5.13) describes the momentum diffusion
over long (0 (C ')) time-scales. It has two contributions. The t erm involving
Tt;l. fh 6 comes from particle propagation and we will comment on it later.

The other term in equat ion (5.1 3) involves the deviations N}l } from
the equilibrium mean populations . NP ) vanishes when the equilibrium
is uniform. It must therefore be a linear combination of gradients (with
respect to rd of p and pu. Linear response theory is needed to calculate
the coe fficients . At this point, we will only make use of symmetry arguments
to reduce the number of coefficients. We assume that u is sma ll, so that
to leading order equilibria are invariant under the isometry group g of the
lattice (see section 2.4) . Since the gradient of p is a vector and the gradient
of pu is a second-order tensor, properties P 2 and P3 of section 2.4 allow
us to write

(5.14)

By equation (5.2), we have a = 0 and c' ''' + DX = o. Note th at '" should
depend on p, but not on u , since it is evaluated at u = O. Substituting the
expression for N}l } into equation (5.13), we obtain

(5.15)
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In the sequel, it will be more convenient to co llapse the set of four
equations , governing the evolution of p and pu on 0(e1) and O(e') time­
scales, into a pair of equat ions, written in terms of the original variables t
and r (in their continuous version). We thus obtain the macrodynamical
equations

(5.16)

a,p
a,(pu.)

+ ap(pup) = 0,

+ ap (pG(p)T. p"u,u, + ~po.p)

+ ap [(", (p) + ,~.) T.p"a,(pu,) ]
= O(mS) + O(,'u ) + O(,Su).

The equivalence of equations (5.16) and (5.17) to (5.6) , (5.7), (5.12), and
(5.15) follows by equat ion (5.3). Not e that equation (16) is the standard
density equation of fluid mechanics and that equation (5.17) already has a
st rong resemblance to the Navier-Stokes equations.

6. Recovering isotropy

The macrodynamical equations (5.16) and (5.17) are not fully isotropic.
The presence of a lattice with discrete rotational symmetries is st ill felt
through the tensor

(6.1)

appearing in both the nonlinear and diffusive terms of (5.17). Furthermore,
the higher-order te rms in the r.h.s, of equation (5.17) have no reason to be
isotropic. This should not worry us since they will eventually turn out to
be irrelevant. Contrary to t ra nslat ional discret eness , rotational discreteness
cannot go away under the macroscopic limit; the latter involves large scales
but not in any way "large angles"J since the group of rotations is compact .

We have seen in section 2.4 that tensors up to third order having the
same invariance group 9 as the discrete velocity set are isotropic. Not so for
tensors of fourth order such as TQ/h 6. Indeed, for the HPP model (section
2.1), explicit calculation of the momentum-flux tensor, given by equat ion
(5.8) , is quite straightforward. The result is

PH =

pG(p)(ui - ui) + ~ + O(u') , P" = pG(p)(u; - un + ~ + O(u' ), (6.2)

P12 = P21 = 0 , (6.3)

with

2 - p
G(p) = - .

4 -p
(6.4)
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The only second-order tensors quadratic in the velocity being uaup and
u . U SaP' the tensor Pa{J is not isotropic.

In order to eventually obtain the Navier-Stokes equations , the tensor
Tath 6 given by equation (6.1) must be isotropic, that is, invariant under the
full orthogonal group. This tensor is pairwise symmetrical in (0: , (3) and
b, 0); from equation (6.1), it follows that it satisfies

(6.5)

(6.6)

When the tensor Ta/h l is isotropic, these properties uniquely constrain it
to be of the following form:

be' ( 2)
T.~1' = D(D + 2) 0.,0~, + 0.,0~1 - D O.~O" .

For general group-theoretical material concerning t he isot ropy of tensors
with discrete symmetries in the context of lat tice gases, we refer the reader
to reference 39 . Crucial observations for obtaining the two- and three­
dimensional Navier-Stokes equations are the isotropy of pairwise symmet­
rical tensors for the triangular FHP lattice in two dimensions and the face­
centered-hypercubic (FCHC) lattice in four dimensions, and thus also for
the pseudo-four-dimensional three-dimensional model. We give now ele­
mentary proofs of these results .

In two dimensions, it is convenient to cons ider TQ~..,6 as a linear map
from the space E of two- by-two real symmetrical matrices into it self:

(6.7)

A basis of the space E is formed by the matrices PI, P2, and Ps, associated
with the orthogonal projections onto the Xl-axis and onto two other direc­
tions at 21f/ 3 and 41f/ 3. In this representation, an arbitrary E -matrix may
be written as

(6.8)

and T becomes a three-by-three matrix Tab, (a,b = 1,2,3). The key obser­
vat ion is that the hexagonal group (rotations by multiples of 71' / 3) becomes
the permutation gro up of Pll P2 , and Ps. Thus, Tab is invariant under
arbitr ary permut ations of the coordinates, i.e. , is of the form

Tab = ,pd iag••(1, l,l) + Xl •• , (6.9)

where diagab(l , 1, 1) is the diagonal matrix with entries one, labis the matrix
with all ent ries equal to one, and <P and X are arbitrary scalars. From
equation (6.8), we have

tr(A) = Xl + X, + xa,
where tr denotes the t race. We also note that

(6.10)



674 Frisch, d 'Humieres, Hasslacher, Lallemand, Pomeau, Rivet

(6.16)

Pi + P, + P, = (3/2)1, (6.11)

where I is t he ident ity (check it for the unit vect ors of the Xl and %2 axis).
Using equat ions (6.10) and (6.11), we can rewrite equation (6.9) as

3
T : A ..... ~A + "2X tr (A )I. (6.12)

Reverting to tensor notations, this becomes

~ 3X
TaP" = "2 (Oa,OP' + 0a'OP,) + 20apO" , (6.13)

which is obviously isotropic.
We turn to the four-dimensional case, using the FCHC model of sec­

tion 2.3. Invariance under permutat ions of coordinates and reversal of any
coordinate implies that the most general possible form for Ta1h 6 is

TaP, . = ~oapop,o,. + X (o...,op, + oa' op, ) + .pOapO". (6.14)

The X and t/J terms are already isotropic. The vanishin g of </J is a conse­
quence of the invariance of the velocity set under the symmetry E with
respe ct to the hyperplane Xl + %2 + X3 + X. = 0, that is ,

1
Xa 1-+ X CII - a, U = - L Z o:_ (6.15)

2 a

Indeed, cons ider the vector Va = (2, 0,0. 0). Contract ing the 4> term four
times with ve , we obtain 164>; the image of Va under E is Wa = (1, -1 , - 1, - 1),
which contracted four times with the 4> term gives 44>. Thus , invariance re­
quires 4> = 0, which proves isotropy.

We return to the general D-dimensional case, assuming isotropy. Subst i­
tuting equ at ion (6.6) into the macrodynamical momentum equation (5.17),
we obtain

a, (pua) + ap(pg(p)uaup) + aa(C;P (1 -g(p)~;) )

= ap [(v, (p)+ vp ) (aa(PUp) +ap(PUa) - ~ Oapa,(pu,))]

+ O(w') + O(.' u') + O(.'u),

with
D b - 2p c'

g(p) = D + 2 b _ p ' c; = D '

be' e2

v,(p) = D(D +2)"'(p), vp = 2(D +2). (6.17)

Note that g(p) appearing in equat ion (6.17) is not the same as G(p) in­
troduced in equat ion (4.15). Note also that "'(p), which was introduced in
sect ion 5, is st ill to be determined (see section 8) .

We have now recovered macroscopic isotropy; equation (6.16) is very
closely related to the fluid dynamical momentum (Navier-Stokes) equat ions.
We postpone all further remarks to the next section.
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'T . Fluid dynamical regimes

Let us rewrite the macrodynamical equat ions for mass and momentum,
derived in the previous sect ions in a compact form which brings out their
similarit ies with the equations of fluid dynamics:

a,p + ap (pup) = 0, (7.1)

a, (pu. ) + app.p = aps.p+ O(WS) + O(,'u') + O(,Su). (7.2)

The momentum-flux tensor Pa(3 and the viscous stress tensor 8t;Kfj are given
by

and

s.P = v(p) (aa(PUp) + ap(pua) - ~6apa,(pu,))

v(p) = v,(p) + vp ,

(7.3)

(7.4)

where g(p), c;, £Ie, and £Ip are defined in equat ion (6.17). Their values for
the FHP-I and FCHC models are given below:

3 -p
g(p) = -6 -,

- p

412 - P
g(p) = 324 - p'

, 1
c. = 2'

, 1
c = ­• 2' v, (p) = -4!/J(p)'

1
£Ip = - 6" '

for FHP-I

for FCHC.

(7.5)

Various remarks are now in order. When the velocity u is very small,
the moment um-flux tensor reduces to a diagonal pressure term POt;KfJ with
the pressure given by the "isothermal" relation

(7.6)

From this, we infer that the speed of sound should be o.. namely 1/..;2 for
FHP-I and FCHC.

The momentum-flux tensor in the "real world" is P t;KfJ = pOafJ + PUt;KUp,
This form is a consequence of Galilean invarlance, which allows one to
relate thermodynamic equilibria with vanishing and nonvanishing mean
velocit ies. The lattice gas momentum-flux tensor (7.3) with nonvanishing
velocity differs by an additive term in the pressure and a multiplicat ive
density -dependent factor g(p) in the advection term. We will see later in
this section how Galilean invariance can nevertheless be recovered.

Equat ion (7.4) is the stress-strain relation for a Newtonian fluid having
kinemat ic viscosity v, + vp and vanishing bulk viscosity 164]. The traceless
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character of SaP (whic h implies this vanishing of the bulk viscosity) comes
from the traceless character of QiaPJ defined by equat ion (4 .15); t his result
would be upset by the presence of rest particles such as exist in the models
FHP-II and III (see Appendix E) . The kinematic viscos ity has two con­
t ri but ions. One is the "collision viscosity" V C J not yet determined, wh ich
depends on the details of the collisions and is positive (see section 8). The
other one is the "propagat ion viscosity" lip, which is negative and does not
involve the collis ions. The presenc e of such a negative propagation v iscosi ty
is an effect of the latt ice discreteness [421.

The general strategy by which standard fluid dynamical equ ations are
derived from equat ions (7.1) and (7.2) is to rescale the space, time, and
veloci ty variables in such a way as to make undesirable terms irrelevant
as E --+ O. Three d ifferent reg imes will be cons idered in the following
su bsections . They correspond respectively to sound propagation , sound
propagation with slow damping, and incompress ible (Navier-Stokes) fluid
dynamics .

7.1 Sound propagation

Consider a weak perturbation of the equilibrium solut ion with densi ty Po
and velocity zero . We write

P =Po+p'. (7.7)

In a suitable limit , we expect that the only relevant terms in equations (7.1)
and (7.2) will beg

a,P' + Po"l . u = 0

(7.8)

Formally, this regime is ob tained by setting

(7.9)

(7.10)

It is then straightforward to check that the leading order terms take the
form of equations (7.8) (in the rescaled variables). Eliminating u in equa­
tion (7.8), we obtain the scalar wave equation

a'_ p' - c2\72p' = 0at" .
In other words, density and velocity perturbations with amplitudes 0(1) on
temporal and spatial scales O(f) propagate as sound waves with speed c,.10
Since the present regime of undamped sound waves involves only tensors
of second order, it also applies to the HPP model.

9From here OD, we use vector notation whenever possible.
lOWe have used here the Land au 0 0 and 00 notation .
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7.2 D amp ed sound

Ano ther reg ime includes the viscous damping t erm, so that instead of equa­
tion (7.8) , we should have

a,p' + PoV . u = 0

(
D-2 )poa,u + c:Vp' = Pov(Po) V'u + -nVV . u . (7.11)

To obtain th is regime, we proceed as in section 7.1 and include an addit ional
t ime t2 = E2t . Furthermore, in t he scaling re lation (7.9) we now requ ire
a > 1, that is, u and p' should be o(E); ot herwise, t he nonlinear term also
becomes relevant . Note that the damping is now on a t ime sca le O(c 2 ) .

Since propagation and dampin g are on time scales involving different powers
of E, it is not possible to describe t hem in a sing le equation without mixin g
orders.

7.3 Incompressible fluid dynamics: the N avier-Stokes equations

It is known that many featur es of low Mach number!' flows in an or dinary
gas can be described by the incompressible Nav ier-Stokes equation

a,u + u . Vu = - Vp + vV' u

V . u = o. (7.12)

In the "real world", the incompressible Navier-Stokes equat ion can be de­
rived from the full compressib le equat ions , using a Mach number expans ion.
There are some fine points in th is expansion for which we refer the inte r­
ested reader to reference 65 . Ignorin g these, the essential observation is
that , to leadi ng order, density variations become irrelevant everywhere ex­
cept in t he pressure te rm; the latter becomes slaved to the nonline ar te rm
by the incompressibili ty cons traint.

Just the same kind of expansion (with the same difficult ies) can be ap­
plied t o lattice gas dynamics. We start from equat ions (7.1) and (7.2) an d
fre eze the density by set t ing it equa l to the constant and unifor m value Po
everywhere except in the pressure term , where we keep the densi ty fluctu­
a tions. We also ignore all higher-or der terms O(E3U), etc. T his pro duces
the following set of equat ions:

V . u = o. (7.13)

U The Mach number is t he ratio of a ch aract erist ic flow velocity t o the speed of sound.
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The resulting equations (7.13) differ from equa t ion (7.2) only by the pres­
ence of the factor g(po) in front of the adv ection term u . Vu. As it stands,
equation (7.13) is not Galilean invariant. This, of course, reflects the lack
of Galilean invariance at the lattice level. Similarly, th e vanishing of g(po)
when the density per cell d = Po/b is equal to 1/2 , i.e. , for equal mean num­
bers of particles and holes, reflects a duality-invariance of the lattice gas
withou t counterpart in the "real world" (see end of section 4.2) . However,
as soon as d < 1/2, it is straightforward to reduce equat ion (7.13) to the
true Navier-Stokes equations (7.12) ; it suffices to resca le time and viscos ity:

(7.14)v --> g(po)v.
t

t --> - ( -) ,g Po

Now we show that the re is actua lly a rescaling of variables which re­
duces the macrodynamical equations to the incompress ible Navier-Stokes
equations . We set

1 _,
t = - (-) ' T,

g Po
U = eU,

( , 0) ( )U') Pog(po) 'P'
p - P( g Po ~ = - c-'- ' ,

•
v = g(po)v'. (7.15)

Thus , all the relevant terms are 0 (, ' ) in equation (7.1) and 0(") in equa­
t ion (7.2) . The high er-order te rms in the r .h. s. of equation (7.2) are 0(,')
or smaller. In this way, we obtain to leading order (\71 denotes the gradient
with respect to rd

aTu + U· V,U = - V, P ' + v'V:U

V" U = 0, (7.16)

which are exactly the incompressible Navier-Stokes equations.
Various comments are now made. The expansion leading to equation

(7 .16) is a large-scale and low Mach number expans ion (the former is here
inversely proportional to the latter) . It also follows from the scaling re­
lations (7.15) that the Reynolds numher is kept fixed . It is not possibl e
w ithin ou r fram ework to have an asymptotic regime leading to nonlinear
compressible equat ions at finite Mach number . Indeed , the spe ed of sound
is here a finite fraction of the particle speed, and it is essential that the
macroscopic velocity he small compared to particle speed, 50 as not to be
contaminated by higher-ord er nonlineari t ies. It is not eworthy that models
can be constructed having many rest particl es (zero-velocity) with arbitrar­
ily low speed of sound.

In a pure Navier-Stokes context , the non-G alilean invariance at the mi­
croscopic level is not a serious difficulty; as we have seen, Galilean invariance
is recovered macroscopically, just by rescaling the time variable. However)
when the models discussed here are generalized to include) for example ,



Lattice Gas Hydrodynamics in Two and Three Dim ensions 679

mu lt i-phase flow or buoyancy effects, a more ser ious problem m ay arise
bec ause the advect ion term of scal ar quantiti es, such as chemica l concen­
trations or temp erature, involves usu ally a factor g(p) different from that
of th e nonlinear advection t erm in the Navier-Stokes equat ions. Various
solutions to this problem have been proposed [48,661 .

There is a variant of our formalism, leading also t o the incompressib le
Navier-Stokes equat ions, but in t erms of the mass curren t j = pu r ath er
than the velocity u . The an alog of equation (7.13) (without rescaling) is
then

8J + g(po)j . '\7j = -c; '\7 p' + v (Po )'\7'j
Po

'\7 . j = o. (7.17)

Since j and g(po) / Po change sign under du ality, equat ion (7.17) br ings out
duality-invariance.P A more decisive advantage of the j-representation
is that it gives a better ap proximat ion to the st eady state Navier-S tokes
equat ions when th e Mach number is only moderately small. This is because
in the steady stat e the cont inuity equat ion implies exac t ly V . j = O.

In three dimensions, whe n we use th e pseudo-four-dimensional F CHC
model, there are three independent space variables r = (XhX 2 , xs), bu t four
velocity components:

U , = (U ,U.) = (U" U"U"U.) . (7.18)

The four-velocity U I satisfies the four-dimensional Navier-Stokes equat ions
with no x..-dependence. Thus, t he t hree-velocity U sat isfies the three­
dimensional Navier-Stokes equat ions (7.16) ,13 while U.. satisfies (note that
the pressure term drops out )

(7.19)

This is the equat ion for a passive scalar with unit Schmidt number (ratio
of viscos ity to diffusivity) .

F inally, we refer th e reader to Appendix D for the inclusion of body
forces in the Navier-Stokes equations.

12In th e u-represent at ion, duality-invariance is broken because we have decided to work
with the velocity of particles r ather than wit h that of holes.

13Since th e velocity set of the peeudo-Iour-dimeneional model is th e same as in four
dimensions, isotropy is ensure d for all fourth-orde r te nsors depending only on t he velocity
set . Thus, the nonlinear term has the corr ect isotropic form . Th e viscous t erm is isot ropic
within the Boltzmann approximation (see sect ion 8.2); ot herwise, deviations from isotropy
are expect ed to be small 12].
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8. The viscosity

All t he macroscopic equations derived in sect ion 7 have a universal form
which does not depend on the details of collisions. The kinematic shear
viscos ity v, which we will hencefo rth call the viscosity, does not possess
this unive rsa lity. Transport coefficients such as the viscosi ty characterize
the linear respo nse of equilibrium solut ions to small externally imposed
perturbations. It is known in statistical mechanics that the relaxation
(or diss ipation) of external perturbat ions is connected t o the fluct uations
at equilibrium via fluct uation-dissipation relations. Such relations have a
counterpart for lattice gases . Two quite different approaches are know n.
In section 8.1, following a suggestion already made in [23], we present the
"noisy" hy drodynamics viewpoint, in the spirit of Landau and Lifschitz
[67,68]. Another approach, in the spirit of Kubo [69] and Green [70], us ing
a Liouville equation formalism, may be found in reference 43. In sect ion 8.2,
we int rodu ce the latt ice analog of the Boltzmann approximation, which al­
lows an explicit calculation of the viscosity. In section 8.3, we discuss some
implicat ions for the Rey nolds numbers of incompressible flows simulated
on latt ice gases .

8.1 Fluctuation-diss ipation relation and "noisy" hydrodynamics

We first exp lain the basic ideas in words. Spontaneous fluct uations at equi­
libri um involve modes of all poss ible scales. The fluctuat ions of very large
scales should have their dynamics governed by the macroscopic equations
derived in sect ions 5 through 7. Such fluctuations are also expected to be
very weak, so that linear hydrodynami cs should apply. Large-scale spon­
taneous fluctuations are constantly regenerated, and in a random manner;
th is regeneration is provided by a random force (noise) te rm which can be
identi fied an d expressed in te rms of the fluctuating microscopic var iables.
If this rand om force has a short correlation-ti me {i.e., small compared to
the life-time of the large-scale fluctuat ions under invest igation) , then each
large-scale mode v has its dynamics governed by a Langevi n equation.It It
follows that the variance (v2) can be expressed 'in terms of the damping
coefficient 1 (related to the viscos ity) and of the time-corre lation function
of the random force . Alternat ively, the var iance (v2) can be calculated from
the known one-time equilibr ium properties. Ident ificat ion gives the viscos­
ity in terms of equ ilibrium time-correlation functions . This is the genera l
program that we now carry out for the special case of lat t ice gases . We
restrict ourselves to equilibr ium solutions with zero mean velocity.

We will use in this section the following not ation. The density p and the
mass current j are no longer given by their expressions (3.24) in terms of
the mean populations; instead, they are defined in terms of the fluct uat ing
Boolean field

14For the case of lat tice gases, we will act ua lly obtain a finite difference equation.
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(8.1)

We denote by n; t he fluct uat ing part of the Booiean field, defined by

(8.2)

where d is the density per cell.
We introduce meso-averaged fields by taking spatial averages over a a

dist ance C 1 , l 5 These will be denoted by angular brackets with the subscript
rna. The meso-averages of ni, P, and j are denoted ni, p, and j respectively.
Localiy, the equilibr ium relation (4.14) should hold approximately for the
meso-averaged populations. We thus write

(8.3)

8i represents the (still unknown) input from non-hydrodynamic fluctua­
tions; n~l) is the contribution analogous to fNP ) in equation (5.1), aris­
ing from the gradients of meso-averages . Note that in equation (8.3) we
dropped contributions nonlinear in the mass current ; indeed, we should be
able to determine the viscosity from just linear hydrodynamics. IS

We now derive the equations for noisy hydrodynamics. As usual, we
start from the microscopic conservation relations (3.16) and (3.17) and we
take their meso-averages:

L !n.(t. + 1, f. + C;) - Ii ;(t. ,f. )] = 0,

L C;[Ii;(t . + 1,f. + c.) - Ii;(t ., f.) ] = O.
;

Substi tuting equatino (8.3) into equation (8.5)' we obtain

(8.4)

(8.5)

1 " D " ,- -bL" c;lp(t. +1,f.+C;)-p(t.,f.)! + c'b L" C; C; ' j(t. +1 , f . +c ;)-j(t., f.) ]. ,

where

f (t. , f .) = - L c;l6;(t. + 1, f . + C;) - 6;(t.,f.) ]

(8.6)

(8.7)

is the random force. Using equations (8,1) through (8.5), we can also write
(to leading ord er in gradients)

15 More precisely, by dropping spat ial Fourier components with wavenumber k > f.

16This is not exactly t.rue in t.wo dimensions as we will see below.
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f(t.,r.) =

( C~b 2:: (c'c;., + Dei -c; c;) [ii;(t. + 1,r. + c.] - ii;(t. + 1, r-, + C;)I)
=

(8.8)

(8.9)

The l.h .s . of equation {8.6} is expanded in powers of gradients [l.e., of
E), as we did in section 5. Howeve r, we keep finite differences rather than
derivatives in time because of the presence of the rapidly varying random
force. Since we only want to identify the shear viscosity (the bulk viscos ity
is zero), it suffices to extract the solenoidal part of the hydrodynamica l
equat ion. For this and other reasons, it is bett er to work in Fourier space.
We define the (spatial) Fourier t ransform of the fluct uating Boolean field
by

ni(t., r...} = Leikor·n(t. ,k ),
•

where the components of k are multiples of 211" divided by the lattice peri­
odicities in the various directions. We similarly define j and f I the Fourier
transforms of the mass current and the random force. Their solenoidal
parts, projection on the hyperplane perpendicular to k , are denoted I, and
f.L .

To leading order in k, we obtain from equation (8.8) using equat ion
(2.5)

(8.10)

The meso-averaging is just the restriction that k < E. Fourier transforming
equat ion (8.6) and t aking the solenoidal part, we obtain for sma ll k

(8.11)

This is our discrete Langevin equation. Note that v is the (tot al) viscosity
v = vc: +vp . In principle, we must expand to second order in k to obtain the
viscous terms, but we cou ld as well have wri t ten the l.h.s of equati on (8.11)
a priori, since we want to use equation (8.11) to determine the viscosity.
It is straightforward to solve the linear finite-difference equation (8.11) .
From the solution, we calculate the variance of jJ. and obtain, when the
viscous damping time 1/(vk 2

) is large compared to the correlation time of
the random force

( ~.L (t., k) I ' ) = lk' ••~m (f.L (t., k) . fl(t. ,k))
2v t.=-oo

(8.12)

where the asterisk denotes complex conjugation. The variance of j.1 can
also be ca lculat ed directly using equat ion (8.1) and
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(iit ) = (nt) - (n;)' = d - d',

683

(8.13)

where 6p• denotes a Kronecker delta in the spatial separation p. _ We obtain

Iii I') 1, D - 1\pJ.(t.,k) = Vbc d(l - c!)----n-' (8.14)

where V denotes the tota l number of lattice points in the periodicity vol­
ume . Thus, the l.h.s . of equation (8.12) is k-independent. We evaluate
the r .h.s of equation (8.12) in the limit k --+ 0, using equation (8.10). We
skip some intermediate steps in which we (i) use the stationariness of the
fluctuations at equilibrium, (ii) use the isotropy of second- and fourth-order
symmetrical tensors, (iii) interchange the k --+ 0 limit and the infinite sum­
mation over t• .17 Identi fying the two expressions (8.12) and (8.14), we
obtain for the viscosity

v =
D 1 1 1

2(D - l )( D + 2) be' d(l - d) V
t. = +oo
L: L:Q;. pQ; .P (ii;(t . ,O)iij(O, 0))

t. = -oo ijOl/1

with

D 1 1 t. = +oo

= 2(D - l )(D + 2) be' d(l - d) ,.~oo
L: L:Q;.pQ;.p (ii ;(t ., p. )ii; (O,O))

p.ef. ijOl/1

(8.15)

(8.16)

This completes the fluctuation-dissipation calculation of the viscosity.
A consequence of the Fourier-space representation (the upper half of equa­
tion (8.15)) is the positivity of the viscosity ; indeed, the viscos ity is, within a
positive factor, the time-summation of the autocorrelation of Ei Qia/1ni(t. , 0).

Several comments are now in order. It is easily checked that the t. = 0
contribution t o the viscosity (lower part of equat ion (8.15) is c' / (2(D +2)),
that is, just the opposite of the "propagation viscosity" vp introduced in
section 7. The viscos ity is the sum of the collision viscos ity V~ and v p . Using
the identi ty

t.= +oo t. = +oo
L: Z(t.) = 2 L: Z (t. ) - Z(O) ,

b =-oo t. =O

I1This is equivalent to assuming that the viscosity is finite, see below.

(8.17)
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(for an even function Z(t.)), we find that lie has a representat ion similar to
(8.15) (lower part), with an additional factor of 2 and the summation over
t; extending only from 0 to 00 . We thereby recover an expression derived
in reference 43, using a discrete variant of the Green-Kubo formalism. It
is reassuring to have two completely different derivations of the viscosity,
since we consider our fluctuation-dissipation derivation somewhat delicate.

It is of interest that the fluctuation-dissipation derivation gives directly
the (total) viscosity. This suggests that the splitting into collis ion and
propagation viscosities is an artifact of our multi-scale formalism .

There is no closed form representation of the correlation function
(ii;(t., p.)ii; (O, 0)), except for short ti mes. However, (8.15) is a good start­
ing point for a Monte-Carlo calcu lation of the v iscosity [43].

In our derivation, we have dropped all cont r ibut ions from nonlinear
terms in the mass curren t j . Is this justified ? If we reinstate the nonlinear
te rms, we obta in, for the solenoidal part of the meso-averaged mass cur­
rent , the Navie r-Stokes equations (7.17) of sect ion 8 with the addit ional
random force given in the Fourier re presentat ion by equation (8.10). On
macroscopic scales, this force may be considered as o-correlated in time.
Its spectrum follows, for small k, a kD+l power-law.P T he Navler-Stokes
equations with this kind of power- law forcing is one of the few problems in
nonlinear statistical fluid mechanics which can be systematically analyzed
by renormalization group methods [71 ,721 . For D > 2, the nonlinear term is
irrelevant for small k so that our calculation of the viscosity is legitimate. At
the "crossover" dimension D = 2, the nonlinear term becomes "marginal" j

it produces a renormalization of the viscosity which is then logarithmica lly
scale-dependent. Thus, in the limit of infinite scale-separat ion, the viscos­
ity becomes infini te in two dime nsions. T his is an instance of the known
divergence of t ransport coefficients in two-dimensional stat istical mechan­
ics [68,73]. Alternat ively, the d ivergence of the viscosity in two dimensions
can be viewed as due to the presence of a "long-t ime-t a il" , propor tion al to
f; D/\ in the correlation fu nction appearing in equat ion (8.15) . At tempts
have been mad e to observe long-time- t ails and scale-dependence of the vis­
cosi ty in Monte-Carlo simulations of lattice gas models [8,23,43,441. T his
is not easy because (i) the effects show up on ly at very long t imes (or large
scales) and may then be hidden by Monte-Carlo noise (insufficient averag­
ing), and (ii) the effects should get weaker as the numher b of cells pe r node
increases (see end of section 8.2).

Finally, the noisy hydrodynamics formalism can be used to estimate to
what extent the microscopic noise contaminates the hy drodynamic macro­
scopic signal. Estimates, assuming the signal to be meso-averaged in space
and time, have been made in the context of fully developed incom pressible
two- and three-dimensional turbulence.P It has been fou nd that in two
dimensions noise is relevant only at scales less than the d issipation scale,

18A fact or k2 comes from the average squared Fourier amplitude and another facto r
kD - 1 from the D~dimen8ional volume element .

l ONote th at in the incompressible case, only eclenoidal noise is relevant .
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while in three dimensions this happens only far out in t he dissipat ion range
[741·

8 .2 The Lattice Boltzmann approximation

Explicit calculat ion of t ranspo rt coefficients can be done for lat tice gases ,
using the Boltzmann approximation. In this approximation, one assumes
that particles entering a collision process have no prior correlations. The
microdynamical formalism of section 3.1 is particular ly well su ite d for deriv­
ing what we will call the lattice Boltzmann equat ion. We take the ensemble
average of equation (3.9). The Boolean vari ab les 7ti become th e mean pop­
ulations Ni. The average of the collision function Ai can be completely
factorized, thanks to th e Boltzmann approximation. We obt ain

N,(t. + I;r; + c.) = N,(t . ,r.) + A:,olu

Ll: ' " = L(s: - s;)A(s ~ s') IIN;'(l - N; )(l- .;).
',' ;

(8.18)

Here, all t he N;'s are evaluated at t. and r • . T he A{s --+ 8') 's , the trans it ion
probabili ties introduced in sect ion 2.4, are the averages of the Boolean
transition vari ables e"l. Note that the (Boltzmann) collision funct ion 6io1u

vanishes at equilibrium.
The Boltzmann approximation in ordinary gases is assoc iated with low

dens ity sit ua t ions , when the mean-free path is so large that particles enter­
ing a collision come mostly from distant un correlated regions. The Boltz ­
mann approximation for a lat t ice gas appears to have a very bro ad validi ty,
not particularly restricted to low dens lties.t? We will come back to the
matter at the end of th is section.

Our lattice Boltzmann equation (8.18) is a finite difference equat ion.
There is a differential version of it, obt ained by Taylor-expanding the finite
differences to first order , namely

(8.19)

where .6.;'OlU is defined as in equation (8.18). Boltzmann equations of the
form (8.19) have been extensively studied as discrete velocity approxima­
t ions to t he ordi nary Boltzmann equ ation 115-17,191. The (differential)
Boltzmann formalism has been ap plied to vari ous lat tice gas models [35,391 .
This formalism correctly captures all hydrodynamic phenomena involving
on ly first-order derivatives. Indeed , for these, we have seen th at only t he
equilibrium solutions matter, and the lat ter are completely fact orized . Dif­
fusive phenomena involve second-order derivat ives. Hence, the propagation
viscosit ies (see section 7), which are an effect of lat t ice-discreteness, are not

2 0 Even at low densities, t he Boltzmann approximation may not be valid. Ind eed, without
effectively changing t he dynamics, we can redu ce t he density by arbitrary lar ge factors by
having the particles init ially located on a sub-lattice with some larg e per iodicity ; t hese
are, however, path ologically un stable configurat ions.
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(S.20)

captured by the (differential) Boltzmann equation. At low densit ies, where
collision viscosit ies dominate over propagation viscos ities, the discrepancy
is irrelevant.

We do not intend to engage in extended discussions of the consequences
of the lattice Boltzmann equat ion because most of the derivation of the
hydrodynamical equations is independent of this approximation. There are,
however) two important results which follow from the lattice Boltzmann
equation. The first concerns the irreversible approach to equilibrium. It is
derived by ad apt ing an H-theorem formalism to the fully discrete context
(see Appendix F by Henon].

The second result is an explicit derivation of the viscosity, From the
Bo ltzmann equation, thi s is usually done by a Chapman-Enskog formal­
ism [75,76] (see also Ga tignol's monography, [17]). This formalism is eas ily
ada pted to the lat t ice Boltzman n equation [77]. With the general mult i­
sca le formalism of sections 5 through 7, we have already covered a substan­
tial fraction of the ground. Furthermore, an alternat ive derivation which
stays comp lete ly at the microscopic level is presented in this volume by
Henon, who also discusses consequences of his exp licit viscosity-formula
[42]. We will therefore be brief.

The problem of the viscos ity amounts to finding the coefficlent e relating
the gradient of the mass current pu to the first-order perturbation NP> of
the mean population, through (see equation (5.14) of sect ion 5)

NFl = "'Q;.~al. (pU~ )

QiOlIJ = Ci OlCifJ - ~e501,8 '

We start from equat ion (5.1) with Niol given by equat ion (4.14). We substi­
tute into the lattice Boltzmann equat ion (S.l S) and identify the terms O( E).
For this, we Taylor-expand finite differences to first order, use equat ions
(5.6) and (5.7) to express time-der ivatives in terms of space-derivatives,
and ignore all terms beyond the linear ones in the velocity. We obt ain

(8.21)

(8.22)

Here,

.. _[a ll.;"''' ]Jl., - aN .
, Hi=' /"

is the linearized collision matrix, evaluated at the zero-velocity equilibrium,
which can be expressed in compact form as 142]

1
Jl;; = -- L (s; - s:lA(s --+ s')d"- l (l - d)' - P- l (S; - sj) ,

2 u '

p =L s;. (S.23)
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We eliminate N ;(l ) between equations (8.20) and (8.21 ) , to obtain

[b~2 Q;oP - WYA;;Q;oP] 81o (pup) = O. (8.24)

This should hold for arbitrary gradients of the mass current. Thus , the
quantity between square brackets vanishes. T his means that, for any [o, fJ) ,
Q iQlJ, cons idered as a vect or with components lab eled by i , is an eigenvector
of the lineariz ed collision matrix with eigenvalue DI (bc 21/J ); a direct proof
of this may be derive d from the 9 -invariance. From equation (8.24), we can
eas ily calculate tP; the simplest method is to mult iply the vanishing square
bracket by Q iQfJ and sum over i, o, and fJ. If, in addition, we assume the
isotropy of fourth-order tensors, we can use equation (6.17) to obtain a
closed-form expression for t he collision viscos ity

v, = c' 2:;oP Qiop (8.25)
D + 2 LiiQIJ QiClIJ A i i QiQIJ .

In Appendix E , we give explicit formul ae calculated from equat ion (8.25)
for the viscosit ies of the F HP mode ls (inclu ding those with rest particl es
which require min or amendements of our formalism) .

We finally address the question of t he validity of the lat t ice Boltz­
mann equa t ion . Comparisons of the viscos ities obtained from simulat ions
[25,29 ,31, 331 or Monte-Carlo calculations [771 with the pred ict ions of the
lattice Bolt zmann approximation suggest that the validity of t he latter is
not limited to low densiti es. We know that equilibr ium solutions are factor­
ized and that t ransport coefficients can be calculated wit h arbitrarily weak
macros copic gradients. However, t his cannot be t he bas is for the validity of
the Boltzmann approximation : a weak m acroscopic gra dient imp lies that
the probabili ty of changing the state of a given node from its equilibr ium
value is small; but when such a change takes place, it produces a st rong
microscopic perturbation in its environment. Otherw ise, t here would be no
(weak) divergence of the viscosity in two dimensions; indeed, the Boltzmann
approximation does not capture noise-induced renormalization effects (see
end of section 8.1) . A more likely explanat ion of the success of the lattice
Bolt zmann approximation may be that it is the leading order in some kind
of lib expansion , where b is the number of velocity cells at each node. At
t he moment, we can only support this by the following heu ristic argument.
Deviations from Boltzmann require corre lations between particles entering
a collision. The latter arise from pr evious colllsions.U when b is large, the
weight pertaining t o such events ought to be small.

8.3 The R ey n olds n umber

Knowing the kinematic shear viscosity in terms of the density and the
collision rules, we can calculate the Reynolds number associated to a large­
scale flow.

21Collisions produce corre lat ions whenever t he particles are not exactly at equ ilibrium.
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(8.26)

(8.27)

A natural unit of length is the lattice constant (distance of adjacent
nodes), which has been taken equal to one for the two-dimensional HPP
an d FHP models. The four-dimensional FCH C model has a lat tice con­
stant of J2, but its three-dimensional projected version, the pseudo-four­
dimensional FCHC model, resides on a cubic lattice which has also unit
lattice constant . The time necessary for microscopic informat ion to prop­
agate from one node to its connecting neighbors defines a natural unit of
t ime . We then have a natural uni t of ve loci ty: the speed necessary to travel
the lattic e constant (or the projected lattic e constant for the pseudo-four­
dimensional model) in a unit time. In these units, the characteristic scale
and velocity of the flow will h e denoted hy 4, and " 0 '

The standard definition of the Reynolds number is

R _ characteristic scale X characteristic velocity
- kinematic shear viscosity .

In deriving the Navier-Stokes equations in section 7.3, we rescaled space,
t ime, velocity, pressure, and viscosity (cf. equat ion (7.15)). The resca ling
of space (hy . ) and of velocity (hy . -1) cancel in the numerator of equa tion
(8.26). The rescal ed viscosity is v(Po) = v(Pol/g(p o). Hence, t he Reynolds
number is

R I. g(po)
= """o v (po) '

In order to operate in an incompressible regime, the velocity tLo should be
small compared to the speed of sound c, . The latter is model-dependent:
c. = 1/ ,;2 for FHP-I and FC HC, c. = ,j3j7 for FHP-II and FHP-III
(see section 7 and Appendix E). Let us therefore re-express the Reynolds
number in terms of the Mach number

M = uo ,
C.

We obtain

R = M 4,R.(po),

where

(8.28)

(8.29)

(8.30)

contains all the local information.
In flow simulations using lattice gases , it is of interest to operate at the

density which maximizes R.. Let us work this out for the simplest case
of FHP-I. For the viscosity, we use the latt ice Boltzmann value given in
App endix E. We have

11 - 2d
g(po) = 2 1 - d '

1
v(Pol = 12d(1 _ d)S

1

8'
d = Po

6
(8.31)
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Here, d is the mean density per cell. Substituting in equat ion (8.30), we
find t hat

R: U = max R, = 0.387, for d = dm • x = 0.187. (8.32)

(8.33)

Resu lts for FHP -II and FHP-III are given in Appendix E. Note that a gain
of about a fact or 6 is ach ieved in going from FHP·I to FH P-ill, because
the la t te r includes many more collisions. For the pseudo-four-dimensional
FCHC model there is work in progress on the optimization of collisions. It
is already known that R; u is at least 6.4 178).

High Reynolds number incompressible turbulent flows have a whole
range of scales . The smallest effectively excited scale is called the dissi­
pation scale and denoted l d. It is then of interest to find how many lat t ice
constants are contained in la, since this will determine how effective lattice
gases ar e in simulat ing high Reynolds number flows [1,36J. For this, let
to denote the integral scale of the flow. Between to , ld' and the Rey nolds
number R, there is the following relat ion

ld = CR- mto .

m = 1/2 in two dimensions and m = 3/4 in three dimensions; C is a d imen­
sionless constant not given by theory. In two dimensions, equation (8.33) is
a consequence of the Batchelor-Kraichnan 179,801 phenomenological theory
of the enstrophy cascade , which is well supported by numerical simu lations
[81) . In three dimens ions, equation (8.33) follows from the Kolmogorov [82)
phenomenological theory of the energy cascade , which is well supported22

by exp erimental data [83). Using equat ions (8.29) and (8.33) and assuming
that R. has its max imum value R:u, we obtain

and

• , 1 '
l d = C (M R; 'T ' to = C (MR;'T R' in 3-D.

(8.34)

(8.35)

In all cases, we see that Ld ----. 00 as R ----. 00 , but more slowly in three than
in two dimensions . We are t hus assured that at high Rey nolds numb ers t he
separation of sca le between the lattice constant and ld necessary for hydro­
dyn amic behavior is satisfied. Having it too well satisfied may however be
a m ixed bless ing, as st ressed in reference 36. Indeed , in hydrod ynami c sim­
ulations using lat tice gases, it is not desirable to have too muc h irrelevant
microscopic information. We note that to appears in equations (8.34) and
(8.35) with a larger exponent in the two-dimensional case; thus, the above
mentioned problem is most severe for large lattices in two dimensions.

22Sm all intermittency corrections whic h would slightly increase the exponent m canno t
be r ule d out.
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The high est Reynolds number which can be simulated by lattice gas
methods in three dimensions can he est imated as follows. We take M = 0.3,
a Mach number at which comp ress ibility effects can he safely ignored 1841 ;
we take the maximum known value R: W< = 6.4 for the FCHC model, and we
take to = 103 , a fa irly large va lue which implies a memory requirement of at
least 24 gigabits; from equation (8.29), we find that the maximum Reynolds
number is about two thousand. It is of interest bot h in two and three
dimensions to try to decrease the viscosity, thereby increasing R:·~ . Note
that it is not correct to infer from dimensional analysis that necessarily R:·a
must be 0(1). R: U. is very much a function of the complexity of collisions .
For example, by going from FHP-I to FCHC (which can also be proj ected
down to two dimens ions) , R:.... increases more than sixteen t imes.

9 . Conclusion

In stat ist ical mechanics, there are many instances where two models, mi­
croscopica lly quite different , have the same large-scale properties. For ex­
ample, the Ising model and a real Ferromagnet have presumably t he same
large-scale critical behavior. Similarly, the lat t ice gases stud ied in thi s pa­
per, such as F HP and FCHC, are macroscop ically indistinguishable from
real fluids. This provides us with an at t ract ive alternative to the tradi­
ti onal simulations of fluid mechan ics. In lattice gas simulat ions, we just
manipulate bit s representing occupation of microscopic cells. The phy sical
interpretation need not be in terms of particles moving and colliding. The
idea can clearly be extended to include processes such as chemic al reactions
or multi-phase flow [53-571. An open question is whether there are cellular
automata implementations of processes wh ich in the real world do not have
a discrete microscopic orig in, such as propagation of e.m. waves. More
generally, what are the PDEs which can be efficient ly implemented on cel­
lular automata? We emphasize efficiently, because there are always brute
force imp lementations: rep lace derivatives by fin ite differences on a regular
grid and use finit e floating point truncations of the continuous fields. The
result may be viewed as a cellu lar automaton, but one in which there is no
"bit democracy", insofar as there is a rigid hierarchical order between th e
bi ts .

Our derivat ion of hydrodynamics from the microdynamics leaves room
for imp rovement. A key assumpt ion made in sect ion 4.1 may be form ulated
as follows. Among the invariant measures of th e microdynamical equat ions,
only the completely factorized ones (which play the role here of the micro­
canonical ensemble) are re levant in the limit of large lat t ices. On a finit e
lattice with deterministic and inver tible upd ating rules , we expect that
th ere are many other invariant measures. Ind eed, phase space is a finite
set and updat ing is a permutation of this set; it is thus unlikely that there
should be a closed orbit going through all points . So, we do not expect the
discrete equivalent of an ergodic theorem. Anyway, ergodic resu lts should
be irrelevant. On the one hand, on an L x L lattice with b bit s pe r node, its
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takes 2'L' updates to visit all configurations (if they are accessible) . On the
other hand, we know (from simulations) that local equilibrium is achieved
in a few updates and global equilibrium is achieved on a diffusive time scale
(approximately £'). We believe that, on large lat tices, the factorized equi­
librium distributions constitute some kind of "fixed point" to which there is
rapid convergence of the iterated Boolean map defined by the microdynam­
ical equations of sect ion 3.1. Understanding this process should clarify the
mechanism of irreversibility in lattice gases and, eventually, in real gases .

Acknowledgem ents

Many colleagues have contributed to this work by their suggestions as well
as by the ir quest ions. They include V. Arnold, H. Cabannes, R. Caflisch,
P. Clavin, A. Deudon, G. Doolen, R. Gatignol, F. Hayot, M. Henon, S. Kaniel,
R. Kraichnan, J. Lebowitz, D. Levermore, N. Margolus, J. L. Oneto, S. Orseag,
H. Rose, J. Searby, Z. She, Ya. Sinai, T . Toffoli, G. Vichnlac, S. Wol­
fram, V. Yakhot, and S. Zaleski. This work was supported by European
Community grant ST-2J-029-1-F, CNRS-Los Alamos grant PICS "Cellular
Automata Hydrodynamics' , and DOE grant KC-04-QI-030.

Appen dix A. Basic symmetries of HPP, FHP, and FCHC mod­
els

We show that the models HP P, FHP, and FCHC, int roduced in section 2,
satis fy the symmet ry assumptions (1) through (4) of section 2.4. Assump­
tions (1) and (2) are obvious for all three models. Let us consider (3) and
(4) successively for the three models.

H P P

Let us take the Xl axis in the direction of the vector Cl' The isometry
group 9 of the velocity set is generated by permutations of the Xl and
X2 coordinates and reversals of any of them. Clearly, any two vecto rs Cj

and C; can be exchanged by some isometry, so that assumptions (3) holds.
Consider a particular vector, say, Cl' The subgroup gh leaving C l invariant
reduces to the identity and reversal of x,; this implies par ts (a) and (b) of
assumpt ion (4).

F HP

Let us take the X l axis in the direction of Cl. The isometry group 9 is now
generated by rotations of 11'" /3 and reversal of the X 2 coordinate. Assumpt ion
(3) is obv ious . The subgroup 91 reduces again to the ident ity and the
reversal of x" so th at (4) follows.
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The FCHC lattice was defined in section 2.3 wi th ex plicit reference to co­
ordinates Xl, X2 , Xs , and x". In this coordin ate system, the velocity set is
formed of

(±1 , ±1, 0,0),
(0, ±1, ± 1, 0),

(±1,0, ±1,0) ,
(0, ± 1,0, ± 1),

(±1, 0,0, ± 1)
(0,0 , ±1 , ±1). (A.l)

By the orthonormal change of variables

( ~: ) = 2.. (~1 ~
y, v2 ° °
u« ° °

the velocity set becomes

°°1
- 1

(A.2)

(±v2,0,0,0) , (0, ±v2,0,0), (0,0 , ±v2,0) , (0,0,0, ±v2) ,

(A.3)

The isometry group 9 is generated by permutations and reversa ls of the Xor.

coordinates and by the symmetry with respect to the hyperplane Xl + X2 +
Xs + x" = 0, which is conven ient ly written in terms of yO!. coordinates as

(A.4)

Assumption (3) is obvious in any of the coordinate systems . As for assump­
tion (4), let us consider the subgroup 91 leaving invariant, say, the vector
with y. coordinates (0,0 ,0, 1/v2) . The restriction of 9, to th e hyperplane
y" = a is generated by the identity, permutations, and reversals of Yt, Y2,
and Y3. Assumptions (a) and (b) follow readily.

Appendix B. Symmetry-related properties

Using assumptions (1) through (4) of sect ion 2.4, we prove properties PI
through P6.

PI Parity-invariance. The set of ve locity vectors is invariant under space­
reversa l.

Indeed, on a Bravais lattice , vectors connect ing neighboring nodes
come in opposit e pairs.

P2 Any set of i-dependent vectors Via , which is 9-invariant, is of the form
ACi a'

We write Vias the sum of its projection on c, and of a vector perpen­
dicular to c.. This decomposition being 9 -invar iant , the latter vector
vanishes by (4a).
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P3 Any set of i-dependent tensors t iat/, which is 9 -invariant, is of the
form ACiaCiP + P.bafJ .

To the tensors t iaP I we associate the linear operators Ti : Xa ~ ti apXp.
9-invariance means that the T/s commute with any lattice isometry
leaving c, invariant. We now write the 9 -invariant decomposition

T, = P/liP, + (I - P;jT; P,+ P,T,(I -P,)+ (I - P,)T,(I - P,), (B .I )

where I is the identity in R D and Pi is the orthogonal projection on
c. . The second operator in equation (B.l), applied to an arbitrary
vector w, gives

w ·e -
(I - P,)T,P,w = - ,-' (I - P,)T,c,.

c
(B.2)

The vectors (I - Pi)7iCi are 9 -invariant and orthogonal to Ci, and
thus vanish by (4a) . The third operator in B.I vanishes for similar
reasons (use the 9-invariance of the transposed of the Ti's) . The
fourth operator in B.I is, by (4b) proportional to I" t he identity
in the subspace orthogonal to Ci ' Since I = I, + Ph the proof is
completed.

We mention that we obtained P3 by trying to formalize a result used
by Henon [42J in deriving a closed-form viscosity formula.

P4 Isotropy of second-order tensors. Any .9-invariant tensor t alJ is of the
form p.6ap.

This is a special case of P3, when there is no e-de pe n denc e.

P5 Any 9-invariant third-order tensor vanishes.

This follows from PI (parity invariance) .

P6 Velocity moments . Odd-order velocity moments vanish. The second­
order velocity moment is given by

(B.3)

The vanishing of odd-order moments is a consequence of Pl. Equa­
t ion (B.3) follows from P4 and the identity

L CiaCi a = bc2
•, (B.4)
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Appendix C. E quilib rium solutions

We prove the

Lemma 1 . The following statements are equivalent:

1. The N, '5 are a solution of

IIN;i (l- N; )('-'i ) =
;

LA(s ~ s')IIN?(l-N;)('-';) , Vs'.
• i

2. The N, 's are a solution of the set of b equations

D.;(N) ==

(C.I)

L (s; - s;)A(s ~ s']II N?(l- N; )(H;) = 0, Vi. (C.2)
,,' ;

3. The Ni's are given by the Fermi-Dirac distribu tion

1
N; = ( )'1 + exp h + q . c,

(C.3)

where h is an arbitrary real number and q is an arbitrary D-dimensional
vector.

Proof: (1) implies (2) .
We mult iply equation (C.l) by s~ and sum over all states 5' to obtain

L s;IIN;i(l- N;)(Hi l = L s;A(s ~ s' )IIN?(l - N; )(H;l. (CA)
.'; ,,';

In the l.h .s. of equation (CA), we change the dummy variab le 5 ' into 5

and decorate it with a factor A(s --+ 5'), summed over s', which is one
by normalization of probability. Transferring everything into the r.h .s. , we
obtain equation (C.2). Note that the l.h.s of equation (C.2) resembles the
"collision function" 6., of section 3.1 (equation (3.9)), but is eva luated wit h
the mean populations instead of the Boolean populations n t • The relat ion
6., = a expresses that there is no change in the mean populations under
collisions . •

Proof: (2) implies (3).
We define

(C.S)
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II ;: Il(1 - N;). (C.6)
;

Equation (C.2) may be writ ten

D.;/II = I )s: - s;)A(s --+ s')IIN? = o.
II' ,.

(C.7)

We now make use of a trick employed in proving H-Theorems in discrete
velocity models (see (171, p. 29). We multiply equation (C.7) by logN;,
sum over i, and use

.',"( , ). IT; N;'
LJ s, - s, log N, = log --;-;; ,

i ni N;

to obtain

( ..,')IT ·N'
LA(s--+s') log ~ II !l? =o.
,,' TIj N; ,.

(C.B)

(C.9)

(C.lO)

Semi-detailed balance (E. A(s --+ s') = E., A(s --+ s') = 1) implies that

L A(s --+ s') (IIN? - IIN;;) = O.
u ' J'

Combining equations (C.9) and (C.lO) , we obtain

L A(s --+s') [lOg (IT; ~~:) II N?+ II N? - II N;;] = 0. (C.ll)
,,' TI, lV" J ,

We make use of the re lation (x> 0, Y > 0)

z /." tYlog - + y - x = - log -dt :5 0,
y • x

(C .12)

equality being achieved only when x = y. The l.h.s. of equation (c .nj
is a linear combination of express ions of the form (C.12) with nonnegative
weights A(s --+ s'). For it to vanish, we must have

IIN? = II lV;i, wh en ever A(s --+ s') -=I O.
i i

This is equivalent to

L log(N;)(s: - s;)A(s --+ s') = 0 'Is , s'.

(C.13)

(C.14)

Equation (C.13) means that logNi is a collision invariant. We now use
assumption (5) of section 2.4, concerning the absence of spurious invariants,
to conclude that



696 Frisch, d'Humieres, Hasslacher, Lallemand, Pomeau, Rivet

log N, = -(h + q. c.), (C.15)

(C.16)

which is the most general collis ion invariant (a linear combination of the
m ass invariant and of the D momentum invariants) . Reverting to the mean
populations N, = N;f(l + N,), we obtain (C.3).
Proof: (3) implies (1).

Equation (C.3) impli es

L log(N;)(s; - sj) = 0, whenever A(s ---> s') "f O.
;

This implies

(C.lT)

(C.18)

Using semi-detailed balance, this may he written as

n ·N·;
1 = L A(s ---> s')~.

• DjN;'

Reverting to the N/s, we obtain equation (C.I) . This completes the proof
of the equivalence lemma. •

Appendix D . Inclusion of body-for ces

Us ing the same notation as in section 7.3 , we wish to obtain a Navier-S tokes
equation with a body-force f , that is

aTu + U· "V'1U = - 'V,P' + v''Viu + f

'V, . U = O. (D.l)

The force f may depend on space and t ime and can be velocity-independent
(case I; e.g. gravity) or linear in the velocity U (case II; e.g. Coriolis
force). The idea is to introduce a bias in the transition rules so as to give a
net momentum input . Since all the terms in the Navier-Stokes momentum
equation are 0(.') and the hydrodynamic velocity is 0(.) (before resca ling) ,
the bias should be 0(.') for case I and 0(.') for case II.

We give now the modified form of the micro dynamical equation (3.9)
appropriate for body-forces. We introduce, in addition to the Boolean
(transition) variables €..' of section 3.1, the Boolean variables €~" such
that

(€;•.) = B(s ---> s'). (D.2)

The B (s ~ s')'s are a set of transition probabilities associated to the body­
force; they satisfy normalization
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L B (s - s') = 1, (D.3)
.'

and mass conservation

L(s: - s;JB (s -> s') = 0, vs, «, (D.4)

They do not sat isfy momentum conservat ion , semi-detailed bal ance and
9 -invari ance. The €~" 's are chosen independently at each discrete time
and node and the B(s --+ s')'s may depend on sp ace and t ime; further
constra ints will be given below. We also need a Boolean variab le ~ which
acts as a swit ch: when ~ = 0 the force is off and the usu al transit ion rules
apply. The mean of • is given by

n = 3 case I, n = 2 case II. (D.S)

This will take care of the sca ling fact ors arising from the change of variables
(7.15) . The modified m icro dy namical equation is now

n;(t . + 1, r ; + e.) =n; + L\.;(n)

L\.;(n) =

L(s: - s;) ((1 - . )€,., + .€:.,)II n? (l - n;) (l- . ;).
_,I' i

(D.6)

Let us evaluate the body-force result ing from the insufficient additional
e term. For this, we multiply by c, and average over the equilibrium dist ri­
bution; deviations from equilibr ium ar ising from hydrodynamic gradients
are irrelevant . We ignore the r-fector since it just provides the scaling
factor.

We begin with case I. The average is then evaluated over the zero­
velocity equilibrium distribution wit h density per cell dj we obtain

f = 2;: c;(s; - s;)B(s -> s' )C:d)' (1 - d)',
.,. ,I

P= Ls;
;

(D.7)

where b is the number of cells per node. Equation (D.7) is the addi­
tional constraint on t he B (s -+ s') 's for case I. IT f is space- and/or time­
dependent, so are the B(s -+ s')'s. It is easy to check th at for any given
vector f, there exist Boolean transition vari ables ~~.' of mean B(s -+ s' )
satisfying equat ion (D.7). When f is in t he direction of a particular ve­
locity vector , say Cio' we can flip particles wit h velocity - Cio into particles
with velocity Ci o whenever this is possible, while leaving all other par t icles
unchanged . This is done with a probability dependent on the amplit ude of
the force. Other directions of the force are handled by superposition.

We tum to case II. We wish to obtain a force of the form
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(D.8)

where CafJ is a D-dimensional matrix. When the velocity U vanishes, the
body-force should also vanish; this requires

L;:.c,(s: - s,)B (s "'" s') C: dr (1- d)' = 0,
'.' "

P = Ls;.
i

(D.9)

With nonvanishing velocity, we must use the corresponding equilibrium
populations given to relevant order by (cf. equat ion (4.14))

(D.lO)

Here, we have used the unsealed velocity u. Below, however, we will use
U since the scaling factor is taken care of by the Boolean switch (. Using
(D .lO) in (D.6), we find that the average momentum imparted by €~,I tran­
sitions is to leading order linear in U. Identifying with equation (D .S), we
find that the B(s ...., s')'s must satisfy the following constraints

Ca~ = ~ (1 - d)'-l L c;a(s: - s;)B(s ...., s' ) ( : d)P L s; c;~ ,
C 1 - 1 ._,_ ,I 1

P = Ls;.
i

(D.ll)

Equations (D.9) and (D.ll) are the additional constraints on the B(s ....,
8') 's for case II.

As an illust ration, consider the case of the pseudo-four-dimensional
FCHC model with a Corio lis force 2011U, where 0 is in the xs-direction. A
possib le implementation for the e~" transitions is through rotation by '1r/2
around the xs-axis of those particles having their velocity perpendicular to
this ax is (with a probability dependent on 0).

Appendix E. Catalog of results for FHP models

The purpose of this appendix is to summarize all known analytic results for
the FHP models, including the models II and III which have rest particles.
Adapting the theory to cases with at most one rest particle is quite straight­
forward if one includes the rest-particle velocity, namely vector zero. Our
derivations made extensive use of properties PI to PO of section 2.4. With
rest particles, PI, P2, P4, and P5 are unchanged. In P3, ). and Il have
usually different values for moving and rest particles . PO becomes

(E.1)
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FHP-I FHP-II FHP-ill

Po 6d 7d 7d

c, 1 If If72

9
!1-2d ~1-2d 7 1-2d
2 l -d 12 I -d 12 I -d

1 1 1 1 1 1 1 1 1 1 1
V Ii del - d)! - 8" ii d(l- cW 1-4d/7 - i 28 d(l d) I 8d(l - d)/7 -., 0 1 1 1 1 1 1 1

98del-d)' - ii 98 4( 1 d) 1-2d(1 -d) ii

R m.. 0.387 1.08 2.22
*

dm.. 0.187 0.179 0.285

Table 1: Analytic results for three FHP models
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where b is still the number of bits, so that b - 1 is the number of particles
moving with spee d c.

In Table 1 below, we give results in terms of the mean density per
cell d for the following quantit ies: the mean density Po , the coefficient
g(po) rescaling the nonlinear term in th e Navier-Stokes equat ion (see for
example equation (7.13)) , the kinematic shear viscosity 11, the kinematic
bulk viscos ity ~, the maximum value R:·" of the coefficient R. appearing in
t he Reynolds number (see equat ion (8.29)) , and dm.. , the dens ity at which
the Reynolds number is maximum. T he viscosit ies 11 and ~ are calculated
within the latt ice Boltzmann approximation (see section 8.2). Po~ is the
dynamic bulk viscosity; when it does not vanish , as is the case with rest
particles, equation (7.11) becomes

a,l + PoV · u = 0

(
D -2 )poa,u + c;Vl = Pol' V'u + -----r;-VV . u + Po,VV . u . (E.2)

A p pendix F . A n H -theorem fo r lattice gases"

F .1 N ot a tion and basic equations

We nu mber from 1 to b the cells at a given node (b is the number of different
velocity vectors) . It is not necessary that the velocity moduli are equal.
Also, it will not be necessary to specify any symmetry for the lattice or for
the collision rules. Finally, we will not make use of the conservation of the

23by M. Hencn, Observetcire de Nice.
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number of particles or of the momentum, so that the proof is applicable to
lattic es where these conservat ion laws are violated .

We write S j, = 1 if particle i is present in the input s ta te, 0 if it is absent .
An input st ate is thus defined by s = (81) .. . I Sb )' The number of distinct
inpu t states is 2b

.

We call P (s) the probability of an input state s, We have

LP(s) = 1.

We call N, the probability that part icle i is present . We have

(F.l)

N; = L S;P(s), 1 - N; = L(1 - s;)P(s). (F.2)

We define in the same way S~, s' = (s~, . . . ,sD , P '[s'}, Nt for the outp ut
state.

We call A(s ---+ 5') the probability th at an inpu t state s is changed into
an output state s' by the collision. We have

P'(s') = L P(s)A(s -> s').

We have, of course,

LA(s -> s') = 1,

.'

(F.3)

(FA)

where the sum is over all output states . We will assume that the collis ion
rules obey sem i-detailed balan ce, i.e. , that we have also

LA(s -> s') = 1.

F .2 Local theorem

Lemma 1. If I(x) is a convex fun ction (d' I / dx' > 0) , then

L !lP'(s')] :": L !lP(s)].
.'

Proof: From general properties of convex functi ons, we have

I [L:. q(S )P(S)] < L:. q(s)/IP(s)]
L:.q(s) - L:. q(s) ,

(F.5)

(F.6)

(F.7)

where the q(s) are arbitrary positive or zero coefficients. Tak ing q(s) =
A(s -> s'), with s' given , and using equat ions (F.3) and (F .5), we obtain

I IP'(s')] :,,: L A(s ,s')!lP(s) ]. (F.8)

Sunning over s' and using equation (FA) , we obtain equation (F.6) . •
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Lemma 2. The following inequality holds:

L P'(s') InP'(s') ::; L P(s) lnP(s) .

"
Proof: We apply Lemma 1 with f (x) = x In x . I

Lemma 3 . The following inequality holds:

,
L P (s) In P( s) 2': L[N;ln Ni + (1- N;) In( l - Ni )]'

i= l

The equality holds if and only if

,
P( ) - II N " (l - N ·)' - "51, .. . , 8 /1 - ; I ·

;=1
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(F.9)

(F.lD)

(F.ll)

Proof:" The right-hand side of equation (F.lO) can be written, using
equation (F.2):

,
L L [s;P (s) In N; + (1- s;)P(s) In(l - N;)],
i = 1 •

or

Therefore, equat ion (F.lD) can also be written

L P(s) In [m=.Nt; (l - N;)'-" J s o.
, P(s)

We have, for any :c:

lnx ~x-l,

where the equality holds only if :z: = 1. Therefore,

[II' N~;( l - N')' - '; J II' N ';(l - N ·)'- ';In 1= 1 I I < 1= 1 I 1

P(s) - P(s)
1.

(F .12)

(F .13)

(F .14)

(F .15)

(F.16)

Mult iplying this by P( s) and summing over s, we obtain the desired result.
I

T he relation (F .11) corres ponds to the Boltz man n approx imation (in­
dependence of input part icles).

24inspired by reference 85.



702 Frisch, d 'Humieres, Hasslacher, Lalleman d, Pomeau, Rivet

Local H -theorem

If the collision rules satisfy semi-detailed balance, and in the Bo ltzmann
approximation, the following inequality holds:

,
:LIN: InN: + (1 - NIlln(I NIl]
i=1

,
:s :LIN; InN; + (1 - N;) In(I- N;)] .)

i=l

Proof: From Lemma 3, we have

,
:LP(s) In P (s) = :LIN; InN; + (1 - N;) In(I- N;)].

i=1

Combining with Lemma 2:

,
:LP'(s') In P'( s' ) :S :LIN; InN; + (1 - N;) In(l - N;)] .

Jl' 1' =1

(F.I7)

(F.I8)

(F .I9)

Finally, applying Lemma 3 to the Nf's and the p"S, we obtain equation
(F .I 7).•

We remark that both condit ions of the theorem are necessary; one can
easily find counterexamples if one or the other is not satisfied. Consider,
for instance, a node of the HPP lattice with probabilities before collision:
P(I, 0,1,0) = 1/2, P(O, 1, 0, 0) = 1/2. We have : N, = 1/2, N, = 1/2,
N 3 = 1/2, N 4 = 0; the Boltzmann approximat ion is not satisfied. We take
the usual HPP collision rules. The probabilit ies after collision are then
P '(O,I ,O,I) = 1/2, P' (O ,I,O,O) = 1/2. From this, we deduce N; = 0,
N; = 1, N; = 0, N: = 1/2, and it can be immediately ver ified that the
left-han d member of equation (F.I 7) is larger than the right-hand member.

Similarly, let us modi fy the collision rules and keep only one kind of
collision: (1,0,1,0) gives (0,1,0, I), but not conversely. Semi-detailed bal­
ance is not sat isfied. Take for instance N1 = N2 = Ns = N" = 1/2. We
assume that the Boltzmann approximation holds; therefore, P(s) = 1/16
for all s , We deduce P '( I,O,l,O) = 0; P'(O,I , O,I) = 2/16; P'(s') = 1/16
for the other s': Nf = N~ = 7/16, N~ = N~ = 9/16; and here again the
inequality (F .I 7) is violated.

F.3 G lobal t h eor em

First we sum equation (F.17 ) over all lat t ice nodes. We obtain a sum over
all cells at all lat tice nodes; their total number will be denoted by T:

tIN'!;) lnN'U) + (1 - N 'U) ) In( I ~ N 'U))]
i =1
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,
$ L IN U) InNU) + (1 - NU)) In(1 - N U))].

;=1
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(F. 20)

Next we remark that this sum is invariant under propagation. We can
therefore extend the theorem to an arb it rary number of t ime steps , and we
obtain (with the same hypotheses as for the local theo rem) :

Global H-theorem

The function

t [N U) InNU) + (1 - N U) ) In(1 - NU ))I
;=1

is non-increasing as th e lattice gas evolves.

(F .21)

A p p end ix F .1 Interpr eta t ion in terms of informa tion theory

Consider a probability distribution over v possible cases: PI, . .. , Pv. The
asso ciat ed information is

v

log2V + L Pi log2Pi·
i =1

(F .22)

T his information has a minimal value °if a ll cases have the same prob­
ability: PI = . .. = Pv = i]». It has a maximal value log, v if one of the
Pi is I while the ot hers are 0, i.e., for a deterministic cho ice between the v
cases.

We come back t o lattices. P (s ) represents a probability distribut ion on
2" cases, and therefore an information

b + L P(s) log, P( s) . (F.23)

Thus, Lemma 2 expresses the following property: if semi-detailed bal­
ance is sat isfied , then the information cont ained in the P ca n only remain
cons tant or decrease in a collision .

From the P's , we can compute the Ni's by the formulas (F .2) , but
the converse is not generally true; in other words, the P's contain mor e
informat ion than the Nt's . Lemma 3 expresses this fact .

In the particular case of the Boltzmann approx imation, the particles
are considered as indepe ndent, and therefore, the P 's contain no more
informat ion than the N/s . We have then the equality in equat ion (F .ID).

The proof of the local H-theorem ca n therefore be int erpreted as follows:
(i) initially the Ni's are given; this represe nts a given infor mati on; (ii)
we compute the corresponding P 's in the Bolt zmann approximation; the
information does not change; (iii) we compute the collision an d obt ain the
P"s; the information decreases or st ays constant; (iv) we com pu te the N "s
from the P"Sj here again, the information decreases or st ays constant .
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