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Abstract. For a model of gas composed of identical particles with ve­
locities rest ricted to a given finite set of vectors, the Boltzmann equa­
t ion is rep laced by a system of non linear coupled differential equations.
The Chapman-Enskog method can be applied, and it gives the Navier­
Stokes equations assoc iated to the model. For the general model. we
show that the dissipative te rms in the Navier-Stokes equations do not
depend on the mean number density nor on its gra.dient. For a gas
near a homogeneous state, we give the t ransport coefficients explicitly.

1 . Introd uction

In discrete kinet ic t heory of gases, the main idea is to consider that the
particle velocities be long to a given finit e set of velocity vectors. J. E.
Broadwell [1,2] has used some very simple models of gas to solve problems
in which th e Boltzmann equation must be int roduced.

The pr esentation of a general model of gas wit h discret e velocities has
been given in references 3 and 4, and the kinet ic theory for such a gas has
been built up. T he Bol tzmann equat ion is replaced by a system of partial
different ial equat ions. This system is more tractable t han the Boltzmann
equation, and the discrete mode ls give some light about some fundamental
problems such as the structure of t he shock wave 11,5] or the Knudsen layer
on a plate [2,61.

The system of kinetic equations is a semi-linear hyperbolic system, and
it has a very interesting mathematical structure. Many papers concern this
mathematical point of view; a review is given, for example, by H. Cabannes
in reference 7. Also, for par t icular models, some exact solutions have been
found 18,91. Finally, we mention some generalizations for a mixture of gases
110-14J.

We must emphasize that in discrete kinetic theory, only the velocity
space is discretized, the space and time variables being continuous. For a
lattice gas, as introduced for the first time in the paper of J . Hardy and
Y. Pomeau 1151, the space and time variables are discretized also . T he
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main and very important consequence is to have one's way to study the
hydrc dynamical problems for such a la t tice gas by simu lation on a computer
of cellu lar automaton type. T h is aspect is presented in the p ap er of U.
Fr isch, B. Hasslacher, and Y. Pomeau [16], an d many class ica l problems
of fluid dynamics have been studied with this point of view [17,18,19] .
For the theore t ical study of the hydr odynami cs of a lat ti ce gas, we mus t
study a system of equations similar to the system of the discrete kinet ic
equations. (T he difference comes from the exclusion princip le used in the
latt ice gas theory.) The viscosity coe fficient has been ca lculated for a lat tice
gas flowing out with a small Mach number [20,211.

In this paper, we briefly recall the discrete kinetic equat ions (secti on 2),
describe the Maxwellian states (sect ion 3), and apply t he Chapman-E nskog
method (section 4). So, we obtain the so-called Euler and Nav ier-Stokes
equations associated wit h t he model, and we prove t hat the mean number
density n and its gradient Vn do not appear in the d issipative terms of the
Nav ier-Stokes equations. In sect ion 5, we investi gate the hydrodynami cal
equat ions for a gas near a homogeneous state.

2. Desc r iption of the model

In earlier works we have described the general model of a gas with a disc rete
velocity distribution [3,4], and here we briefly recall the no tations and the
main resu lts . T he gas is composed of ident ical part icles of mass m. The
veloc it ies of these particles are restricted t o a given finite set of p vectors:
ill, il'l" " ,Up' We denote by Ni(T, t ) the numb er dens ity of parti cles with
the velocity Ui at po int T and ti me t .

Only binary collisions ar e cons idered. Let iii , Uj and Uk, iit be the veloc­
ities of two molecules resp ectively befo re and afte r an enco unte r; these four
velocit ies must be long to t he original set , and they must satisfy the two
relations exp ress ing t he conservation of momentum and energy. A "transi­
ti on probability" A~} is associated with each collision, and we assume that
the A~j coefficients satisfy the micro-reversibility princip le

Akl Aij
ij = kl \;fi, i, k, l. (2.1)

Of course, the transit ion probabilit ies are pos it ive or equal to zero and
symme trical with respect to the up per indices and to the lower ones . It
is conven ient to assign a zero value to the t rans ition probability for an
unrealizable collision.

The Boltz mann equat ion is replaced by a syste m of p nonlinear coupled
d ifferent ial equations [3 ,41

~. + iI,· ~N, = t L:~= 1 L:~= 1 L:f=l (A~N.NI - A~}N,N;) (2.2)
1 = 1,2, .. _,p o

or

a
at N + aN = l (N, N ), (2.3)
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(2.7)

where N = (Nh N 2 1 • •• I N p) is a p-component vector of the space R P 1 and
.T(V,V ) is a bilinear symmetric operator from RP x RP into RP:

J;(V,V) = i l:~=ll::=ll:f=l {(A~(U.Vi + U,V.)

- A~:(U;V; + U;V;)} (2.4)

i = 1, 2, ... ,po

For a model with a given set of veloci ties, we define the summational in­
variants which are quantities <p associated with cons ervation laws through
an encounter . In other words, ~ is a p-component vector satisfying the
following conditions:

A~:(¢; + ¢; - ¢. - 'M = 0 Vi, i , k, l. (2.5)

In particular I ~ is a summat ional invariant if 4>i is equal to m, mUi, or
!mU;. In contrast to the class ical kinetic theory for monoatomic gases, the
geometr ic character of the set of the given velocities may allow ot her sum­
mational invariants. T hey gene rate a linear subspace F of RP of dimension
q(l ~ q ~ pl. We denote by F l the subspace of R P orthogonal to F .

We introduce orthonormal bases in F and in RP:

V I, V 2
, ••• , V o' in F , ( )

V l ,V2, ... ,V O' , w g+l, ... ,Wp in R" . 2.6

So we can wr ite :

N = E~=l aav- + E~=q+l bfJWfJ ,
Ni = E~=l aa~CI+ E~=O'+l bfJWf ,

a, = (N, V ' ), bp = (N , W P); (2.8)

the i-com ponents of V' and wPare denot ed by V;' and W!, and (V, V ) =
Lf=l U"Vi denotes the sca lar product in RP.

We have shown that equat ions (2.2) possess t he essent ial propert ies
of t he Boltz mann equat ion [3,4]. There are two ways of describing the
gas: first, a microscopic description corresponding to t he know ledge of the
densities N" or equivalently to t he knowle dge of the quantities aCi and bfJ j
and second, a macroscopic description corresponding to the know ledge of
the q quant it ies aCi alone. T he quantit ies aa are called macroscopic state
var iabl es of t he gas. Among them there are the number densi ty n, the
mean velocity V, and the temperature T . We give hereafter t he macroscopic
conservation laws for the quantit ies aa:

a;; + (a N ,V ') = 0 a= l,2 , ... ,q. (2.9)

This system of q equ ations for the q quantities aa is not a closed system:
the bfJ variabl es are present in them. To obtain a closed system, we are
going to use the well-known Chapman-Enskog method, which is applicable
when the Kn udsen number of the gas is small. It is possib le to use this
method for a discrete model gas [3,4) and so obtain the constitutive laws
for our macroscopic medium.
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(3.1)

3 . Maxwellian state, Euler equations

For a discrete model of gas, an H-theor em is valid [3,41 . The H-function
here is defined by H = I:r~1 N, Log N, = (N, Log N ), and the Maxwellian
state is a sta te in which Log N is a summational invariant. That is,

Log N = L:~=1 eav ­
Log N, = E~=l CorV i.

(3.2)

(Here, Log N denotes the sequence (Log N" Log N" . . .,Log N p ) . ) From
the definition (2.8) of the macroscopic state variables aa , we have

0a = (N,ya) = tv,aexp (t c,v,,) .
i=l "1=1

The quantities aa are functions of the q variables C"J ' The correspondence
between the aa and the c"( is one to one [4] . Thus, in a Maxwellian state, the
densities N, are well-defined functions of the macroscopic state variables a(l.
The macroscopic conservation laws (2.9) are the so-called Euler equations.
Notice that the exact form of these Euler equations depends on the choice
of the model of gas .

Later on, we want to study in what way the mean number density
appears in the Euler and Navier-Stokes equations. To this end, we introduce
n = I:f=l N i , and we put

v,1 =~, i = I , 2, ... , p; 01 = (N ,y l)= ~n; (3.3)

acz = nXcz , a = 1,2, ... , qi bfJ = nYfJ, j3 = q + 1, .. . , Pi (3 .4)

N = nN = n(_I_Y 1+ t x.v- + i: y~w~) .
..;p a=' ~=,+l

In a Maxwellian stat e, from equation (3.2) we deduce

n= exp(~ c1)t. exp(~ c,v,')

(3.5)

(3.6)

Ef-l Via exp(E ~=2 c"fV?)
x; = "p ('" V') 'L..i=l exp L.."f=2C"f i

a = 2, 3, . . . ,q, (3.7)

(3.8)f3 = q+ 1, ... ,p.
y, _ Zr- l wt exp (Z~=, c,V,' )
~ - I:r=1 exp (Z~=, c,V,')

The rel ations (3.7) define an application from R,-1 into R,-1 wh ich ass o­
dates X 2, Xs, .. . , Xq to (C2 1Cs, .. . , cq ) . Let D: be its image. Th is applica­
tion is a bijection between R q-l and D: as it is easy to prove by using the
bijective properties of the applicat ion defined by the relations (3.2) [41 .

The relations (3.7) may be wri tten
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a =2, . . . , q, (3.9)

wit h the Jacobian matrix

¥o: = (2:f=lN,V;·V,')-(2:f=l N, V;.)( 2:f=lN,V;')
a 2, . . . , qj '1 = 2, ... , q.

In relations (3.10) , we have introduced the reduced densiti es Ni by:

Ni=nNi i=I,2 , . .. ,p.

In the same way, we write

(3.10)

(3.11)

p= q+ l, . . . ,p, (3.12)

~ = (2:f=lN,wfv,'H 2:f=l N,Wf)( 2:f=lN,V;')
p = q + 1, ... , p ; '1 = 2, . .. , q.

(3.13)

The Jacobian matrix (8 Xa /8e..,), a = 2, .. . , q, '1 = 2, . . . , q, is a symmetric
definite positive one. Indeed,

t. N, (~A.V;·)(~ A,V;')

[tN,(i>.v;·)][i:». (t A,V;')]
. =1 a =2 1=1 1'=2

= (tN,A,A;) -(tN,A,)'
1= 1 1=1

= (t(N:12)') (t(N:12A,)')
1=1 1=1

(t(N:12) (N:12A,))'
1=1

that is st rictly positive for all Ai = E~=2 AaVia , except for .A.; = 0, i =

1,2, ... , p , or, equivalently, Aa = 0, a = 2, . .. «q, (we recall that Ef=1 Ni =
1).

Now we emphasize the Maxwellian state near homogeneous state. In
other words, we suppose that all the number densit ies Ni are close to n/p
and that the quantiti es Xa, a = 2, . . . , q are very small of order E , say. We
remark from equations (3.2) and (3.3) that the two sequences (C1 '0, ... ,0)
and (n,O, . . . ,O) corr esp ond each other when C1 = yP Log (n/p) . Then,
the Jacobian matrix 8X./8c,)(0, . .. , 0) is the unit matrix.

By some algebra on th e expressions (3.7), (3.8) an d (3.5), (3.6) and by
recalling that the base VI, ... , V q , Wq+l, . . . , WP is an orthonormal base,
we obt ain the following results:

(3.14)



714

Yp = O(e'), {J = q + 1... . •P.

N, = n(.!. + t x; V;. + O(e' )). i = 1.2• . . .• p.
p 0 =2
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(3.15)

(3.16)

(3.17)

It is important to notice that the microscopic variables y~ are small quanti­
ties of order two in e at least. Then, we pay attenti on to the mean velocity
v and to the pressure tensor P of the gas. From the hypotheses, v is small
and of order s c, where c denotes the order of magnitude of the velociti es
Uil i = 1, 2, .. . , po Indeed, vjc must be a macroscopic variable, that is to
say a linear expression of the variables Xon ex = 2, ... , q. To this end, we
must take the initial set of velocities Ui such that L:f=liI, = 0, and so in
the homogeneous state the gas is at rest. Then, for the pressure tensor, as
defined by [3.41:

P = m t N, (u,- v)(u,-v),
1=1

we obtain the approximate expression

P mn{(t .!. u,u,) + t x.(t V;·u,u,)
,=1 p a=2 . =1

+ c'o(e')} . (3.18)

In the homogeneous state, N i = nip, v is zero and the tensor P reduces to
P , = mn{L:f= l(l/p)u,u,). For th e regular coplanar models with four or six
velocit ies of magnitude c we have [5.61

c'
P o = mn "2 1

and for the regular coplanar models with 2r velocities [4], we have also

c'
P o =mn "21.

Let us remark that if the tensor P , = mn{L:f=l (l /p) iZ; iZ;) is spherical,
then we have, necessarily, in the plane P o = mn(c2 / 2)1 and in the space
p . = mn{c'/3)1 where c' = L:.=l{l/p) Iu, 1' 1201.

At last, we give the Euler equat ions for a Maxwellian gas near the ho­
mogeneous state. These equat ions are the equations (2.9) with the densities
N, replaced by the express ions (3.16) . We have

f,{nX.) + (L:f=l; V;.u,) .Vn

+ L:~=,( L:f=l V;·V;~u,) .V(nX~) = °
a 1,2, .. . ,q.
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(3.19)

By recalling that Ef=l iii = a and by disti nguishing the equation relative
to the density n from the othe rs, we obtain:

~; + E~=2 ( Ef=l Ui¥:") .V(nX,) = 0

f,(nXo) + *(l:f=,u;Vt) .Vn

+ l:~=2 ( l:f=l a;v;oV;') .V(nX,) = °
2,3, . .. ,q.

4 . Chapman-Enskog method

Let us take again the kinetic equations (2.3) and the conservation laws
(2.9) . We write these equations in an adimensional form, and we introduce
the Knudsen number K n [41:

:t N + aN = ~n .1(N,N)

: tao +(aN,vO)=o, a =1,2, ... , q.

(4.1)

(4.2)

The Chapman-Enskog method for the classical kinet ic theory is explained,
for example, in the paper of Grad [221. This method is applied to discrete
models of gas in reference 3. It gives the Euler and Navier-Stokes equa­
tions associated to the model. Here, we briefly recall this met hod: for the
dens ities N and for the time derivatives of the macroscop ic variables, we
assume the following expansions:

N = N (O) (a,Da) + KnN(l)(a,Da) + .. .

f, ao = F~O) (a,Da)+KnF~l) (a,Da) + . . .
0: = l,2, ... ,q.

(4.3)

(4.4)

Here, a and Da represent the macroscopic variables and their spatial deriva­
tives . By su bst ituting the expansions (4.3) and (4.4) in the equations (4.1)
and (4.2) , we obtain:

.1 (N(O),N(O)) = 0,

aN!O)
2.1 (N (O) N(')) = -- + aN(O), at '
F~O) = _(aN!O),VO), o > 1,2, ,q,
F~l) = _ (a N (l),V o), a = 1,2, , q.

We must also impose the Chapman-Enskog conditions:

(N (O) ,V a) ao , (N{1) ,V") = 0,
0: = 1, 2, . . . ,q.

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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4 .1 T he firs t a p proximat ion N (o)

From equation (4.5), the densities N (O) are Maxwellian . In the prev ious sec­
tion, we studied such densities and we choose for them the expressions (3.5)
with (3.6), (3.7), and (3.8). In particular, N (O) depends on the macroscopic
variables ao: alone.

4 .2 The se cond approximation N (l)

To obtain N(l) we must solve equation (4.6). In the left member I we put
N(1 ) = A (O)X(l) , that is, N~l) =N~O) xJl) I i = 1, 2, .. OJ p, and we obtain

(4.10)

(4.11)

(4.12)

The operator 1(0) is the linearized operator of collision about a Maxwellian
state. This operator is symmetric and negative; it possesses the eigenvalue
0, and the eigenspace assoc iated with it is the subspace F of the summa­
t ional invariants. We give below the elements of the matrix 1(0) 14) :

I'?) = ~~ {Ai'N (')N(') - ~AklN(')NI')
I' L.JL.J 1l J l 2 ""

k= l l= l

~ i: A ki N!·)N(·)o.. }
2 17\=1 ,m. , m I ) •

Let us return to the equat ions (4.6) and let us use the relat ions (4.4) at the
orde r 0(1). We have

• aN(')
I (O)X(l ) = L --F (') + aN(O).

a = 1 Gaa 01

The quantities FlO) are given in equation (4.7) in such a manner that the
compatibility condit ions for the system (4.12) are satisfied. The solution of
(4 .12) is defined save on the addition of any summational invariant. With
th e condit ions (4.9), the solut ion of (4.12) is then unique. We can take as
unknown quant ities the variables b~l) such that

p

N (I ) = L b~')WP
,8=9+1

and we have
p

X C') = A (O)-'N(' ) = L b~')A (O)-'WP.

,8=q+I

(4.13)

(4.14)
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Taking the aforesaid properties for the operator 1(0) into account, we see
that the system (4.14) is an equality between two vectors of F.L an d so is
equivalent to

~~=q+l

or, in condensed notations:

p (1)L 80p bp = Bo' ')'=q+1, ... ,p.
(j=q+ l

(4.15)

(4.16)

4 .3 Some remarks on the matrix 8'J{j .

It is easy to verify that

~~ (0) 1 p 'J
80p = L.d..-1;; ~W; Wi ' (4.17)

i = 1 j =1 Nj

Let us write CI> = L:~='+lApWP . Using the value (4.11) for 1;~) and the

Maxwellian properties of the densities NJO), we have

(4.18)

Consequently, if the Maxwellian state N(O) is homogeneous (N i(O) = nip},
then t he last right -hand side of equat ion (4.18) is negative or zero , and the
matrix 8'J{j is then symmetric and negat ive definite.

The system (4.16) is a Cramer system because L:~=,+l 80pAp = 0, "t =
q + 1, . . . , p, has the unique solution A{j = 0, {3 = q + 1, . . . , po Indeed,
y = L:~=,+l ApA(O)- lWp belongs to F and A(O) Y to F . Then, from the
prope rt ies ofI(O), we conclude that Y = 0, (141, page 63).

Now, we pay attent ion to the right member of equation (4.15) or (4.16).
We recall that the FlO) are given by the relations (4.7), and t hat the densities
N (O) are Maxwellian densities . As previously, we introduce the variables
(n, X" . . .,X,) defined in (3.4) and we put accordi ng to (3.5)
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(4.20)

N(O){a.,a" . .. ,a,) = N (O)(n , X " ... ,X,) = nN (O)(X " ... ,X,). (4.19)

We have:

"N(O) = tn~"N(O) _ c-s &. aN(O))
801 V P "n L...ct=2 n ax.,.

BN(O) 1 lJ (0 )
B Go = ;; lJX

o
t a: = 2,3, ... , q.

By introducing the last expressions (4.20) and the expressions (4.7) for FJO} ,
in the definition of B..." we obtain:

B7 = t{ -
;=1

(4.21)

(4.22)

We are interested by the coefficient of Vn in the expression of B..,. Let us
denote it by K7 •

(4.23)
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«x;
Y:(Oln P

and we have

K, = (tNioIW;'ii;) -(tNiolW;,)(tNiOJii;)
1::=1 1::= 1 1::= 1

i: 8y~ol {(t N/OIV/ii;)
P::= 2 axp i::=1

(tN/OlV/) (tN/Olii;) }.
1=1 1=1

(4.24)

The sequence iii, i
write

1,2, .. . , p is a summat ional invariant ; then we can

where k8 , 0 = 1,2, .. . , q, is a sequen ce of vectors of R 3 . We subst itute this
expression for Ui in (4.24) and we obtain

K, = t k, { (t N/Olw;,v,')-(t N/olw;,) (t N/olVi')
6=1 1=1 1=1 1= 1

-t 8:1°
1
[(i: N/Olv,Pv,')-(t N/olv,P) (t N/OlVi') ]}

P::= 2 P 1=2 1=1 . =1

The coefficient of k8 is zero: if 0 = 1 it is clear because ViI = (1/ y'ii) and

2:f=1 il}O) = 1; if 0 = 2, ... , q this result is a consequence of the relations
(3.10) and (3.13) because

In conclusion , K'l = 0 and the coefficient of Vn in B'l is O. The right
m ember B .., in equation (4.16) does not depend on V~. The expression for
B; is a linear combination of VX a., a = 2, . . . ,q alone.

Let us put

N- (Ol­
i Ui

•
,,' Z-(Olv o + "P Z-(OIWP
L..,a.=1 a. i L..,p=q+ l P i

1,2 , . .. ,p .
(4.25)
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Naturally, Z~O) is equal t o (1/..jP) V, and with fiJ}Ol , t he quantit ies trO) ,
a = 1, 2, ... ,p, depend on the variab les X 2 , ••• I X q only. T hen, we can
wr ite B., in t he form:

B, = n(-Y~O)+txoaY~O)) (t av .i,Jxp)
0 =2 axo P=2 axp

, ay(O) ( , ailO) _ )nL: -'- L: _ o_ .\7Xp
0=2 axo P=2 axp

, aile) _
+ n L: -'_ .\7Xp

P=2 axp

' {( (0) q 81':(0») 0.
n 2:,8=2 - Y.., + 2:00=2Xa~ aXIJ

(
q BY(O) 82(0») 82(0)} -

L a = 2 ~BX;; + R;- .VXp

= q + 1,_ .. ,po

(4.26)

(4.27)

In conclusion, we have explicited the right member of the system (4.16).
Let us denote by Bi',! the elements of the inverse matrix of t he matrix BPi'
The solu tion of equation (4.16) is

p
btl) - " a-IBfJ - L- fh .,.

7=q+1

In expression (4.26) , we see that B'1 is a linear combination of the gradients
'rfJX13 1 f3 = 2, . . . ,q and does not depend on the gradient "On. The matrix
element B'1fJ is a homogeneous function of order + 1 of t he densities Ni(O);

therefore, Bi..,l is a homogeneous fu nct ion of or der + 1 of the densities Ni(O)

and is writte n as a product of the inverse dens ity lin by a homogeneous
function of order - I of the il}O). As a consequence, b~) does depend

neither on n, nor on Vn. The Navier-Stokes equations associated t o the
model are the conse rvat ion (4.2) with N = N (O) + KnN( l), where N (O) is
the loca l Maxwellian state associated to t he macroscopic vari ables aa., ex. =
1,2, ... ,q, an d where N (1) is equal to :E~=q+ l b~l)w.8 with b~l) given by
equat ion (4.27).

5. The N avier-St okes equations near t h e homogeneous state

Now we investigate the Navier- Stokes equations in the case where the gas is
near a homogeneous state, that is, whe re each density is close to the va lue
(ni p). The Maxwellian densities N,I°)with value close to (ni p) have been
studied in sect ion 3. From equations (3.15), (3.16) , and (4.19) , we have

N(O) = n(1+ ,,' Xv.0 + 0(02)) = nN!O)
1 p L...a.=2 a.. • (5.1)

i 1,2, . . . ,p,
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Y~O) = 0« ' ), , =q+l , . . . ,p, (S.2)

and from equation (4,25) and the hypot hesis Lf:::: l Uj = 0, we have

P
'" N"(0)_.L....J i tL,
i = 1

tx.(tu,v;a) +0«')
a=2 i = 1

(S.3)

z~O) L:f=l il}O)UiV/
*( ~f=l u,v/) + ~~=,x. ( ~f=l u,v/V;.) + 0 «' ) (S.4)

f3 1, 2, ... ,Qj

L:f=l Ni(O)UjWi'l

~~=, x; (~f=l u,W' V;· ) + 0 «' )
"I = g+ l. .. ,p.

(S.S)

In equation (5.5) 1 we have used the property for the se quence iii to be a
summational invariant and consequently to be orthogonal to Wi' .

Let us return to the express ion (4.26) for B,. With equat ions (S.2) ,
(S.3), (S.4), and (S.S) we have

8Y{O) 82(0)

0 (1), 'it: = 0 « ), 'it: = 0(1 ),

= L:f:::: lUiw?v:a + 0(£),
2,3, . .. ,q; {3 = 1,2, . .. ,qj '1 = q + 1, ... .p,

(S.6)

By assuming that the quantities Xa and VX OI are of the same order I we
have

B, = n{i:(t u,w,'V;.) .fJX. + 0 «) }.
a =2 . =1

(S.7)

With the dens ities given in equat ion (5.1) , it is easy to see that the expres­
sion (4.17) for the B,p elements has the following form

o

B,p = n(Bi,'

with

0 _ 1 P P P P 1 { ik 1 kl 1 P kl } P -t
Bp, LLLL - Aj/ -2"A'j-2" LA'mO'j WjW,.

1=1 J=1 k= ll=l P m= l

Then

Po '(P )L 8,p b~l ) = L Lu,w,'vt .fJX. + 0 « ).
,8=q+l a=2 i=1

We write the solut ion in the form:
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b~l) = ~~=2 K~e " VX. + O(e)
f3 = q +1. .. . p.

In conclusion , for the densities we have

N, = n{~ + t X.V;"
P 0'=2

+ K n .!. i: (tK~•. VX.)wt +O(e)}
n fJ=q+ l 0 =2

Renee Gatignol

(5.8)

(5.9)

Last, we give the Navier-Stokes equations for the general model and for a
gas near the homogeneous state. We write these equat ions in the dimen­
sional form (formally, we ma ke K n = 1):

f, (nX. ) + ~r=l v,·17, ·v(; + ~~=2nXO)

+ ~r=l v,·17,· V(~~=q+, (~~=2 K~o .VXo)wt) = 0

a = l ,2, .. . , q.

The equation with a = 1 is the equat ion for the density n; this equat ion
does not contain the second derivatives of X "" "t = 2, . . . 1 q. Indeed,

t.~ 17, ·V(};,(1;K~o ' Vxo)wt) = 0

because
p

"L,iI,Wt = 0 .
i=1

At last, by dist inguishing the equat ion for the dens ity n from the others,
we have:

with

~7 + ~~=2( ~r=l iI,V,O ). V(nXo) = 0

a(~~Q ) + ;( L:f=l uiVt) .Vn

+ ~~=2(~r=, 17,v,.v,o) .V(nXo)
~~=2A .o: VV(Xo) = 0

p p

Aa-y - L L VtW!iiJ(fJ'T
1=1 fJ=q+ l

- i: (tv,·wt17,)( t Bi/(tV/Wj17;))
{J=q + l , = 1 6= q+ l ,=1

= - i: i: Bi/ (tV,·wtiI,)(tV/Wj17;).
6=q+l fJ =q+I 1=1 ; = 1

(5.10)

(5.11)
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T hus, for the general discrete velocity model we have defined and ca lculated
the transport coefficients. We remark that the tensor of order two Aa..,
(a " = 2, . . . ,q) is a symmetric te nsor in the indexes a and "f. Moreover,
if ex. and-j are fixed, Aa.,., is a symmetric te nsor of order two in the physical
space. We call t he tensor Aa'J the viscosity tensor.

o

The matrix Bi/ is a defin ite negat ive matrix. By us ing this property,
it is easy to show the inequali ty:

~~=, ~~=, (A"OA".q : AA 2: 0
V Ao: E: R I a = 2, . . . 1 q j VA e R 3

.

Consequently, the viscosi ty tensor corres ponds to dissip ative phenomena.
In references 5 and 6, we have given the tensor pressure in the Navier­

Stokes approxim ation for two particu la r models, firs t for a cop lanar model
with four velocit ies, and second for a regular cop lanar model with six
velocities. In the two cases , we have ver ified that the pressure te nsor
p = p(O) + p(l) is such that p(l) does not depend on n and Vn. Us­
ing the notations of reference 4 with the four velocity mo del and with the
hypothes is I tJ 1« c, we have:

e2 me .... -.
p ex p - 1- - Eo : VU,

2 2<7

where Eo is a tensor of order two related wit h the geometry of t he model.
With the six-velocity model and with the hypothesis 1it 1« c and 1{j 1« 1,
we have:

c'
P"'p-l

2

where Eo , E l and eo, el are respect ively two tensors of order two and two
vectors re lated with the geometry of the model. The theory prese nted here
is a generalization of these results . Let us no t ice t hat these res ults are to
compare to those of J. P. R ivet and U. Frisch [20] and to t hose of M. Henon
[211 for a hexagonal lat t ice gas.

6. Conclusio n

In conclusion , we emphasize that the discrete kinet ic equations have a good
st ruc t ure. The Chapman-Enskog method has been applied an d has exhib­
ited t he E uler and Nav ler-Stokes equations associated with t he mo del. We
recall that the Euler equation system is a hyperbolic system of conse rva­
t ion laws [4] . Here, we have given the Nav ier-Stokes equat ions. Near the
homogeneous state, we have exp licit ly given the t ransport coefficients and
shown that these coefficients really correspond to dissipat ive phenomena.
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