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Abstract. For a model of gas composed of identical particles with ve-
locities restricted to a given finite set of vectors, the Boltzmann equa-
tion is replaced by a system of nonlinear coupled differential equations.
The Chapman-Enskog method can be applied, and it gives the Navier-
Stokes equations associated to the model. For the general model, we
show that the dissipative terms in the Navier-Stokes equations do not
depend on the mean number density nor on its gradient. For a gas
near a homogeneous state, we give the transport coefficients explicitly.

1. Introduction

In discrete kinetic theory of gases, the main idea is to consider that the
particle velocities belong to a given finite set of velocity vectors. J. E.
Broadwell [1,2] has used some very simple models of gas to solve problems
in which the Boltzmann equation must be introduced.

The presentation of a general model of gas with discrete velocities has
been given in references 3 and 4, and the kinetic theory for such a gas has
been built up. The Boltzmann equation is replaced by a system of partial
differential equations. This system is more tractable than the Boltzmann
equation, and the discrete models give some light about some fundamental
problems such as the structure of the shock wave [1,5] or the Knudsen layer
on a plate [2,6].

The system of kinetic equations is a semi-linear hyperbolic system, and
it has a very interesting mathematical structure. Many papers concern this
mathematical point of view; a review is given, for example, by H. Cabannes
in reference 7. Also, for particular models, some exact solutions have been
found [8,9]. Finally, we mention some generalizations for a mixture of gases
[10-14].

We must emphasize that in discrete kinetic theory, only the velocity
space is discretized, the space and time variables being continuous. For a
lattice gas, as introduced for the first time in the paper of J. Hardy and
Y. Pomeau [15], the space and time variables are discretized also. The
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main and very important consequence is to have one’s way to study the
hydrodynamical problems for such a lattice gas by simulation on a computer
of cellular automaton type. This aspect is presented in the paper of U.
Frisch, B. Hasslacher, and Y. Pomeau [16], and many classical problems
of fluid dynamics have been studied with this point of view [17,18,19].
For the theoretical study of the hydrodynamics of a lattice gas, we must
study a system of equations similar to the system of the discrete kinetic
equations. (The difference comes from the exclusion principle used in the
lattice gas theory.) The viscosity coefficient has been calculated for a lattice
gas flowing out with a small Mach number [20,21].

In this paper, we briefly recall the discrete kinetic equations (section 2),
describe the Maxwellian states (section 3), and apply the Chapman-Enskog
method (section 4). So, we obtain the so-called Euler and Navier-Stokes
equations associated with the model, and we prove that the mean number
density n and its gradient Vn do not appear in the dissipative terms of the
Navier-Stokes equations. In section 5, we investigate the hydrodynamical
equations for a gas near a homogeneous state.

2. Description of the model

In earlier works we have described the general model of a gas with a discrete
velocity distribution [3,4], and here we briefly recall the notations and the
main results. The gas is composed of identical particles of mass m. The
velocities of these particles are restricted to a given finite set of p vectors:
Uy, %2,...,Up. We denote by N;(7,t) the number density of particles with
the velocity 4; at point ¥ and time .

Only binary collisions are considered. Let i, #; and iy, #; be the veloc-
ities of two molecules respectively before and after an encounter; these four
velocities must belong to the original set, and they must satisfy the two
relations expressing the conservation of momentum and energy. A “transi-
tion probability” Af} is associated with each collision, and we assume that

the Af-‘} coefficients satisfy the micro-reversibility principle
Mt YRR (2.1)

Of course, the transition probabilities are positive or equal to zero and
symmetrical with respect to the upper indices and to the lower ones. It
is convenient to assign a zero value to the transition probability for an
unrealizable collision.
The Boltzmann equation is replaced by a system of p nonlinear coupled
differential equations [3,4]
B+ i VN =325 Dy Dl (AGNey — AGN:N;)

22
y R SR 1 22)

or
a

5 N+ 0ON=F(N,N), (2.3)



Discrete Velocity Model of Gas 711

where N = (N3, N3,...,N,) is a p-component vector of the space R?, and
F(U,V) is a bilinear symmetric operator from R? x R? into R?:

AU,V) = 175, 5L, L { (A + i)
— A5(UV; + UiV-'}} (24)
g = 1,2....,p

For a model with a given set of velocities, we define the summational in-
variants which are quantities ¢ associated with conservation laws through
an encounter. In other words, @ is a p-component vector satisfying the
following conditions:

Alk;(ét + ¢1 == ¢k e ¢l) =0 Vis js k: L (2'5)

In particular, @ is a summational invariant if ¢; is equal to m, m;, or
-}mi?. In contrast to the classical kinetic theory for monoatomic gases, the
geometric character of the set of the given velocities may allow other sum-
mational invariants. They generate a linear subspace F of R? of dimension
g(1 < ¢ € p). We denote by F+ the subspace of R” orthogonal to F.

We introduce orthonormal bases in F and in R”:
VLV ..., W in F,

VL, V2 ..., Vi, Wl WP in R?. (2:6)
So we can write:
N = 06V +Th 1 bW, -

Ni = Xa=10aVi® + Thogi1 beW?,
ao = (N, V%),  by= (N, WF); (2.8)

the i-components of V* and W# are denoted by V;* and W/, and (U, V) =
SP_, U,V; denotes the scalar product in R”.

We have shown that equations (2.2) possess the essential properties
of the Boltzmann equation [3,4]. There are two ways of describing the
gas: first, a microscopic description corresponding to the knowledge of the
densities N; or equivalently to the knowledge of the quantities a, and bg;
and second, a macroscopic description corresponding to the knowledge of
the ¢ quantities a, alone. The quantities a, are called macroscopic state
variables of the gas. Among them there are the number density n, the
mean velocity ¥, and the temperature T. We give hereafter the macroscopic
conservation laws for the quantities a,:

%‘it“—+(aN,V“)=0 a=1,2,.:.,4: (2.9)
This system of ¢ equations for the ¢ quantities a, is not a closed system:
the bg variables are present in them. To obtain a closed system, we are
going to use the well-known Chapman-Enskog method, which is applicable
when the Knudsen number of the gas is small. It is possible to use this
method for a discrete model gas [3,4] and so obtain the constitutive laws

for our macroscopic medium.
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3. Maxwellian state, Euler equations

For a discrete model of gas, an H-theorem is valid [3,4]. The H-function
here is defined by H = 3-¥_, N; Log N; = (N, Log IN), and the Maxwellian
state is a state in which Log N is a summational invariant. That is,

LogN = Y0 e, V® (3.1)
Log N; = X! e,V *

(Here, Log IN denotes the sequence (Log N, Log Ns,...,.Log N,).) From
the definition (2.8) of the macroscopic state variables a,, we have

) e
t = (N, V%) = SV exp (Z c.,V,.”f). (3.2)
=1 =1

The quantities a, are functions of the g variables ¢,. The correspondence
between the a, and the c, is one to one [4]. Thus, in a Maxwellian state, the
densities N; are well-defined functions of the macroscopic state variables a,.
The macroscopic conservation laws (2.9) are the so-called Euler equations.
Notice that the exact form of these Euler equations depends on the choice
of the model of gas.

Later on, we want to study in what way the mean number density
appears in the Euler and Navier-Stokes equations. To this end, we introduce
n=3"%, N;, and we put

1 ; 1
Ve ﬁ, i=1,2,....0 6= {IN,VH = % n; (3.3)
ay =nXs, a=1,2,...,q; bg=nYs f=q+1,...,p (3.4)

i XV + ij prﬁ). (3.5)

-~ 1
N=nN = n(—vl +
\/I_J a=2 B=g+1

In a Maxwellian state, from equation (3.2) we deduce

n= exp (% cl) i exp (i c.,V,-") (3.6)

i=1 1=2

?:1 v exP(Eq=2 c.,V}")

Koy = R = AR 3.7

d Ef:l EXP(Z?,,:z c')'Vi'T) ( )
? WP q eV

Y = t:;. i 'EXP( ~=2 Cq :) B=q+1,...,p. (3.8)

To1 exp ( ?r=2°*rviq) ’

The relations (3.7) define an application from R?~! into R?~! which asso-

ciates X3, X3,..., X, to (ez2,¢s,-..,6,). Let D be its image. This applica-

tion is a bijection between R?~! and D, as it is easy to prove by using the

bijective properties of the application defined by the relations (3.2) [4].
The relations (3.7) may be written
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X =200 o 5), a=2,...,q, (3.9)
with the Jacobian matrix

6:., (20 VGV',) ( =1 Vu)( E V'T) (3.10)
o = .iuglll N =2.uu5q

In relations (3.10), we have introduced the reduced densities N; by:
N;=nN; i=1,2,...,p. (3.11)
In the same way, we write
Yo=Y (c25...,¢), B'= g+ conpi (3.12)

e = (Xhy NWEPVY)—(ZE, NWE)( S5, M)

dey

(3.13)
B = g+1,...,p5 7=2,...,¢

The Jacobian matrix (0X,./8¢,), @ =2,...,4, ¥ =2,...,4, is a symmetric
definite positive one. Indeed,

P (2:; N, A-A-)—(E&A.r
- (BE)) (S ()
- (S0 (mma)

that is strictly positive for all A; = 32_, A, V%, except for A; = 0, 1 =
1,2,...,p, or, equivalently, A\, =0, @ =2,...,q, (we recall that 3_F_, N;: =
1).

Now we emphasize the Maxwellian state near homogeneous state. In
other words, we suppose that all the number densities N; are close to n/p
and that the quantities X,, a = 2,...,¢ are very small of order ¢, say. We
remark from equations (3.2) and (3.3) that the two sequences (¢;,0,...,0)
and (n,0,...,0) correspond each other when ¢; = ,/p Log (n/p). Then,
the Jacobian matrix 8X,/8c,)(0,...,0) is the unit matrix.

By some algebra on the expressions (3. 7) (3.8) and (3.5), (3.6) and by
recalling that the base V*1,..., V9, Wt WP is an orthonormal base,
we obtain the following results:

ca=pXa+O0(e?), a=23,...,q (3.14)
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Y=0(%, B=q+1,...,p (8.15)
1 q

N,—:n(—+ S X, V,.“-I-O(sz)), i=1,3, b (3.16)
P n=e

exp(%) = %(1 + O(e’)) (3.17)

It is important to notice that the microscopic variables ¥ are small quanti-
ties of order two in € at least. Then, we pay attention to the mean velocity
¥ and to the pressure tensor P of the gas. From the hypotheses, ¥ is small
and of order ec, where ¢ denotes the order of magnitude of the velocities
@, ¢ = 1,2,...,p. Indeed, ¥/c must be a macroscopic variable, that is to
say a linear expression of the variables X,, a = 2,...,q. To this end, we
must take the initial set of velocities @; such that Y!_; %; = 0, and so in
the homogeneous state the gas is at rest. Then, for the pressure tensor, as
defined by [3,4]:

P=m iN,‘(ﬁi—ﬁ)(&‘i_ﬁ)!

=1
we obtain the approximate expression

R = mn{(‘:; U u.) - ZX (ZVGE,E.)
1 c’ow)}. (3.18)

In the homogeneous state, N; = n/p, ¥ is zero and the tensor P reduces to
P, = mn(Xi_,(1/p)4:u;). For the regular coplanar models with four or six
velocities of magnitude ¢ we have [5,6]

2
c
P, = —1
mn -
and for the regular coplanar models with 27 velocities [4], we have also

]
P,=mn — 1.
2

Let us remark that if the tensor P, = mn(¥Xl_,(1/p)%:#:) is spherical,
then we have, necessarily, in the plane P, = mn(c?/2)1 and in the space
P, = mn(c?/3)1 where ¢* = ¥;,(1/p) | @ |* [20].

At last, we give the Euler equations for a Maxwellian gas near the ho-
mogeneous state. These equations are the equations (2.9) with the densities
N; replaced by the expressions (3.16). We have

Z(nX.) + ( e pV“u,)-ﬁn

+ Z,ﬂ:ﬁ( |ﬁ1V“V6u|)-§(nXﬂ)=0
o = 1200040
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-y

By recalling that }>}_; @; = 0 and by distinguishing the equation relative
to the density n from the others, we obtain:

¥ 3,:2( V] ) . ﬁ(nX,,) =0
5%+ (Sads) - In (3.19)
+ 2:2(2?:1 &‘iv;'av,j) : 6 (nX,!) =0
a = 2,3,...,q.
4. Chapman-Enskog method

Let us take again the kinetic equations (2.3) and the conservation laws
(2.9). We write these equations in an adimensional form, and we introduce
the Knudsen number K, [4]:

a 1

E N+ N = E }-(N,N) (4.1)
a

Eaa—l-(CLN,V"‘):O, a=1,2,...,q. (42)

The Chapman-Enskog method for the classical kinetic theory is explained,
for example, in the paper of Grad [22]. This method is applied to discrete
models of gas in reference 3. It gives the Euler and Navier-Stokes equa-
tions associated to the model. Here, we briefly recall this method: for the
densities IN and for the time derivatives of the macroscopic variables, we
assume the following expansions:

N = NO(q,Da)+ K,NY(a,Da) +... (4.3)

2 a, F%a,Da) + K,F)(a,Da) +...
a = 1,2,...,q.

(4-4)

Here, a and Da represent the macroscopic variables and their spatial deriva-
tives. By substituting the expansions (4.3) and (4.4) in the equations (4.1)
and (4.2), we obtain:

7 (N©,N®) =, (4.5)
SN©
(03 el o 22N ©
27 (NO,NW) = S (4.6)
FO = _(aN® v™), a=1,2,...,q, (4.7)
FY = (aN®, V), a=1,2,...,q. (4.8)

We must also impose the Chapman-Enskog conditions:

(NO, V) = a,, (NO V=0,

a = 1,2,...,4. (4'9)
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4.1 The first approximation N(©

From equation (4.5), the densities N(%) are Maxwellian. In the previous sec-
tion, we studied such densities and we choose for them the expressions (3.5)
with (3.6), (3.7), and (3.8). In particular, N(% depends on the macroscopic
variables a, alone.

4.2 The second approximation N7

To obtain N(*) we must solve equation (4.6). In the left member, we put
NO = AOXO), that is, N =N xV i =1, 2, ..., p, and we obtain

27 (NO, AOx 1) = 1Ox®, (4.10)

The operator I%) is the linearized operator of collision about a Maxwellian
state. This operator is symmetric and negative; it possesses the eigenvalue
0, and the eigenspace associated with it is the subspace F of the summa-
tional invariants. We give below the elements of the matrix I® [4]:

P
ik 0 o 1 ) )
3 {AﬂN;! NP — ‘2'1431\7.-( N

1

M=

(o) _
1 =

w
Il

1=
P

2 A.*LM")N@&;}- (4.11)

m=1

|
B =

Let us return to the equations (4.6) and let us use the relations (4.4) at the
order 0(1). We have

q (o)
10X = 3° "alpy) + AN, (4.12)

a=1 Qo

The quantities F(?) are given in equation (4.7) in such a manner that the
compatibility conditions for the system (4.12) are satisfied. The solution of
(4.12) is defined save on the addition of any summational invariant. With
the conditions (4.9), the solution of (4.12) is then unique. We can take as

unknown quantities the variables bg,l) such that

P
NO = 3 pw? (4.13)
BA=g+1

and we have
X0 = A@-INO = 3 DAy,
B=q+1
The system (4.12) becomes

I(")A(”)“( z,: bf,"W") = i %EEFP) + GN©, (4.14)

f=q+1 a=1
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Taking the aforesaid properties for the operator I®) into account, we see
that the system (4.14) is an equality between two vectors of F* and so is
equivalent to

- (1)
2§=q+ , { 1OA0Q P:X}rﬁ,ww) by
= (Tl Bi-F+aNO, W) (4.15)
7 = g+1,...,p
or, in condensed notations:
; )
>, Bpby' =By, =gq+1,...,p (4.16)
B=g+1
4.3 Some remarks on the matrix B..
It is easy to verify that

P P (D] 1
By = Z Z Is'_f

i=1j=1 N}O)

wEw;. (4.17)

Let us write ® = Y5_ ., A; WP, Using the value (4.11) for I,-(_f-)) and the
Maxwellian properties of the densities N‘.(O), we have

P P rp P ©) i
2 2 B =200 I —gbid
p=g+17=g+1 i=1j=1 N

p p p P ¢ NON©
= 235 cai{ TEgae+ 4)

i=17=1k=11=1

N p0)
- S ke @)} (4.18)

LEEEE w0 (0) ) ()
= FL UL A (NP4 + 508 - NP - NOs,)

i=1j=1k=11l=1

(Pr+ i — i — ;) .

Consequently, if the Maxwellian state N© is homogeneous (N,IO) = n/p),
then the last right-hand side of equation (4.18) is negative or zero, and the
matrix B,p is then symmetric and negative definite.

The system (4.16) is a Cramer system because Yf_ 1 Byprg =0, 7=
g+ 1,...,p, has the unique solution Ay = 0, 8 = ¢+ 1,...,p. Indeed,
Y =541 AAO1W, belongs to F and Al” Y to F. Then, from the
properties of I(®), we conclude that Y = 0, ([4], page 63).

Now, we pay attention to the right member of equation (4.15) or (4.16).
We recall that the F°) are given by the relations (4.7), and that the densities
NO) are Maxwellian densities., As previously, we introduce the variables
(n, X3,...,X;) defined in (3.4) and we put according to (3.5)
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N(o)(al, A2y ,a.,) = ﬁ(o}(n, Xg, vae ,Xq) = nN(O)(Xg, sany Xq). (4.19)
We have:

aN©@ aN(D) _ v X, 3N

2ar. = VP Ya=2 T Sx )

N© (0) (4.20)
a3 _ 18 _

Pen. = n oox.» @=2,3

By introducing the last expressions (4.20) and the expressions (4.7) for F{%),
in the definition of B., we obtain:

oNO 4 x, aﬁgo))

B”:i{ - ‘/j‘_’(_fm__a=2 n 0X,

7V ﬁr!"l)v}) (4.21)
3

We have V! = (1/\[') i=12,...,p, N° = n N, and VN = N?Vn +
ks n(aNf"’ J8X,)V X,. Therefore,

P q BN(G) P
b - -l £ (e
i=1

LTSS )
+ n i ﬁ,-vxﬁ)) (4.22)
?;:2 0X,
¢ aN{ oND . o
— T (0)-' .Y e v )Va)
2o, (2( ““‘Z T A
5 o
- (N“”u,- Vn+n Z — . vxﬁ) }W”
Xp

We are interested by the coefficient of Vn in the expression of B,. Let us
denote it by K.

— p -~
B, = oW { FOg, N(o)(z N,-[")i.-)
j=1 i=1
e aN© , p
- LS (TP (4:23)
B=2 B i=1
i ANO 2
)
,ng aXp =1
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But

nX, = nyl, NOve
nYﬁ(O) - b(ﬂ) _nzp N(D)Wﬁ

and we have

B = (i:ﬁr‘(o)ww) (iﬁ‘_(n)wg) (éN o}ﬂ)

£=1 i=1

2.3y P
{ ( > NP ﬁ'.-) (4.24)
B=2 i=1

( i fvtfnva) ( Z": 5;{(0)&-‘,) }

=1 =1

The sequence #4;,z = 1,2,...,p is a summational invariant; then we can
write

= kVY,

§=1

where Ea, 6§=1,2,...,4q, is a sequence of vectors of R®. We substitute this
expression for #; in (4.24) and we obtain

. q po e . P
Ro= S R{(S MOwove) - (3 MW7) (L 8OW)

i=1 =1 =1
SR (ge) ()
aXﬁ i=1 i=1

The coefficient of ks is zero: if § = 1 it is clear because V! = (1/+/p) and

Py IV,-(D) =1;if 6§ = 2,...,q this result is a consequence of the relations
(3.10) and (8.13) because

i {aY(G) ¢, aY(%) axs}:
5=2 365 A=2 3X3 365

In conclusion, f{‘., = 0 and the coefficient of Vn in B, is 0. The right
member B, in equation (4.16) does not depend on Vn. The expression for

B, is a linear combination of f?"Xa, a=2,...,q alone.
Let us put
NO% = =% Z(D)V“ + Xh=gi1 Zéﬂ)Weﬁ

4.25
i = 12 ( )
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Naturally, Z is equal to (1/4/P)¥, and with I‘;I‘(D), the quantities Z{,
o = 1,2,...,p, depend on the variables X,,...,X, only. Then, we can
write B, in the form:

g ay0 1. 87 =
B = n(-¥0+ L X5 ) (L ax V%)

a=2 =2
7 gy, 2 970
- Z & § (Z s v ﬂ)
a=2 aXa B=2 aXﬁ
¢ 370
+ 1 =1V
=2 BXﬁ
©Y 5
B, = nggzz{ ( ~YO 43, X.x%}ﬂ—) 2
(9) . z(0) 7(0) =
= (Ei:z aa};u aa‘.zfﬁ ) =+ izx’,., } -V Xp (1:28)

¥ = g+1,...,p.

In conclusion, we have explicited the right member of the system (4.16).
Let us denote by Bz, the elements of the inverse matrix of the matrix Bg..
The solution of equation (4.16) is

P
1 -
o) = 3 8B, (4.27)
1=9+1
In expression (4.26), we see that B, is a linear combination of the gradients
VXg, B =2,...,9 and does not depend on the gradient Vn. The matrix
element B,z is a homogeneous function of order + 1 of the densities N‘.(D);

therefore, Bﬂ_.rl is a homogeneous function of order + 1 of the densities N,-(O)
and is written as a product of the inverse density 1/n by a homogeneous
function of order - 1 of the MG). As a consequence, bg) does depend
neither on n, nor on Vn. The Navier-Stokes equations associated to the
model are the conservation (4.2) with N = N© + K, N1, where N© is
the local Maxwellian state associated to the macroscopic variables a,, a =
1,2,...,q, and where NI is equal to b3 bgl)Wﬁ with bfgl) given by
equation (4.27).

5. The Navier-Stokes equations near the homogeneous state

Now we investigate the Navier-Stokes equations in the case where the gas is
near a homogeneous state, that is, where each density is close to the value
(n/p). The Maxwellian densities N‘-(D) with value close to (n/p) have been
studied in section 3. From equations (3.15), (3.16), and (4.19), we have

NO = n(% + 2 XV + 0(52)) =nN®

¢

(5.1)

1727""p1
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Y,}O} = 0(e?, y=q+1,...,p, (5.2)
and from equation (4.25) and the hypothesis 3>7_; @; = 0, we have

i=1
P
> ﬁiv-'u) +O(¢) (5:3)
a=2 i=1
2;0) = Xiy ﬁr'(o)ﬁ‘iﬂﬂ
= (D @W) + Sha Xa (S @) +O() (59
B = 1,2,...,g

?:1 ‘IVQ'(D)‘t’_r""p“fl::r

= 31, Xa(}j{;l a,w;v,.a) + 0(e?) (5.5)
¥ = g+1l...,p

Il
M
3<

Z0)

ol

In equation (5.5), we have used the property for the sequence #; to be a
summational invariant and consequently to be orthogonal to W}'.

Let us return to the expression (4.26) for B,. With equations (5.2),
(5.3), (5.4), and (5.5) we have

5 Y0 a7
E'?—(X—%— — O(l)’ BaXIu- = O(E), TJg: — O(l)’
(0
G = T EWVE+0(e), (5:6)

a = 2,3,...,¢; B=1,2,...,¢; 7=qg+1,...,p

By assuming that the quantities X, and 6Xc, are of the same order, we
have

B, = n{ é (ia,-w;w) X+ O(E)}. (5.7)

With the densities given in equation (5.1), it is easy to see that the expres-
sion (4.17) for the B,s elements has the following form

Byp = n(B,a_sl
with
TR Plf g 1oy 13 4 By
By D 2 2.0, "{Aﬂ —z4i—3 b b Aw‘m‘sﬁ}W:' wi'.
i=1j=1k=11=1P m=1
Then
P & q P _'
> Bas by =30 (ZﬁiW;’W’) - VXa+O(e).
B=q+1 a=2 ‘i=1

We write the solution in the form:
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by) = iy Rpa: VXa+0(e)

5.8
B = gq+l..,p (55)
In conclusion, for the densities we have
1 q
N; = n{-— + Z X V&
4 u-—2
q — —
+ K Z ( Z Kpo - VXC.)W,-” + 0(5)} (5.9).

ﬂ'ﬁl

Last, we give the Navier-Stokes equations for the general model and for a
gas near the homogeneous state. We write these equations in the dimen-
sional form (formally, we make K, = 1):

—

%(HX“) + {":1 ‘/g’aﬁ.l' ¥ v §+ E?'.=2 nX.,,)
4 DV 9 Shagss (Thea Ko 9, )W) =0
a = 1,2,...,q.

The equation with & = 1 is the equation for the density n; this equation
does not contain the second derivatives of X, v = 2,...,q. Indeed,

g%ﬁ"ﬁ( i (iﬁﬂw'ﬁx'r)mﬁ) =0

B=g+1 * =2

because
P
2 EWf =
i=1

At last, by distinguishing the equation for the density n from the others,
we have:

%+ f;:z( i=1 ‘M-V") -V(nX,) =0
(nXa 1 P oyal).
at + p(Et=1 ulvl ) vn (5.10)
+ Ea (E?:: '1'-'V,-"‘V,-7) . 6(11.}(.,)
- .qr=2 Aa“f - ﬁﬁ(X,,) =0
with
P P .
A""T =" W Z Z VE"'W.P!T.'K&,
i=1 f=g¢+1
P P ” B
= - 3 (Swewra)( £ 5(Svwa)) G
B=g+1 "i=1 S=g+1 §=

P P

- - > 3 gp(Tvewta) (L),

b=q+1 f=q+1 =1 j=1
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Thus, for the general discrete velocity model we have defined and calculated
the transport coefficients. We remark that the tensor of order two A,,
(e,vy =2,...,¢) is a symmetric tensor in the indexes « and 4. Moreover,
if & and «y are fixed, A, is a symmetric tensor of order two in the physical
space. We call the tensor A,., the viscosity tensor.

The matrix Bﬁ_&l is a definite negative matrix. By using this property,
it is easy to show the inequality:

i:ﬂ Ez:z(Aaj)‘aAfr) . ;{;{ 2 0 =
ViseR ,a =2,... ,9 ; VAe R

Consequently, the viscosity tensor corresponds to dissipative phenomena.

In references 5 and 6, we have given the tensor pressure in the Navier-
Stokes approximation for two particular models, first for a coplanar model
with four velocities, and second for a regular coplanar model with six
velocities. In the two cases, we have verified that the pressure tensor
P = PO 4 PO is such that PM does not depend on n and Vn. Us
ing the notations of reference 4 with the four velocity model and with the
hypothesis | U |« ¢, we have:

—

c? me -
P—FEI-EEO.VU,

where E, is a tensor of order two related with the geometry of the model.
With the six-velocity model and with the hypothesis | @ |< c and | § |< 1,
we have:

where E,, E; and &, €; are respectively two tensors of order two and two
vectors related with the geometry of the model. The theory presented here
is a generalization of these results. Let us notice that these results are to
compare to those of J. P. Rivet and U. Frisch [20] and to those of M. Hénon
[21] for a hexagonal lattice gas.

6. Conclusion

In conclusion, we emphasize that the discrete kinetic equations have a good
structure. The Chapman-Enskog method has been applied and has exhib-
ited the Euler and Navier-Stokes equations associated with the model. We
recall that the Euler equation system is a hyperbolic system of conserva-
tion laws [4]. Here, we have given the Navier-Stokes equations. Near the
homogeneous state, we have explicitly given the transport coefficients and
shown that these coefficients really correspond to dissipative phenomena.
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