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Abstract. In this short note, we describe a steady-state solution of
fully compressible convection which could be used for comparisons
with those obtained with the lattice gas approach. This solution has
been obtained with a pseudospectral code. It consists of two steady
rolls at a maximum Mach number of 0.60 and at a maximum Reynolds
number of 700. Slip boundary conditions for the velocity have been
used. Regarding the temperature, we used a radiative boundary con-
dition at the upper boundary of the fluid layer and fixed temperature
at the lower boundary.

1. Introduction

Natural thermal convection in incompressible fluids has been the object of
considerable interest in the past ten years. Recently, there has been in-
creased interest in compressible fluids, essentially stellar convection. The
anelastic approximation, which consists in filtering out the acoustic waves,
has been used in the astrophysical context in order to overcome the Boussi-
nesq approximation. This approximation is only valid for low Mach num-
ber. More realistic approaches must handle high frequency acoustic waves
correctly. One approach was first carried out by Graham [1].

In order to obtain some insight into the sequence of instabilities leading
to the temporal chaos, a pseudo-spectral numerical code has been devel-
oped. Such a method has been used because of its high accuracy and its
ability to accurately describe nonlinear interactions.

Here, we report on a particular steady-state solution which could be
used to test results obtained with the lattice gas approach. We also discuss
modifications required for a more detailed comparison.

The outline of the paper is the following. Section 2 defines the problem
of compressible convection. Section 3 is devoted to the description of the
solution. Section 4 describes required modifications for comparison with
lattice gas results.

*Present address: Centre D’Etudes de Limeil-valenton, B.P. 27, 94190 Villeneuve-St-
georges, France.

© 1987 Complex Systems Publications, Inc.



728 Serge Gauthier and Gary Doolen

2. The physical problem and the equations of the model

The fluid motion takes place in a two-dimensional rectangular cavity of
width L, and height d. The z-axis is directed downward so that the gravity,
represented by the vector g = (0,0,¢), is positive in this direction.

The equations of motion for a compressible, viscous, thermally conduct-
ing gas are as follows:
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where the viscous stress tensor is
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The coordinates, z; and z; stand for the z and 2 coordinates, respectively.
This set of equations is closed by the equation of state for the perfect
gas.

P = RpT and o=y T: (2.5)

P, p, T, and e are pressure, density, temperature, and internal energy
respectively; the u; are the components of the velocity. The thermal con-
ductivity and the dynamic viscosity are taken as constants. R is the gas
constant and C, the specific heat at constant volume.

Here, we are interested in slip boundary conditions for the horizontal
velocity and radiative boundary conditions, as suggested by Spiegel [2], for
the temperature. We impose the heat flux at the upper boundary to be
fixed by the radiative energy of a black body

ar
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dz

where o® is the Stefan Boltzmann’s constant. Taking into account the
fluctuations of the thermal conductivity with respect to the density and
the temperature up to the first order and linearizing the equation (2.6)

leads to the following relation at the upper boundary:
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where §/6p is the derivative with respect to p and the Stefan number S; =
o*® T3d/K, has been used. If the thermal conductivity K is of the form
T3/p [3], the temperature fluctuation, ©, satisfies an inhomogeneous time-
dependent Robins type boundary condition at the top of the layer,

1d
s 2 1, = t y
5 2;0(@20,8) = O(z, 20,8) = p(2, 20,1), (2.8)
and
T(zo+d)=Ty
at the bottom of the layer. The boundary conditions for the velocity are
u; =0 and %:0 at z= 2z, 2 +d. (2.9)

Periodic boundary conditions are used in the horizontal direction for all
variables. With these boundary conditions, the steady state is given by

T(z) = S;2, (2.10)
p(2) = (22)m+D2/S-1, (2.11)
P(z) s sz(m+1]2/5!—l Z(m-i-l}Z/S!. (2_12)

The coordinate z goes from Z~! to Z=1+ 1, where Z = d/z. This two pa-
rameter formula allows very weak stratification of the density and relatively
strong pressure stratification.

The two-dimensional compressible convection problem is characterized
by seven dimensionless parameters: the aspect ratio, A; the Prandtl num-
ber, o; the ratio of specific heats, «; the normalized layer thickness, Z; the
polytropic index, m; the Rayleigh number, R; and the Stefan number, S;.

The numerical scheme used has already been described in reference 4.
It consists of an explicit stage for advective terms, pressure terms, and
diffusive terms in the horizontal direction and an iterative method, with
spectral preconditioning, for the vertical nonlinear diffusive terms. The
code has been checked by computing critical exponents of the velocity and
the Nusselt number at the onset of convection.

3. Spectral results

In figures 1 through 4, we have displayed steady state results at a Rayleigh
number of 8500, a polytropic index and a stratification parameter equal
to 1, a Prandtl number of 0.1, a ratio of specific heats of 1.67, a Stefan
number of 1.85, and an aspect ratio of 2.79. With this set of parameters,
the Rayleigh number is roughly 25 times the critical Rayleigh number of
the onset of convection. The ratio of the density at the top and the density
at the bottom is 1.06, but the pressure ratio is 2.12. We have given both
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Figure 1: Velocity field of the steady state for the set of parameters
described in the text.

local quantities like the maximum of the velocity and the thermodynamical
variables and global quantities like the variance of the thermodynamical

variables. V,2__ is defined as the maximum of the velocity squared

u¥(z,2) + v¥(z, 2)

over the two-dimensional domain. The same definition has been used for
the maximum Mach number.

Results are expressed in the following units: d, d%p (2o + d)/p, p(20),
and T(z) for length, time, density, and temperature respectively. The
spatial resolution was 32 x 33 modes, and we have checked that the highest
coefficients of the spectral expansion were several orders of magnitude lower
that the first ones. In steady state, the heat fluxes are equal at the top
and bottom of the layer, as are the Nusselt numbers. Consequently, the
integration process was stopped when the relative difference was less than
5 x 1073,

The spatial pattern shows a left-right symmetry with respect to a verti-
cal line at the middle of the box. As it is now well known, rolls of convection
are deformed by the compressibility. Relative fluctuations of density and
pressure are quite different, due to the high Rayleigh number and the rel-
atively low Prandtl number. The temperature profile reflects the Robins
boundary condition which leads to strong relative temperature fluctuations
at the top. This two-roll solution is stable, even at a Reynolds number
of the order of 10%, where the relative pressure fluctuations can reach 50
percent of the average pressure and the Reynolds and Mach numbers are
respectively of the order of 700 and 0.6. Moreover, the transient leading to
this steady state reveals that the largest eigenvalue is real. In other words,
this configuration is very stable and is far away from the bifurcation point.
The relative pressure fluctuations exhibit peaks where the flow changes di-
rection. The largest velocity, 657.4, occurs at z = 0.785, z = 2.0, below the
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Figure 2: Relative density fluctuations. The maximum fluctuation of
37.7% occurs at z = 1.396, Z = 1.941.
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Figure 3: Relative temperature fluctuations. The maximum fluctua-
tion of 46.1% occurs at = = 0.0, z = 1.059.
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Figure 4: Relative pressure fluctuations. The maximum fluctuation
occurs at z = 1.396,z = 1.0.

center of the rolls, on the lower boundary. The largest momentum, 708.0,
occurs at £ = 0.785, z = 1.978 very close to this boundary.
We have used the following definition of the Nusselt number [1]:

= (F e u)
(F c F, a) )

This number coincides with the classic definition in Boussinesq theory for

vanishing values of the stratification of the parameter, Z. F; = ¢K/C}, and

F, = K(T) — T,)/d are respectively the flux of the adiabatic gradient and
the conductive flux. The Nusselt number at both boundaries is 2.071.

Nu (3.1)

4. Requirements for comparisons between lattice gas and spec-
tral calculations

In order to make accurate comparisons between spectral calculations and
lattice gas calculations, it is essential that both methods solve identical
problems. Although such comparisons could be done in principle, no one
has yet completed this difficult task. Rayleigh-Benard lattice gas calcu-
lations have been reported [5], but the implementation of the boundary
conditions and gravitational forcing is different from standard spectral cal-
culations.

One serious problem in comparison calculations is that the lattice gas
equation-of-state is velocity dependent [6]. This velocity dependence van-
ishes as the velocity goes to zero, but that is not a useful limit for lattice
gas calculations. A possible solution is to provide the spectral calculation
with the same equation-of-state as used by lattice gas models. This could
be done, but this equation-of-state has only been derived in the low velocity



Compressible Rayleigh-Benard Simulations 733

limit. It is possible to obtain the lattice gas equation-of-state from lattice
gas calculations, but no one has performed these calculations.

Another serious problem exists with the lattice gas viscosity: It is den-
sity and velocity dependent in a complicated way which could be deter-
mined through extensive lattice gas calculations. (The analytic formulas
for viscosity derived in the low-velocity limit differ slightly from calculated
viscosities.) Again, in order to make accurate comparisons with spectral
calculations, this complicated viscosity would have to be inserted into the
spectral codes.

Another problem in making accurate comparisons is the fact that spec-
tral methods and lattice gas methods have different higher-order “correc-
tion” terms to the Navier-Stokes equations. These terms depend on choice
of time step and lattice size or smallest wavelength. Which of the two
methods has the better correction terms is a question which has not been
resolved and is probably problem dependent.

The last problem we cite is the existence of considerable noise in the
lattice gas calculations. Much time averaging of a steady state result will
be required to obtain densities and velocities accurate to three significant
figures.

Given the above difficulties, it appears that considerable time will elapse
before accurate comparisons can be made between the two methods.

5. Conclusion

A steady-state solution of two-dimensional compressible convection has
been presented. This solution could be compared with results obtained
within the lattice gas approach. A significant amount of work remains to
be done before such comparisons can be done accurately.
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