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Abstract. In this short note, we describe a steady-state solution of
full y comp ress ible convection wh ich cou ld be used for comparisons
wit h those obtained with the lat ti ce gas approach. T his solution has
been obtained wi th a pse udospectral code. It consists of two steady
rolls at a maximum Mach number of 0.60 an d at a maximum Reynolds
numbe r of 700 . Slip boundary cond it ions for the velocity have bee n
used . Regarding the temperature, we used a radiat ive boundary con­
dit ion at t he upper boundary of the fluid layer and fixed te mperature
at t he lower bound ary.

1. Introduction

Natural thermal convect ion in incompressible fluids has been the object of
consi derable inter est in the past ten years. Recently, there has been in­
creased interest in compressib le fluids, essentia lly stellar convection . T he
ane lastic approximation, which cons ists in filte r ing out the acoust ic waves,
has been used in the astrophys ica l context in or der to overcome the Boussi­
nesq ap proximation. T his approximation is on ly va lid for low Mach num­
ber . More realis ti c approaches must handle high frequency aco us t ic waves
correct ly. One approach was firs t carried out by Graham [1].

In order to obtain some ins ight int o the sequence of instab ilit ies leading
to the tempora l chaos, a pseudo-spectral numerical code has been devel­
oped . Su ch a metho d has been used because of its high accuracy and its
ab ility to accurately describe nonlinear interact ions.

Here , we re port on a particu lar steady-state solut ion which could be
used to test results obtained with the la t tice gas approach. We also discuss
mo difications required for a more detailed compar ison.

The out line of the paper is the following . Section 2 defines the problem
of compressible convection. Section 3 is devoted to the desc r iption of the
solu tio n . Section 4 descr ibes required modifications for comparison with
lattice gas result s.

" Present ad dress: Centre D 'Etudes de Limeil-valenton, B.P. 27, 94190 Villene uve-St­
georges, France .
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2. The physical problem a n d the equations of the model

The fluid motion takes place in a two- dimensional rect angul ar cav ity of
width L~ and height d. T he z-axis is directed downward so t hat the gravity,
represented by the vector g = (0,0 , 9) , is posit ive in th is direct ion .

The equations of motion for a compress ible , v iscous, t he rmally conduct­
ing gas are as follows:

ap a(pu.)
at+~ =o,

•

a(pu.) + a(pu.u; )
at ax;

and

_a(_pe_) + :..a(",P:..<U::<;!..)

at ax;

(2.1)

(2.2)

(2.3)

where the viscous stress tensor is

(2.4)

The coordinates , Xl and X2 stand for t he x and z coordinates, respectively.
This set of equations is closed by the equation of state for the perfect

gas.

P =RpT and e = Cv T. (2.5)

P, p, T, and e are pressure , den sity, temperature, and internal en ergy
res pe ct ively; t he U i are the components of the veloci ty. T he ther mal con­
ductivity and the dy namic v iscosity ar e t aken as constants. R is the gas
constant and Cf) t he specific heat at constant volume.

Here, we are interested in slip bo undary condit ions for t he horizontal
ve locity and radiat ive boundary condit ions , as suggested by Spiege l [2], for
the tem perature. We impose the heat flux a t the upper boundary to be
fixed by the radiative energy of a black body

(2.6)

wh ere a~b is t he Stefan Boltz mann 's constant. Taking into account t he
fluctuations of the thermal conductivity wi th respect t o the dens ity and
the temperature up to t he first or der and linearizing the equat ion (2.6)
leads to the following rela ti on at t he upper boundary:

~ d0 + ~(I5K) p + ~(I5K)0 = 40,
Sf dz K o I5p K o 150

(2.7)
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where %p is th e derivat ive with resp ect to p and the Stefan number Sf =
0 '" T~d/Ko has been used. IT the thermal conduct ivity K is of the form
T' / p [3], the temperature fluctuat ion, 0, satisfies an inhomogeneous time­
dependent Robins type boundary condition at the top of the layer,

1 d
Sf dz 6(x, Zo,t) - 6(x, so, t) = p(x, Zo, t), (2.8)

and

T(Zo + d) = T.

(2.9)z = Zo, Zo + d.atandU1 = 0

at the bot tom of the layer. The boundary cond it ions for the velocity are

a". = 0
az

Periodic boundary conditions are used in the horizontal direct ion for all
variables. With these boundary conditions, the steady state is given by

T(z) = SfZ,

p(z) = (zz)(m+l )Z!Sr',

(2.10)

(2.11)

(2.12)

The coordinate z goes from Z- ' to Z-' + 1, where Z = d/ Zo. This two pa­
rameter formula allows very weak stratification of the density and relatively
strong pressure stratification.

The two-dimensional compressible convect ion problem is characterized
by seven dimensionless parameters: the aspect ratio, Aj the Prandtl num­
ber, OJthe ratio of specific heats, "Yj the normalized layer thickness, Z; the
polytropic index, mj the Rayleigh number, R j and the Stefan number, Sf .

The numerical scheme used has already been described in reference 4.
It consists of an explicit stage for advective terms, pressure terms, and
diffusive terms in the horizontal direction and an iterative method, with
spectral preconditioning, for the vertical nonlinear diffusive terms . The
code has been checked by computing critical exponents of the velocity and
the Nusselt number at the onset of convection.

3. Spectral results

In figures 1 through 4, we have displayed steady state results at a Rayleigh
number of 8500, a polytropic index and a strat ificat ion parameter equal
to 1, a Prandtl number of 0.1 , a ratio of spec ific heats of 1.67, a Stefan
number of 1.85, and an aspect ratio of 2.79. With this set of parameters,
the Rayleigh number is roughly 25 times the critical Rayleigh number of
the onset of convection. The ratio of the density at the top and the density
at the bot tom is 1.06, but the pressure ratio is 2.12 . We have given both
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Figu re 1: Velocity field of t he ste ad y state for the set of parameters
described in the text.

A

local quantities like th e maximum of the velocity and the thermodynamical
va riables and globa l quantities like the variance of the thermodynamical
variables. V~a:l: is defined as the maximum of the velocity squared

u'(x, z ) + v'(x, z )

over the two-dimensional domain . The same definition has been used for
the maximum Mach number.

Results are expressed in the following units: d, d'p (zo + d)/p-, p(Zo ),
and T(zo) for length, t ime, density, and temperature resp ect ively. The
spat ial resolution was 32 X 33 modes, and we have checked that the highest
coefficients of the spectral expansion were several orders of mag nitude lower
that the first ones. In steady state, the heat fluxes are equal at the top
and bottom of the layer, as are the Nusselt numbers. Consequently, the
integrat ion process was stopped when the relative difference was less t han
5 X 10-'.

The spatial pattern shows a left- right symmetry with resp ect to a verti­
cal line at t he midd le of the box. As it is now well known, rolls of convection
are deformed by th e compressibility. Relative fluctuations of density and
pressure ar e quite different , due to the high Rayleigh number and the rel­
atively low Prandtl number . The temperature profile reflect s the Robins
boundary condit ion which leads to strong relative temp erature fluctuat ions
at the top. This two-roll solution is stable, even at a Reyno lds number
of the order of 103 , where the re lat ive pressure fluctuations can reach 50
percent of th e average pressure and t he Reyno lds and Mach numbers are
resp ectively of the order of 700 and 0.6. Moreover, the t ransient leadi ng to
t his steady state reveals that the largest eigenvalue is real. In other words,
this configuration is very stable and is far away from the bifurcation po int .
The relative pre ssure fluctuations exh ibit peak s where the flow changes di­
rection. The largest velocity, 657.4, occurs at x = 0.785, z = 2.0, below the
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Figure 2: Relative den sity fluctuations . The maximum fluctuation of
37.7% occurs a t x = 1.396,Z = 1.941.

_ 46_1% - -

Figure 3: Relative tempera ture fluct uations . The maximum fluct ua­
t ion of 46.1% occurs at z = 0.0, z = 1.059.
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Figure 4: Relative pressure fluctuation s. The maximum fluctuation
occurs at x = 1.396 , z = 1.0.

(3.1)

center of t he rolls , on the lower boundary . The largest momentum, 708 .0,
occurs at x = 0 .785, z = 1.978 very clos e to this boundary.

We hav e used t he following definition of t he Nusselt number [11:

N
_ (F, - Fa)

U - (F, _ Fa)'

This number coincides with the clas sic definition in Boussinesq theory for
va nish ing val ues of the st rat ification of the parameter , Z . Fa = gKjCp and
F, = K(T, - Tul/d ar e respecti vely the flux of the adiabat ic gradi ent and
the con ductive flux. T he Nuss elt numb er at both boundaries is 2.071.

4. Requ irements for compar isons b etween lattice gas a n d spec­
t ral calcula tions

In order to make accurate comparisons between spectral calculat ions a nd
lattice gas calculations, i t is essential that both methods solve ident ical
problems. Although such comparisons could be done in principle, no one
has yet completed this difficul t task. Rayleigh-Benard lat tice gas calcu­
lat ions have been rep orted [51, bu t the imp lementation of the boundary
cond it ions and gravi tational forcing is different from standard spect ral ca l­
culations.

One serious problem in comparison calc ulations is that the lat t ice gas
equation-of-state is velocity dependent 16}. This veloci ty dep endence van­
ishes as the velocity goes to zero, but that is not a useful limi t Cor lat tice
gas ca lculat ions . A possibl e solut ion is to prov ide the spect ral calculat ion
with the same equati on-of-st ate as used by lat t ice gas models . This could
be done, but th is equation-of-stat e has on ly been derived in the low velocity
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limit . It is possible to obtain the la t t ice gas equation-of-state from lat t ice
gas calculations, but no one has per formed these calcu lations.

Another ser ious problem exists with the lat t ice gas viscos ity: It is den­
sity and velocity dependent in a complicated way which could be deter­
mined through extensive lattice gas calculat ions . (The analytic formulas
for viscosity derived in t he low-velocity limit differ slightly from calculated
viscosities. ) Agai n , in order to make accurate comparisons with spectral
ca lcu lat ions, this complicated viscosity would have to be inser ted int o the
spec t ral codes.

Another problem in making accurate comparisons is the fact that spec­
tral methods and la t t ice gas met hods have different higher-order "correc­
t ion" te rms to the Navier-S tokes equa t ions. T hese terms depend on choice
of t ime step and lat t ice size or smallest wavelength. Which of the two
metho ds has the bet ter correction terms is a question which has not been
resolved and is probably problem dep endent .

The las t problem we cite is the existence of considerable noise in the
la t t ice gas calculations. Much time averaging of a steady state result will
be required to obtain densit ies and veloc it ies accurate to three significant
figures.

Given the above difficulties, it appears that considerable time will elapse
before accurate comparisons can be made between the two metho ds .

5. Con clusion

A steady-sta te solut ion of two-dimens ional compressib le convection has
been presented . This solut ion could be compared wit h resu lts obtained
wit h in the lat t ice gas approach . A significant amount of work rem ains to
be don e before such comparisons can be done accurately.

Acknowledgment s

We thank DRET for support through Grant 85.34.819.00.470.75.01.

R eferences

111 E. Graham. Journal of Fluid. Mech., 70 (1975) 698; and E. Graham, "Prob­
lems of Stellar Convection", in IA U Colloquium 38, E. A. Spiegel and
J. P. Zhan, eds. (Springer Verlag, Berlin, 1977).

[21 E. A. Spiegel, Columbia University, New York, NY, private communication
(1986).

[31 la. Zel'dovich and A. Raizer , Physi cs of Shock Waves and High Temperature
Hydrodynamics Phenomena, CFSTI (1965).

[4] S. Gauthier, A Spec tral Col1ocation Meth od for Two Dimensional Compress­
ible Con vection, Los Alamos National La.boratory report LA-UR-8~2308

(1986).



734 Serge Gauthier an d Gary Doolen

[51 C. Burges and S. Zaleski, Complex Sys tems, 1 (1987) 3l.

[6] J. P. Dahlburg, D. Montgomery, and G. D. Doolen, "Noise and Compress­
ibility in Lattice Gas Fluids", Phys. Rev. A, in print .


