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Abstract. Rules for describing certain simple cellular automata in a
universe of dense-packed spheres are presented and explored. Specif-
ically investigated are oscillators and other stable forms for a rule
introduced in [2] as a candidate for 2 game of Life. The “signature” of
a form is defined, and the signatures are given for all known smaller
forms for the above rule. Rates of growth are discussed and computer
implementation techniques are mentioned.

1. Introduction

In a three-dimensional universe of close-packed spheres, which is also called a
hexahedral tesselation [4], each sphere, or cell, has 12 immediate neighbors.
The spatial relationship between neighbors is best illustrated by placing a
cell at the center of a cuboctahedron. The 12 corners then show the location
of neighbor cells (see figure 1-A), which are arranged in four intersecting
planes, each containing a hexagonal ring of six neighbors touching the central
cell. For example, in figure 1-A, the four planes are defined by (1,2,3,4,5,6),
(1,7,8,4,12/10), (2,7,9,5,12,11), and (3,8,9,6,10,11). Figure 1-B shows the
neighbors of a central cell as spheres; here, the center cell is surrounded by
its neighbors and hence is barely visible.

Although one can easily envision space when it has been packed full (see
figure 1-C), a display of just a few cells arranged in some configuration can be
confusing. To help alleviate this problem, all illustrations of configurations
are shown from the same perspective: namely, the viewer is always looking
straight down, in a direction perpendicular to plane (1,2,3.4,5,6).

1.1 Some notation

Let § denote a universe of dense-packed spheres; R? will be used to denote
our occasional reference to a three-dimensional Cartesian universe. A cell can
have two states, which we will call living and dead. The next generation state
of a cell is determined by the current state of the cell and its 12 immediate
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neighbors. Define environment, E, as the number of living neighbors of a
given living cell, ¢, so that ¢ remains alive the next generation. Fertility, F,
is the number of living neighbors of a given dead cell, d, so that d becomes
alive next generation. The valid fertility and environment ranges are given
as By < E < E, and F; £ F < F,. Thus, all rules, R, under consideration
can be written as 4-tuples of the form R = (E), E, Fl, F,). These rules are
semi-totalistic [1] in that the next generation outcome depends solely upon
¢ and the quantity of living neighbors and not their relative positions.

Throughout this paper, we shall deal mainly with Q. Computer experi-
mentation was done with various finite universe sizes, occasionally wrapping
coordinates in order to simulate an infinite universe. Because of the method
of computer implementation, the finite values for {} appear more or less cubic
in shape and may be considered as being composed of successive, approxi-
mately square layers. The number of such layers is referred to as the grid
size.

Many rules yield forms called oscillators; that is, they are periodic. An
oscillator of period one is called a stable form. An oscillator that translates
in some manner through space is, by tradition, called a glider.

In reference [2], the author introduces a totalistic cellular antomaton,
defined by R = (3,3,3,3), that appears to satisfy criteria for consideration
as a “game of Life”. This rule can also be specified verbally:

If a cell touches three living cells, it becomes (remains) alive
for the next generation; otherwise it dies (remains dead).

Due to its importance as a Life game, the rule (3,3,3,3) was investigated
thoroughly in order to determine the nature and quantity of its small oscil-
lators and stable forms. It is important to note that many other rules of the
form (Ej, B, F, F,) support similar quantities of such structures, although
an extensive search has so far revealed no glider for any semi-totalistic rule
in §2, and for only two such rules in R3.

2. Oscillators and stable forms for R = (3,3,3,3)

Three methods of discovering forms were employed: a) condensation from
random “soup”, b) eondensation from some symmetric pattern, and ¢) con-
struction. A Macintosh Plus was used for all experimentation.

Method (a) revealed most of the common oscillators, but eventually
ceased to yield any new discoveries. This method was also used to discover
both gliders (see figure 2, N and Q) by starting with a small cluster of about
30 randomly created cells at the center of a fairly large finite universe. Any
configuration which struck the “edge” of the universe was saved.

Method (b) yielded the vast majority of forms. For each experiment
under this method a small symmetric shape, S, (not necessarily stable under
(3,3,3,3)) was placed at the center of a large {inite universe. The shape was
“stirred” twice with randomly created rules of the form

S M Tl 8
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Figure 1: The neighbors of the cell at the center of the cuboctahedron
(A) form four intersecting planes—e.g. (1,2,3,4,5,6), (1,7,8,4,12,10),
etc.; an individual live cell can be illustrated as a sphere; (B) illus-
trates the 12 neighbors of a cell along with the cell, which can be seen
in the middle; (C) depicts a universe of grid size = 4, since 4 planes
of cells parallel to plane (1,2,3,4,5,6) have been constructed.
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After two stirrings, the (frequently larger) shape was saved as the starting
shape for the next experiment, and R was switched to (3,3,3,3). If the starting
shape had become too large, it was discarded and shape S was used again.

Most experiments conducted under methods (a) and (b) yielded no debris;
all cells usually died after 2 to 20 generations depending upon the size of the
starting form. If an object lasted more than 70 generations, it was considered
stable and was saved on a disk file. After a maximum of 25 such shapes were
found, the program was stopped; the files were examined and new discoveries
were noted. Due to the viewing limitations imposed by the program, it was
sometimes very difficult to determine when two forms were different or merely
the same form viewed from another angle (see, for example, figure 3-F).
Furthermore, there was no way to prevent different files from being created
for similar forms. Both of these problems were alleviated by incorporating
signatures, described below.

2.1 Signatures
The signature, S, of any configuration, is defined by the 25-tuple

{A[z An A]o . .Ag Al Ao < D1 Dg D3 Du) .Du D]z}

where A; gives the total number of living cells in the configuration with
exactly 2 living neighbors and D; gives the total number of dead cells in the
vicinity of the configuration with exactly j living neighbors. Note that Dy
represents “space” and hence is omitted. Also, leading and trailing zeros may
be omitted when writing a signature; the “0” acts in a manner analogous to
a decimal point. Some fairly obvious characteristics of signatures are given
below.

1. Two identical configurations with different orientations have the same
signature.

2. Az + D3 (al generation k) = ¥ A; (at generation k4 1).

3. Any stable form under (3,3,3,3) has a signature whose A; are zero
except for Aj, and whose D3 must be zero.

4. Oscillators whose phases are symmetric with each other in some way
have identical signatures for these phases.
Several oscillators exhibit (4); for example, figure 2-A through E. Other
interesting observations may be made; unfortunately, the observation
that we would most like to make—that different oscillators are guar-
anteed to have different signatures—is not true. This fact is stated
below.

. It is possible to construct as many distinct oscillators as we wish, with
each oscillator bearing the same signature.

o
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Clearly, we only include as “distinct oscillators” those shapes where all
cells play an integral part in the overall form. More formally, if the convex
hulls of two (or more) forms always remain at least two cells apart, than we
would say that these forms are separated and hence do not affect each other.
Thus, we would not consider several separated copies of, say, figure 2-A as
being another oscillator; here, we would merely have several copies of 2-A.
With this in mind, a proof of (5) can be obtained by observing figure 11.

In spite of (5), under (3,3,3,3) no two distinct small oscillators (or stable
forms ) with identical signatures have yet been found. Hence, we have been
able (so far) to classify all oscillators discovered to date by their signatures, or
in cases where different phases have different signatures, the lowest signature
alone. Table 1 is a complete list of such signatures for all known forms under
(3,3,3,3). These forms have been illustrated in figures 2 through 9 and of
course do not include “constructed” configurations—that is, configurations
unlikely to be discovered by primordial experimentation on a computer. If
different phases of a given oscillator have different signatures, the lower sig-
nature was given.

Although work with signatures of oscillators under rules other than (3,3,3,3)
has been limited, nevertheless no two identical signatures for different forms
have been found—with the interesting exception of the (4,6,3,3) oscillator
shown in figure 13.

One should note that the signature can be obtained at little expense dur-
ing most computer simulations, as all the neighbors must usually be checked
anyway. Of course the signature concept could be extended to include the
42 neighbors that are a distance of two from a particular cell (or greater
distances if desired). Naturally, this would increase the execution time and
would cause the signatures to lengthen, although signature length is obvi-
ously bounded by 2*[number of cells in the configuration]. No work has been
done with such “extended” signatures, nor has work yet been done with
signatures in R®.

2.2 Characteristies of (3,3,3,3) oscillators

As mentioned in [2], two distinct gliders have been discovered, both with
a period of two. These gliders move in a straight line along any of the 12
“neighbor touching directions.” The little glider (see figure 2-N) has a total of
24 orientations, and the more symmetric big glider (see figure 2-0) has 12. A
lengthy search has failed to turn up any other glider; if one does exist, it will
probably have to be manufactured rather than discovered from primordial
experiments.

All but four of the oscillators discovered exhibit a period of two. The
exceptions are three period-four oscillators, figures 2-D, 7-G and 8-H; and one
period-six oscillator, figure 5-C. The relative frequency of the most common
forms have been tallied in table 2.

Almost all stable and oscillating forms that have been discovered exhibit
symmetry of some sort. The few oscillators that appear to be asymmet-
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Table 2: Each experiment was initiated by randomly placing about
32 cells in a cluster at the very center of a size-19 grid. The relative
density of the cluster was around .35. Most experiments resulted
in the death of all cells after about ten generations. If a form still
existed after 75 generations, its signature was examined. Gliders were
detected when they hit the edge of the grid. The above table lists every
object that was found when 18,000 experiments were conducted. In
two cases, pairs of objects occurred.

ric usually have another phase which is a reflection of the first. Extensive
random soup experiments have produced only two completely asymmetric
oscillators—figures 6-I" and 6-G. Probably other small asymmetric oscilla-
tors exist, and it is certainly possible to construct an infinite number of large
ones (e.g. figure 11).

There is wide variation in the number of distinct orientations possible for
a form. Specifically, forms that exhibit the least symmetry have the highest
number of distinct orientations. For example, the form in figure 6-F has 48
distinct orientations while 4-D has only one.

Some oscillators and stable forms can be extended into larger configurations—
see figure 3-D and figure 10. All such forms appear to be quite rigid in that
they cannot be bent or twisted, but they can be made arbitrarily large.

3. Growth of random primordial populations under (3,3,3,3)

Random finite configurations of different densities and sizes were created and
were allowed to evolve. Although there was considerable variation in the rate
of evolution, eventually all forms either stabilized or disappeared (see figure
12). The maximum amount of stable residue was produced with a primor-
dial density of about .07. At this density, successive generations evolved into
small, isolated clusters, some of which yielded stable objects, which never-
theless were few and far between. At higher densities, a large, more-or-less
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Figure 2: The top two rows (A through E) illustrate oscillators that
commonly condense from primordial soup experiments. Oscillator D
is rather interesting—at high speeds it appears to revolve about an
axis, with a lone disconnected cell leading the way. The two gliders
(N and O) occasionally appear, although not frequently. Oscillators
G through L were discovered by starting with soup that was sym-
metric about a plane perpendicular to plane (1,2,3,4,5,6) and passing
through line (8,10) (see figure 1-A). Most of these oscillators would
rarely condense from soup that was completely random. All objects
in figures 2 through 11 are under R = (3,3,3,3).
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Figure 3: Most oscillators have a period of two. Object B is shown
here in two different orientations. We can add indefinitely to the
length of object B and thereby obtain object D. Note the importance
of orientation—the two views of object I' require close scrutiny to see
that both views are of the same oscillator.
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TWO VIEWS

Figure 4: Stable forms are rare. Object A appears frequently in ran-
dom soup experiments. Objects B, C, and D can be found by starting
with symmetric blobs. The -168- and other similarly placed values
give the number of living cells in the object.
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Figure 5: Note the difficulty in discerning the precise placement of
cells for both views of state two, object A. This is one of the unavoid-
able difficulties of representing forms in 2. The form “metamorphosis”
is a remarkable oscillator of period 6. It exhibits a total of three differ-
ent rotations; other objects have from 1 to 48 orientations, depending
upon the type of symmetry inherent in the structure and the pattern

of oscillation for the object.
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Figure 6: All previously illustrated forms exhibit some sort of sym-
metry; hence the surprise when the 11-cell oscillator E and the 8-cell
oscillators F and G were discovered. Object E exhibits symmetry
about a plane, and although objects F and G are asymmetric overall,
parts of the oscillators (if considered separately) exhibit symmetry.
The two halves of object I are symmetric but “twisted” with respect

to each other.
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Figure 7: The oscillators at the top are confusingly similar, but they
are distinct. The period-four oscillator “mitosis” contains 36, 24, 20,
and 24 cells.
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Figure 8: All the oscillators in figures 6 through 8 were discovered by
starting with a known form (e.g. figure 3-B) and applying two or more
randomly generated rules. Then the rule (3,3,3,3) was applied. Usu-
ally, all cells died; occasionally new forms were discovered and were
saved in a file. Duplicate appearances were eliminated by comparing
signatures.
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Figure 9: The oscillators A through E were discovered by starting with
the inset pattern (not stable), applying randomly generated rules for a
few generations, then reverting to R = (3,3,3,3). Other starting pat-
terns were used for the remaining forms. Note the similarity between
form I and figure 8-D and between stable form J and period-four form
8-J.
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Figure 10: Some oscillators, such as figure 3-B, can be extended into
arbitrarily large forms. The forms shown here extend to closed loops
of aribtrary size. Object A (see figures 3-A, 3-C, which are repeated
here for convenience) can be expanded to create objects such as B
and C. Object D (see figure 2-K) extends into forms such as E and
F. Also, the stable form in figure 4-B can be extended into shapes
similar to G.
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Figure 11: Proof that we may create as many oscillators as we wish
that have the same signatures. The oscillators here have been con-
structed by stringing together nine figure-2D oscillators in close prox-
imity (i.e., their convex hulls intersect). Specifically, the lone revolving
cell (see caption, figure 2) disappears from time to time. (Without
this interaction we would simply have individual 2-D oscillators spaced
apart.) Oscillator “B” is constructed by removing the portion of os-
cillator “A” marked with an “x” and placing it at position “y.” The
arrows indicate where the lone revolving cells mentioned above have
disappeared, due to the proximity of the 2-D oscillators. Note that we
can extend the arms of this U-shaped oscillator as far to the right as
we wish, and repeat the above procedure as many times as the length
of the arms permits. Thereby, we obtain as many oscillators as we
wish, and all will have identical signatures.
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Figure 12: Plot showing the population evolution for various starting
densities of random primordial soup. The maximum final residue of
objects was realized when the starting density was about .07. In this
case, many individual clusters formed and some of these condensed
into objects. Between .15 and .35, the entire mass gradually con-
tracted and usually disappeared. There was considerable variation in
the behavior of the population mass over this range; i.e., the plots
for .20 and .35 could be easily interchanged. When the initial den-
sity was larger than about .35, behavior reverted to that of the small
densities—after a first generation where most cells died. For these
experiments, a grid size of 25 was used.

spherical mass formed; this mass gradually diminished and eventually disap-
peared, usually leaving no residue. The effect was most pronounced at initial
densities of about .2 to .4. This interesting phenomenon is currently under
investigation.

4. Other rules

By no means should one conclude that (3,3,3,3) is the only rule worthy of
investigation. One rationale for the extensive exploration of (3,3,3,3) was
that it appears to be the only rule that might be considered to be a game
of Life [2]. Other rules of the form (Ei, By, I, Fl), though apparently not
supporting gliders, nevertheless exhibit remarkable oscillators; in particular,
rules of the form (£}, £,,3,3) seem to be most interesting.

One such rule is (4,6,3,3), which allows unbounded growth and for which
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Figure 13: Here are just a few of the many oscillators for (4,6,3,3)
with a period greater than two. The period-two (4,6,3,3) oscillator at
the lower right is the only example discovered to date where distinct
phases have identical signatures. The signatureis 1006000018126,
The numbers separated by dashes give the live cell counts for each
phase,
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no glider has been discovered. Some of the more fascinating oscillators for
this rule are illustrated in figure 13, including one mentioned earlier that
has distinct phases with identical signatures. These were found with only
a very limited search; undoubtedly other interesting forms could easily be
discovered for (4,6,3,3) and other rules. For this rule, unlimited growth can
be easily initiated with sufficiently large starting random blobs.

5. Methods of computer implementation

The non-orthogonality of §) presents certain problems when we want to im-
plement a computer simulation. The simplest approach is given in [4], where
R? is utilized and neighbors of a cell at (7,7, k) are situated at (z,7,k — 1),
(ilj-!-l!k_ 1)1 (Z+I’Jv k— 1)! (;,J+11 k)! (1‘+1,],k), (t',j-l,k), (I_ 1?j,k):
(i+1’j_11kjl (1_1:J+1, k)s (i’ja k+1)? (i,j—l,k—i—l), (1—11]1 k+1) When
this implementation is used, the (finite) universe is shaped like a rhombohe-
dron and must be adjusted to fit more perfectly on the typically square or
rectangular computer screen. One may either adjust the viewing angle, or the
coordinates utilized (i.e., chop off part of the rhombohedron with successive
k-planes).

Another method is particularly attractive if one has already at hand a
working implementation of a program that operates on three dimensional
cellular automata in R*—e.g., the Life games mentioned in [2,3]. Here we
arrange the universe as shown in figure 14, with alternate locations (and
alternate rows) left vacant in the (7,j) planes. The neighbors of a cell at
(i,7,k) are at (1 + 1,7 — L k+1), i+ 1,7+ 1,k+1), (i —1,7,k+1),
(zﬁln"—l!k“l)‘r (1_173+11k“1)i (1+I:j:k_l)’ (21]+2ik)= (i,]—?,k),
(i+2,7—1,k), (i+2,7+1,k), (:—2,7—1,k), (:—2,741, k). For the display,
we change the cubes to spheres and make other minor adjustments. The
universe will be approximately cubic in appearance (see figure 1-C for a small
example). Unfortunately, wrapping the coordinates in this implementation
is a nightmare.

If the particular implementation requires that we look at every cell, we
must alter the manner in which we sweep through space. The following bit
of code will suffice.
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DIM A(GRIDSIZE*2,-GRIDSIZE*2, GRIDSIZE)
LINIT_ARRAY = [1,2,1,2)
JINIT_ARRAY = [2,1,1,2]
FOR K =1 TO GRIDSIZE
KMOD4 = K(MOD 4) +1 {set up starting points for row/column}
ISTART = ILINIT_ARRAY(KMOD4)
JSTART = J_INIT_ARRAY(KMOD4)
FOR I = ISTART TO GRIDSIZE*2 STEP 2
JSTART = JSTART + 1 MOD 2 {for next column}
FOR J = JSTART TO GRIDSIZE*2 STEP 2
{examine cell [.J,K in array A etc.}
NEXT J
NEXT I
NEXT K

Note that the above method requires four times as much memory as
is actually used. With megabyte memories, this is not really a problem.
Furthermore, if we employ the hashing method described in [2], then our
memory requirement will depend only upon the number of live cells: we
do not need the above code at all and only need to access the neighbors.
Execution times for the various methods are discussed in [2].

6. Future and current work

An effort is currently under way to devise a classification scheme according to
rate and pattern of growth for three-dimensional cellular automata. Part of
the difficulty in devising such a scheme is that when we allow non-totalistic
rules, or expand the neighborhood to include non-adjacent cells, even if we
reject a large percentage of the 281°2 possible rules in  as “illegal” (see [5]),
the possible number of rules is still vast. Hence, meaningful empirical studies
would probably be difficult to conduct.

Nevertheless, it appears that the (13 + 12 + 11 4 ... 4+ 1)* = 8281 rules
of the form (E), E,, F}, F,) fall into three general classes according to growth
patterns. Work is currently under way to determine in a more precise fashion
the characteristics of these three categories, and their relation to the four
types described by Wolfram [3].

Future work involves the application of signatures to known oscillators in
other universes—most notably the two games of Life that exist in R® R =
(4,5,5,5), and R = (5,7,6,6). Perhaps a type of signature could be devised
that would guarantee that different forms will have different signatures. For
example, one could design a method where we find the convex hull of a form
and map the N cells contained in the hull to the integers 1 through N. Then,
find the product P;; * Py % Pz * ..., where the subscripts represent live cells
and P, is the k™ prime. This “signature” would certainly be unique, but
probably of little practical value. Then there is the unexplored world of
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Figure 14: Three-dimensional Cartesian coordinates may be used to
emulate the hexahedral tessellation in a roughly cubic universe. Here,
only one in four cells is actually utilized. The valid cells are indicated
by the various shaded circles.
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R = (3,3,3,3): glider collisions, glider guns, etc. This is work best left for
the computer hobbyist or hacker and will undoubtedly keep some individuals
busy for long hours.
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