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Abstract. Since an tiquity, man has dreamed of building a de vice
that would "learn from examples" 1 "form generalizations", and "dis­
cover t he rules" behind patt ern s in t he data. Recent work has shown
that a high ly connected , layered networ k of simple an alog processing
element s can be astonishingly successful at this, in some cases . In
ord er to be precise about what has been observed, we give defini t ions
of memorization, generalization , and rule ex traction.

T he most im portant part of this paper proposes a way to measure
th e ent ropy or information content of a learni ng task a nd the effi ciency
wit h which a network ext racts informat ion from the dat a.

We also a rgue that the way in which the ne tworks ca n compactly
represent a wid e class of Boolean (an d othe r) functi ons is analogous
to t he way in which polynomials or other famili es of functions can be
"curve fit" to gene ral data; specifically, they ex tend the domain, a nd
average noisy data.. Alas , findi ng a suitable rep rese ntation is gener­
all y an ill-posed and ill-cond itio ned problem. E ven whe n the problem
has bee n " regularized", what rem ain s is a difficult combinatoria l op­
t imizatio n problem.

Whe n a network is given mo re resou rces than the mi nimu m needed
to solve a given t ask , the symmetric, low-order , local solut ions that
hum an s see m to pre fer are not the ones that the network chooses from
th e vast number of solut ions avai la ble; ind eed , th e generalized delt a
method a nd similar learning procedures do not usually hold t he "hu­
man " solut ions stable against perturbations. Fortuna tely, the re are
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ways of "program ming" into t he networ k a preference for appropri­
ately chosen symmetries .

1. Overview of the contents

Section 2 gives seve ral examples that illustra te t he import ance of automatic
learning from examples . Section 3 poses a tes t -case problem ("c l umps")
which will be used t hroughout the paper to illustrate the issues of interest.
Section 4 describes the class of networks we are considering and introdu ces
t he notation. Section 5 presents a proof by construction t hat a two-layer
network can rep resent any Boolean function, and section 6 shows t hat there
is an elegant representation for the c lumps tas k, using very few weights and
processing units. Sections 7 an d 8 argue that the ob jective function E(W )
has a complicated st ruct ure: good solutions are generally not points in W
space, bu t rat her parameteri zed fam ilies of points. Furt hermore, in all but
the simplest sit uations, the E su rface is riddled with local minim a, and any
automatic lear ning procedure must take firm measures to deal with t his.
Section 9 shows that our c l umps tas k is a very simple prob lem, accordin g
to the various schemes that have been proposed to quantify the complexity
of network tasks and solut ions. Section 10 shows that a general network
does no t prefer t he simple solut ions t hat hum ans seem to prefer. Sect ion
11 discusses the crucial effect of changes of representation on the feasibility
of aut oma t ic learni ng. We prove that "automat ic learn ing will always suc­
ceed, given t he right preprocessor," but we also show t hat t his statement
is grossly misleading since there is no automati c procedure for const ruct ing
the requ ired preprocessor. Sections 12 and 13 propose definit ions of rule ex­
t ract ion and genera liza t ion and emphas ize th e disti nction between th e two.
Sect ion 14 calculates th e entropy budget for ru le ext ract ion and est imates the
informat ion available from the t rain ing data and from the "programming" or
"architecture" of t he network. This leads to an ap proximate express ion for
t he efficiency with which the learni ng procedu re ext rac ts infor mat ion from
t he t ra ining data. Sect ion 16 presents a simple model which allows us to
calculate the erro r rate duri ng t he learn ing process. Sect ion 17 discusses the
rela t ionship bet ween rule ext ract ion in general and assoc iat ive memo ry in
particular . In sect ion 18, we arg ue that when special informat ion is avail­
abl e, such as infor mation about the symmetry, geomet ry, or topology of the
task at hand, the netwo rk must be provided this information. We also discuss
various ways in which this informat ion can be "programmed" into t he net ­
wor k. Section 19 dr aws the analogy between th e family of functions t hat can
be implemented by networks with limited amounts of resour ces and other
families of funct ions such as polynomials of limited degree. App endix A
contains detai ls of th e condit ions under which our data was taken.
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2. Why lea r n from examples?

Automa t ic learning from exa mples is a top ic of enormo us importan ce. There
are many application s where there is no ot her way to approach the task.

For example, consider th e problem of recognizing hand-wri t ten characters.
The raw image can be fed to a preprocessor that will detect salient fea tures
such as straight line segments, arcs, terminations, et c., in various parts of the
field. But what then? Th ere is no mathematical expression t hat will tell you
what features correspo nd to a "7" or a "Q" . The task is defined purely by
th e statist ics of what features convent iona lly go with what meaning- t here
is no ot her definition. T here is no way to prog ram it ; the solut ion must be
learned by examp les [6,11].

Another example is the task of producing the correct pronunciation of a
segment of written English . There are pattern s and rules of pron unciation ,
but th ey are so complex that a network th at could "discover t he rules" on
its own would save an enormous amount of labor [37J.

Another example concerns clinical medicine: t he task of mapping a set
of symptoms onto a diagnosis. Here t he inputs have physical meaning- th ey
are not purely convent iona l as in the previous exa mples- but we are st ill a
long way from writing down an equat ion or a computer program that will
perform the task a priori. We must learn from the statist ics of past exa mp les
(41).

Other examples include classifying sonar returns [10], recogni zing speech
[5,16,30,23], and predi cting the secondary st ruct ure of proteins from the pri­
mary sequence [42].

In th e foregoing examples, t here was rea lly no alte rnat ive to learni ng from
exa mples. However, in order to learn more about the power and limit ations
of var ious learnin g methods and evaluate new methods as they are prop osed ,
people have st udied a number of "test cases" where t here was an alternative­
th at is, where the "correct" solut ion was well understood. T hese includ e
classifying input pattern s accord ing to th eir parity [33], geometric shape
[33,35], or spatial symmetry [36J.

3. Example : tvo-or-more clumps

Th e tes t case that we will use throughout t his pap er is a simple geometric
task which an adaptive network ought to be able to handle. Th e network's
inp ut pattern s will be N- bit binary st rings. Somet imes we will tr ea t the
pattern s as numbers, so we can speak of numerical order ; somet imes we will
also treat them as one-dimensional images, in which false bits (Fs) repr esent
white pixels and true bits (Ts) rep resent black pixels. A cont iguous clump
of T s represents a solid black bar . We th en choose the following rule to
determine th e desired output of the network, as shown in table 1: if the
inpu t pattern is such that all the T s appear in one cont iguous clump , th en
th e output should be F , and if there are two or more dumps, th en t he
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Input pattern Outpu t Interpretation
ffft ttffff F 1 clump
fffttftfff T 2 clumps
ftt ttttttt F 1 clump
tttffttff t T 3 clumps
ffffffffff F no clumps

Tabl e 1: Exa mples of the t wo- or-more clumps predicate.

output should be T . We call this t he two-or-more clumps predicate.1 We
will consider numerous variat ions of t his problem, such as three-versus -two
clumps and so for t h. The one-versus-two clumps version is a lso known as
t he contiguity predi cate [25]. Questions of connectedness have played an
importan t role in the history of network s and automatic learning: Minsky a nd
P ap er t devoted a sizable por t ion of t hei r book [27] to this sort of qu est ion.

There a re a host of important questions that immedi a tely a rise, some of
whi ch are list ed below. In some cases , we give summary answe rs ; the details
of t he an swers will be given in following sections .

Ca n any network of t he type we are con sid ering actua lly rep resen t such
a fu nct ion? (Yes.) This is not a t rivial resu lt , since Minsky and Paper t
[27J showed that a Perce ptron (with one layer of adjustable weight s)
absolutely could not perform a wide class of functions, and our fun ction
is in th is class.

Can it perform the funct ion efficient ly? (Yes .) This is in cont ras t, say,
to a solut ion of the par ity function usin g a standard programmable logic
array (PLA) [26], which is possibl e but requires enormo us numbers of
hardware components (O(2N ) gates).

Can the net work learn to perform this function , by learn ing from ex­
amples? (Yes.)

How qui ckly can it learn it ? (It de pen ds; see below.)

How many layers are required , an d how many hidden units in eac h
layer? How do t he answers to t he prev ious ques t ions de pen d on t he
architecture (i.e. size an d shape) of th e network?

How sensit ive a re the resul t s to t he num erical me t hods and other details
of the implementation , such as t he an alog represe ntation of T and F,
"moment um term s" , "weight decay te rms" , step size, et c.?

Does t he solut ion (i. e. the configuration of weights) t hat the net work
find s make sense? Is it s imilar to the solut ions t hat human s would
choose , given t he task of designing a set of weight s to perform t he
ass igned task? Is it s solut ion logical and systemat ic, or is it a kludge?

lA predicate is a Boolean-valued functi on; that is, its range is the set {T ,F }. Th e
doma in can be anyt hing you like.
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Does the network discover the rule? Th at is, when it is trained on a
subset of the possible inpu t patterns, does it find a configuration that
yields the "correct" output for the remain ing input patterns?

4. Basics

T he pur pose of this sect ion is to establish th e nota tion. We assume that
the reader has a basic fam iliarity with layered analog netwo rks. T his is a
bru tally brief review of a standard, vanilla model; th ere are many possible
refinement s and exte nsions th at will not he ment ioned here.

Informat ion on th e hist ory of these ideas can be found in reference [29].
A good sur vey of many successful applicat ions of adapt ive networks can
be found in reference [39]. A sophist icated and detailed ana lysis, dea ling
mai nly wit h one-layered networks, appears in reference [27]. A collection
of recent work on parallel networks an d learn ing from examples appears in
reference [32). Papers on related topics, including the feasibility of bui lding
such networks, can be found in reference [8].

Figure 4 shows a typical layered an alog network. It has two layers of
weights (L = 2), and, equi valently, two stages of processing. There are N['l )
processing units in the out put layer , and N [I) units in the hidd en layer ; we
use a superscript in square brackets to ind icate layer number. There are
N [O) input wires, which are not cons idered pro cessing units, a lthough we
sometimes refer to them as the atb layer. T he inpu t bits have value Vi[O] .

T he weights in layer 1 have values W}?, for 1= 1 to L. T he empty tri angles
are amp lifiers with a sigmoid t ransfer funct ion gO such as g(x ) = tanh(x).
T he amplifiers do not have a separa te "bias" or "t hreshold" input ; the bias
function is implemented by the weights connected to the "stuck bit s". Th e
stuck bits are provided by the t riangles with no inputs; a "+" or "-" inside
indicat es that the output is st uck at T or F respect ively. In each layer I, we
number the unstuck bits [rom 0 to Nfl] - 1, and designate t he st uck bit as
number N(I] for a total of NI~ + 1 connections to each unit in layer 1+ 1.

T he inpu t to each amplifier in layer 1 is given by:

(4.1)

and the corresponding output is :

(4.2)

Equat ions 4.1 and 4.2 define the input-output relat ion of the network,
depending on the }V values of course . Denoti ng the input of the network as
Ii == \lifO} and th e actual output as Ak == V}LJ , we write this overall input­
output relation as:

A = A( W; I). (4.3)
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Suitable W values could be chosen by hand, but we a re mainly interested
in choosing them a ut om at ically- learn ing from examples . T he training ex­
amples a re ordered pairs: (input, desired output) , denoted (F\ DC¥) , where
Q runs over all examples. The traditional measure of how well t he network
has memorized the training examples is:

E (W ) = LIDo- A(W; 1")1', (4.4)

th at is, what you wanted minus what you got , norm squared. T his makes the
task of learning equivalent to the task of sea rching W space for a minimum
of E(W), hence the name "least mean squares " (LMS) learning method.
In the case whe n E(W) is different ia ble, th ere are several powerful meth­
ods for descending the E surface. Notable among these is the "general ized
delt a met hod,' wh ich can be efficient ly calculated by the "ba ck propagation"
algori thm.

5. Repres entability

Here is a proof that a two-layer network can imp lement any Boolean funct ion.
Note that we are discussing rep resent .abili ty, not learn ing, so it suffi ces to
const ruct by hand a representat ion .

T he discussion here essent ially parallels the proof in reference [27] that
any predicate can be expresse d in terms of masks. Also, for those readers
with a background in digi tal circu its, t he re is a one-line proof: th e two-layer
netwo rk contains th e P LA as a spec ial case, a P LA contain s a ROM as
a specia l case, and an N~ i npu t ROM can implem ent an arbitrary Boolean
funct ion of N bits.
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Figure 2: Network to represent an arbitrary predicate.

In fancy network language, the proof goes like th is: const ruct a two­
layer network with N :::::; N[O) inputs and 2N hidden uni ts. T here are exact ly
2N possible input pat terns, an d we dedica te one hidden unit to each inpu t
pattern. You ca n call the hidd en units "match filters" or "grandmother cells"
if you like. T he weight matrix W[l} for th e first layer is chosen as follows:
the weight connecting input bit i to hidd en unit j will be called W}:l, for

i = 0 to N - 1 and j = 0 to 2N - 1. W}!I is set to +b if the i'" hit is set
in the binary representa tion of the number j, and is set to - b other wise.
This ensures that when inpu t pa t tern number j is present at the input , the
ph hidd en un it will receive a cont ribut ion of st rength +Nb from the matri x,
and all ot her units will receive lesser contr ibutions (by steps of 2b). We give
each hidden unit a threshold of (N - l )b. We make b very large, which
is equivalent to makin g the ga in of t he t ransfe r functi on very large (so the
transfer funct ion becomes a step fun ct ion) . T hen the jth unit will he t urned
on , practically to saturation, and all th e other hidden uni ts will be tu rned
off, practically sa turated in the negat ive direct ion.

The rule for choosing the second layer of weights is similarly st raight for­
ward: if the kthout put bit is sugposed to be a T when th e ph input pattern
is presented , th en the weight Wk~) is set to +p, and set to - p otherwise. T he
bias of output un it k: is set to Sk, the algebraic sum of all the weights feedin g
that unit.
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T he circu it diagram in figure 5 is practically a picture of the truth table
of the chosen inpu t-output relat ion. T he weights in the first layer are an enu­
merat ion of the possible input patterns, and the weights in the second layer
ar e the corresponding output patterns. T he de vice can also be thought of as
a fully decoded Read On ly Memory (ROM). Th e first layer of weights forms
the decode r, and t he weights in the second layer are the stored memori es.

This demonstrates that the two-layer network can represent any Boolean
function. " This is in star k contrast with the single-layer network, which can
only represen t linearl y separable funct ions [27), which ar e not very int ere st­
ing. The term refers to the fact that a one-layer network can only separate
the input space into simple categories: the sepa rat ion boundary can only be
a funct ion linea.r in th e input variables, i.e., a hyperplane.

This solut ion is qui te general, but it is also qui te inefficient. T he number
of weights in th e network grows exponentially as the number of inpu t bits is
increased.

Th e astute reader may have noticed th at in the case of a single output
bit , the number of hidden uni ts can be reduced by a factor of at least two,
by using a wired-or (or wired-and). This tri ck doesn 't work for A » 1.

6. Efficient representations

For ma ny tasks of practical interest, there exist efficient representations.
Figure 6 shows an efficient representation for our clump-counting task. The
solution capitalizes on the idea that clumps have edges. The first layer of
weights is used as an array of (falling, right- ha nd) edge detectors I and the
second layer counts the numb er of edges th at were detected.

Figure 6 is laid out in a non-standard way in order to cla rify a special
case: what happens if th e edge of a clump coincides with the edge of t he
input field? To eliminate th is, we emb ed the N real input bits using N + 2
wires, where the rightmost and leftmos t wires are stuck in t he F sta te. Now
every edge of every clump ca n be seen a t ransitio n from T to F or vice versa .
T he N rea l inputs are laheled 0 to N - 1; the special edge wires are lab eled
- 1 and N . T he ordina ry bias line is stuck at T and is labeled N + 1. Of
cour se, when actua lly build ing such a network, the function of the edge bits
would be combined wit h the ord inary bias line.

Th e weights are assigned as follows: Wi:' is set to +b if j = i , - b if
j = i + 1, and zero ot herwise. T he biases are all set to - b. T his ensures t hat
hidden uni t j will he "high" if and on ly if the corres ponding input bit is in

2We are quite aware that in many practical cases, t he inpu ts are not Boolean , but
can take on a range of values. That situat ion is qui te a bit more complex. Consider a
network with a single inpu t wire, taking values z in the half-open interv al (0, 1). The simple
function which yields the parity ofthe largest integer less than l / z will obviously requi re an
arbi tra rily large number of hidden units. Furthermor e, Lippmann (private communication;
see also [23]) has shown that in the case of cont inuous-valued (non-Boolean) outp ut levels,
there are functions th at cannot be represented with two layers , no matt er how many bidden
units are used.
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Figure 3: Efficient network for clump counting.

the T st ate and its neighbor to the right is in the F state. Specifically, the
input to hidden unit j will have one of three possible values:

U; = { ~:
- 3b

if (I;- " I; ) = (T , F)
if (I; -I ,1; ) = (T ,T ) or (F ,F )
if (I;-" 1;) = (F, T)

(6.1)

The weights in the second layer are + p, and the bias unit in the second
layer is q. Hence, for a pattern containing C clumps, the input signal to the
output unit will be

U = C p g(+b) + C pg(-b) + (N + I-2C)p g( - 3b) + q. (6.2)

We want the network to return T when there are C clumps and F when
there are C - 1 clumps. T his leads to the following equat ion, which deter ­
mines the opt ima l value of p:

g-I (T ) - g- I(F ) = pg(+ b) + pg(- b) - 2pg( - 3b)

"" pg(+b) - pg(- b) for large b

(6.3)

This const ruct ion shows that it is possible to represent the clump-counting
problem using a two-layer network with only H = N + 1 hidden units. T his
proves that at least one efficient representation exists, for all N j we do not
claim that this is the only such representation or even the best representa­
tion. We call this the geometric solution. We also refer to it as the human
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soluti on, since when asked to design a network to solve this task, peo ple tend
to choose th is solut ion .

We emphasize that in the case where all the t raining pat terns contain
either C or C - 1 clumps, this is an exact, E = 0 solut ion.

Since gO is bounded and monotoni c, b ---> 00 impli es g(- b) ---> g(-3b).
One consequence is tha t in this limi t , t he out pu t of the j = 0 hidd en un it is
nearly constant. That hidden unit can be elimin ated ent irely an d its output
weight lumped in wit h the ordina ry bias unit , simplifying the constructio n
of the network. The problem of searching for a minimum of E(W) must
be stated properly in this case, since for finite b t here is no solut ion with
E = 0, or even wit h E equal to a minimum. Yet in all situations that we
care about, E = Emin is not required; E < Emin + c is th e proper cr iterion
for the solut ion, and € can be made as small as you like by increasing b. We
will return to this point in section 8 (see also [40]).

T he c l umps predicate can a lso be rep resented by a one-layer network of
sigma- pi un its, which has been explored by reference [25].

7. The st r uct u re of weight spa ce

Solutions should not be thoug ht of as a single configurat ion of weights, but
as a class of equivalent configurat ions, differi ng only by certain symmetries.
One important symmetry comes from our freedom to choose bj we call th is
t he b-sym metry. Also, in the large b limit it is possible to choose a different
bj for each hidden unit i, we call thi s t he bj-symmetry. T his means th a t the
solut ion set includ es a large region of a H- dimensional subspace of weight
space.

T his phenomenon is not confined to our c l umps example. Clearly, when­
ever a unit is be ing used as a linear t hreshold element , uniformly increasin g
its input weigh ts leaves the result unchanged.

Another impo rtan t symmetry comes from t he fact th at the ordering of
the hidden un its is arb itrary. In each hidd en layer , we can relabel the units
in H! ways, where H is the number of uni ts in tha t layer. Specifically, if we

' III [I] d '[1+1] [1+1] s: hidd I I d fset Wj,i = W PU),i an W k,j = W k,P(j ) lor any I en ayer an or any
pe rmutat ion P, t hen the behavior of the network is absolutely unc hanged.

Yet another symmetry comes from the fact that in most networks that
have been conside red the polarity of the hidd en units is ar bitrary. In the
represent ation where the transfer function is odd (which is ty pical when
T = 1 and F = -1), this sym metry is very simple and easy to visualize:
for each hidden unit , if we change the sign of every weight on its in pu t an d
every weight on its output, then the behavior of th e network is unchanged .
In other representations wher e the transfer funct ion is an odd function plus
a constant (which is typical when T = 1 and F = 0), the symmet ry is st ill
t here, but requires an adjustment to the bias terms in the next layer. 3 T he
number of equivalent configurations in each hidden layer is 2H H!. Whenever

30 ne can const ruct networks in which the t ransfer funct ion has no par t icular symme­
tri es, but we have seen no advant age in doing so.
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one wishes to compare two solut ions, one must remove th ese symmet ries by
conver tin g the configurat ion to some standard form.

These synunetries imply a certa in periodicity in W space. T his leads us
to visualize the E(W) surface as resembling a sombrero, or as a phono record
that has been warped in certain symmetric ways: nea r the middle (W = 0)
all configura t ions have moder ately bad E values. Radiating out from t he
center are a great number of ridges and valleys. T he valleys get deeper as
they go out , but asymptot ically level out. In th e best va lleys, E is exactly
or asym ptotically zero; other valleys have higher floors. T his picture is, of
course, an oversimpl ificat ion .

8 . Search m ethods

Wh en the weigh ts ar e very large (or gO is a sharp threshold function ), the
task of "lear ning" the best set of weights is an unvarnished combinato rial
optimizatio n problem, and the network formula tion does not offer any dis­
cernible advantage over conventional combina toria l op t imizat ion procedures.
However , by varying the ga in (steepness) of the t ra nsfer funct ion, Hopfieid
and Tank were ab le to improve the results of a similar search. It is possible
for the system to express temporary compromises, moving t hrough weight
space alo ng complex paths such that man y component s [i.e. the weigh ts)
hav e int ermediate values. In favorabl e sit uat ions, th is a llows the system to
circumnavigate small barriers in th e E( W) surface, exploit ing the high di­
mensionality of W space.

In order to promote this sort of behavior, one can introduce an add itional
term in the learn ing process which we refer to as determin ist ic weight decay.
(Other types of weight decay will be discusse d shor tly. ) This addit ional term
effect ively defines a new surface E'(W) = E(W) +E,(W), where E, is large
when jWj is large. Of course, sea rching the new surface is a different task
than sea rching the or iginal surface. If E2 is too lar ge, th en the solut ions to
the new task do not correspond to the solut ions of t he origina l task , an d we
have accomplished nothing. Indeed , if E2 is ex t remely lar ge, it is possible to
have only one solut ion, the parasitic solut ion W = O. On th e othe r hand , if
E 2 is very small , it doesn't do any har m, but then it doesn 't do any good
either. A better procedure is to use a term E2(W, t), which is an explicitly
decr eas ing fun ct ion of t ime. Then, the real solut ions will grad ua lly emerge
out of the parasitic solut ions . It is hoped. that the best solut ion will be t he
first to emerge, whereupon the system will find it and follow it as it evolves to
its final form. This is one example of a class of techniques we call sim ulated
ironing, because they remove wrin kles from the E surface. It is a nice vision
of what might happen , bu t there is no guarantee t ha t it will happen in a
par t icula r case. It is not a bad heuristic, but it is not guaranteed , either.

Weight decay also improves the performance of certain learning methods
by prevent ing the method from wasting t ime seeking the b -+ 00 solut ions
discussed in section 6. Most versions of the general ized delta ru le learn very
slowly when the weight s are la rge. Weight decay is a rather ar t ificial way of
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int roducing stable local min ima at finite values of b. We have shown th at a
better choice of objective function (i.e. ot her than LMS) great ly reduces the
b --> 00 problem [401 .

Another heuristic that is very easy to implement involves using Eu ler's
method wit h a step size that is a lit t le too large. Th is situation was analyzed
by J effrey and Rosner [19]. Basically, it can be thoug ht of as int roducing into
th e equat ion of mot ion some higher -order terms, notabl y terms proport ional
to the curvature of th e E-surface. This penalizes narrow basins of attraction,
relat ive to wide basins of comp arable depth. The result ing t ra jectory in W
space is very com plex , an d E(W(i)) is not monotonic. We ca ll th is behavior
"thrashing" . It is a qui ck and d irty expedient that helps when a clean,
accurate descent of the E surface would have gotten stuck in narrow local
mini ma.

There are several met hods for escaping local minima which depend on
introducing an element of ran domness into the sea rch procedure. T he clas­
sical way is to simp ly restart t he search many t imes from different random
ini t ial condit ions an d choose the best of these trial solutions [31]. Anoth er
well-known technique is to use sim ulated annealing [20J, which systemat ically
allows the system to take steps uphill on th e E surface, wit h a probability
depe nding on the "temperature", wh ich is an explicit ly decreasing funct ion
of t ime. O ne can int roduce a free energy surface, F, and show that tem­
perature smoothes the F sur face ju st as simula ted ironing smoot hes the E
surface. We wish to emphasize a point that is widely misunderstood : the
two procedures, although sim ilar, are not complete ly equivalent. Specifically,
a probab ilist ic system will eventually cross a smal l barrier in the F space by
activated hopping, while a dete rmin ist ic system that always goes dow nhill
can never cross a ba rr ier, however sma ll, in the E space."

Another way in which an eleme nt of randomness can be injected is by
using "inco mplete smoothing" . Recall that the E funct ion is defined with
respect to (a sum over) all t he items in the memorizat ion set M . It is possi­
ble, however, to consider partial contribut ions to E, defined wit h respect to
subsets (or even sing le elements) of M . This lead s one to compute motions in
W space that minimize the var ious par t ial contribu t ions, and the choosing of
the su bsets can int roduce enough ran domness to help th e sea rch escape from
loca l minim a. Global minima will remain stable if E = 0 there: oth erwise,
they might not .

Another techniq ue is known as "stochastic weight decay" [43]. Ra ther
than decaying all the weights a lit t le bit, one may decay a (random) sub­
set of the weight s somewha t more . T his, too, a llows th e system to escape
local minima and encourages solut ions that are robust against this sort of
pert urbation .

We use the te rm "jost ling" to refer collectively to iron ing, annealing,

4This depends somewhat on the ord er of limits: here we have taken t he limit of long
time before tak ing the limit of small fluctu ati ons and averaging over large ensembles. We
are conduct ing "slow" ann ealing. To do ot herwise would defeat much of th e purpose of
annealing .
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Measure" Parity Clump s
Layers 2 2
Hidden Units N N
Order of Predicate N 2
Number of Weights N' N
Dynamic Range N 2
Bits Requi red N ' log N N log N

Table 2: Compar ison of complexity.

st ochastic weight decay, and similar pro cedures. Th ere are a numb er of
quest ions associated wit h such proced ures; for example, it is difficult to decide
how quickly the amp litude of the random forces should be decreased. This
scheduling problem first arose in the context of simulated an nealing and has
been extensively st udied. Perhaps it should not he called the "annea ling
schedule" problem, hut rather the "jostling schedule" problem, since it crops
up in numerous methods t hat are distinctly not equivalent to an nealing.

All of these methods for escaping local minima incur an enormous time
penalty, and the penalty increases as the size (N ) of the problem increases.
This leads to the st rong suspicion that the lear ning process is forma lly in­
tr actable in general. The similar prob lem of finding the minimum number
of minterms for a PLA is known to be NP-co mplete (9], but we know of no
proof one way or the other for networks.

9. M eas ures of complexi ty

In the general case, a network having H = N hidden units would require
roughly H x N = N2 weights , but our geometric solution (sect ion 6) is very
sparse. The number of (non-zero) weights is prop ort ional to N to the fi rst
power only. In fact , each hidden unit has only two input weights , so this
is what Minsky and Papert [27) called a second-order predicate. (We know
that no first-order solut ion exists.) Also, note that the weight s need only take
on small integer values, so t he number of bits needed to specify the ent ire
configurat ion is very small, proportiona l to N log N. Finally, note that the
input weights have the property of short range) or locality: the two nonzero
weights are not distr ibuted at random, but are in fact adjacent .

We will argue t hat not all of these concepts are accurate measures of
the complexity or difficulty of a task, but in this case, the prepondera nce
of the evidence indicates that this is a very easy task. T he order of the
pred icate, the number of layers, the number of weights, the number of bits
of specificat ion, and the range are all small. If they got much smaller, t he
problem would be reduced to a tr iviality. Tab le 2 cont rast s th is task with the
pari t y predicate [33], which is often cited as a demonstrati on of the power
of th is sort of network.

The network can indeed learn to solve the c lumps tas k, learn ing from
examples. Table 3 shows how the learning time depends on the width of the
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N H Median # Passes
6 2 1484
6 3 422
6 4 390
6 5 393
6 6 414
6 7 439
10 6 1747
10 10 1180
10 11 1072

Tab le 3: Learning time versus network size and shape .

hidd en layer for two different sizes of input. F igure 9 is simi lar) showing how
the learn ing t ime dep end s on the width of the hidden layer for fixed inpu t
size.

The data repor ted in the table and figur e represent the median number of
passes , where each pass consists of one presentation of each of the patterns in
the t raining set M . Note that the median is a bet ter measure than the mean,
because sometimes the network fails to memorize the M data pe rfectly, even
after arbitr arily long tr aini ng tim e. It would be impossible to compute a
mean in such cases, yet th e median is still well behaved.

T he discussion of int rinsic complexity and learnability will be continued
below in sect ion 18.

10. Stability of the human, geometric solution

It is interesti ng t hat table 3 indicates that the networ k was able to solve
the task in those cases where the number of hidden un it s was less than the
number of input bits. This answers one of t he questions posed in sect ion 3:
the network is qu ite happy to find solut ions that don't correspond to human
design s. Humans seem to have a very hard t ime designing a solut ion in
which H < N. Actually, our obser vations go fur th er: even in th e case where
H ~ N, the network does not find th e geometric solut ion .

To confirm and ex te nd this result , we con ducted a per turbation analysis
as follows: we constructed a network wit h th e geomet ric solut ion as the ini t ial
condition and then proceeded to further tra in it with the generalized delta
method. Since th e net work was a lready at a solu tion, E = 0, no further
adaptation took place. We th en pert ur bed the sys te m , moving th e weigh ts
to a point Ws in weight space, an d re-t rained it. We found that the syst em
was quit e abl e to re-solve the task , returning to E = 0, but did not do so
by undo ing th e pert urbation. In fact , it moved in some other dir ect ion and
set t led on a new point W F .

T he learn ing procedu re can be considered a dy namical system, describing
the motion of th e point W in weight space. Each local minimum of E is an
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Figur e 4: Learn ing tim e versus width of th e hidden layer.
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a ttractor, and each will have its own basi n of at t rac t ion . The lib symme­
try" means that the att raeto r associated with the geomet ric solut ion is not
pointlike bu t is at least one-dimensiona l.

To make the data in figure 10 more meaningful, we "projected out" thi s
dimension by using the following slight ly peculiar distance measure: first , we
ignore the outpu t weights and all the bias weights , so t hat only H x N weights
remain. Then, we normal ize by dividing by the biggest weight. F ina lly, we
calculate the distances, using what we call the RMS metric: square each
component of weight-difference, divide by the number of weights, and take
the square root. We denote Ds == IWs - Wo l an d DF == IWF - Wol, where
Wo represents the geometric solution . In this projected space, the geometric
solut ion is not a sole poin t, but a set of isolated points, because of th e discrete
symmetries discusse d above.

If (in the projected space) the geometric solut ion had cons isted of isolated
pointlike a t t ractors, figure 10 would have shown a character ist ic flat reg ion:
D F = 0 for all D s < D*, where D* represents the radius of the bas in of
attraction. Since the figure shows no sign of a flat, zero region, we conclude
that either the basin of at tractio n is exceedingly small, or that the attractor
is not point like in th e proj ected space , i.e. t he attractor in the full W space
has dimensionality greater than one. To say it another way, the b symme t ry
is not t he only cont inuous transformation that leaves E invari ant. "

Since we know th at th e bj symmetry exists, we repeated the above expe r­
imen t using a metric that proj ected out this lar ger symmetry. Specifically,
for each hidden unit we normalized its weights to make the largest one equa l
to uni ty. T his ex pe rime nt checked the stability of a wider class of solut ions,
which have th e sa me topology but not the same transla t iona l sym metry of
the hu ma n solut ion . The result s are shown in figure 10. Once again, there is
no indi ca tion of any basin of att raction, and so we conclude that the E = 0
solut ion set is mul t idimension al in the projected space, and mo re than H
dimensional in the or iginal W space.

The slope in figures 10 an d 10 are remarkabl y close to unity. We conjec­
ture tha t this is essent ial ly a consequence of th e law of similar triang les. T hat
is, t he learning procedure can be seen roughly as a projectio n operator, which
projects the whole W space onto the solut ion set . T hat would expla in why
doubl ing the pe rt urb ation Ds would double its projection D p . vVe believe
the intercept in these figures reflects the dimensionality of the solut ion set,
relat ive to the number of dime nsions collapsed by the learning-project ion .

T hese experiments sho w that the human solut ion does not have positive
stability - it is a neut rally un stabl e subset of a larger attractor. This is
ev idence against an import an t conjecture [42], namely that "the network
is lazy; it will find the lowest-order predicate that is consistent with the
data." We showed in sect ion 6 that a second-order solut ion ex ists, yet the

6We reser ve the word symmetry to refer to guaranteed un iversal symmetries such as
the ones discussed in section 7. We use the broader term invariance to refer to any thing
that leaves E unchanged, including things which dep end critically on t he tr aining da ta for
this particular task.
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generalized delta method does not show any sign of preferring this or any
other second-order solution. In fact , it seems greatl y to prefer Nth-orde r
solut ions (perhaps because they are more numerous).

We do not mean to imply th at netwo rks never find human-type solu­
t ions. Rumelhart, Hinton, and Williams [33] repor t that a back propagation
network of precisely th e type we are considering found a sensible "huma n"
solut ion to t he parity task, an d Maxwell et al . [25] repor t tha t a one-layer
network of sigma-pi un its foun d a sensible "human" solut ion to the clumps
task.

The concept of the order of a predicate is useful for some purposes but not
all. For a. tas k with (uniformly) bou nded order , the number of conn ect ions
required is less than it would be in a task of order N, and this could affect
the pract icality of building a system to solve the tas k. On the other hand ,
if a net work is given the resources to build repr esentation of a given order ,
we see no reason why it should not use all its resources. Perhaps one should
use the notion of order to d iscuss restrictions on the resources available (or
resources needed ), rather tha n t he resour ces used .

11. Prep r o cessors, r epresen tat ions , and feasibility

Although the network 's ability to memorize and recall data is impressive,
the thing that really st irs the imaginat ion is the hope tha.t the network could
extend this behavior to "simila r" data it had never seen. Indeed , in the early
days of network research, it was hoped that the network would be ab le to
generalize in several dr am atic ways. Some of these powers have already been
demonstrated ; ot hers remain topics of resear ch, and ot hers we believe to be
unachievab le. It might be hoped that :

T he network bui lds a sensible internal representat ion.

The network serves as a "rule-finding" system (in cont ras t to conven­
tional AI programs, which are referred to as "ru le-following systems").

Th e network behaves "as if it knew the rules ."

T he learning process is largely unhindered by local minima.

T he network is good for "discovering hidden symmetries."

T he network generalizes.

In discussing these ideas, it is important to be clear abou t the meaning
of the terms. Also, if we claim to be designing a net work, we must be careful
to specify in advance ju st what th e net work is expected to do. All too ofte n,
people build a network and then retro spect ively discover what it is good for.
T his sort of analysis is useful, but shou ld not be confused wit h synthesis.

It is also important not to make intemperate claims. It is dear that some
netwo rks can d iscover exceedingly genera.l solut ions to some tasks. For in­
stance, let the input consist of bina ry numbers x and consider the predicate
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"z is an odd number ." Even a one-layer network can learn this pred icate,
us ing a very modest number of exam ples . It does in fact find an approxima­
tion of the "human " solution- it connects the output to the low-order inpu t
bit and ignores the other inpu t bits. T he network will then generalize from
those few examples to every representable integer, which is a high ratio of
generaliza t ion ind eed.

On the other hand, consider a different predicate, namely "the number
x has an odd number of prime factors ." We can't prove that there is no
network that can learn this predicate, bu t such a thing seems too good to be
true. Factorization is considered an intractable computer-sc ience problem ,
an d the network is surely no more powerful than a st andard computer.

Obviously, blatantly superficial structural prop er ti es (like the oddness
of binary numbers) are easier to lea rn than deep abstract properties (like
primality). But note that th e question of what is superficial and what is deep
is very sensi tive to change in represent ation. In the base 3 representatio n,
oddness is n ot such a simple st ruct ural proper ty. Similarly, it is easy to
imagine a representation in which a number is stored in terms of it s factors ,
which would make factor ing easy (an d make addition ha rd ).

In many cases, the pract ica lity of solving a problem hinges on constructing
a preprocessor that transforms the data into a reasonable representation.
Indeed, here is a proof that "automatic lear ning will always succeed, given
the right preprocessor" ; let the pre processor accept the raw inp ut and "tag"
it wit h th e desired an swer. (By this we mean combining the two using the
Cartesian product , i.e. concatenat ing the bit strings .) Feed this processed
input into a one-layer perceptro n . It is guaranteed to learn to ignor e the raw
data part of it s input and copy the des ired output to the actual output , just
as it learned to copy the low-or der bit in the odd-even task. T his set tles t he
de bate concerning th e import ance of preprocessors; th ey are .a ll-important .
It is , alas, com pletely wrong to conclude from this th at "automatic learning
will a lways succeed," since we have no automatic procedure for generating
the required preprocessor.

T he questions of generalizat ion, learnability, and representability are also
sensit ive to the a rchitecture of th e network. For example, the solut ion to the
parity task using H = N hidden units depen ds on t he analog accuracy of
the weights. If th e weights could take on only binary values (which is the
way it is in standard dig it al VLSI processes) , t hen a two -layer network would
need O(2N ) hidden uni t s. T ha t would be a very silly representation , since
a digital solut ion using log N layers of N units is much more efficient. For
that matter, there is a digit a l solut ion using only a tota l of N XOR gates
(although no simple learning method is kno wn for such an a rchitect ure) . The
point is that the resources needed to do a good job on a given task are very
sen sitive to the shape of th e network, the accuracy of the weight s, t he form
of the obj ective function EO , and other architect ural specificat ions.

T herefore, we emphasize that the question of generalization must be an­
swered quant itat ively, no t categorically. Some network archi tectures, some
learn ing methods, and some representa tions are suitabl e for some problems.
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u

Figure 7: Rule extraction.

12. D efinition of "rule ex t ract ion"

We hereby propose the following definit ion of rule extraction. T his is, we
believe, what most people mean by "finding the rules" or "discovering th e
symmetries" or "induct ion", and what some people mean by gene ra lizat ion.
Reference work's include Angluin and Smit h [2J. Holland et al. [14). Packel
and Traub [28], and references therein.

Let I be the set of all possible inputs to the network, and let A be th e set of
all poss ible outputs. Let the set U = I x A be th e universal set of all possible
ord ered pairs (input , outpu t). All functions an d ot her relations" are subsets
of U. As indicated in figure 12, let us choose a part icular function , a rule
R C U, and see how well th e network can discover it. In ou r specific exa mple,
th e two- or- more c lumps predicate defines the rule of interest . Now we
identify a subset of R which we cal l the memorization set , M, and anot her
set X which is disjoint from M , i.e. X ~ R - M. We call X the extraction
set or the extension set, since the idea is to extract the ru le from the data
M, and extend it to the test ing data X.

The network adaptively learns t he data in the M set . T he error function
E which the generalized delta method seeks to minimize is defined as a mea-

7The evc-cr-ecre clumps predicate is , mathemat ically speak ing, a funct ion, since for
each input pattern the re is a unique out put. Th e same is t rue for parity and most ot her
predicat es considered in the literature. Since all networks in the class we are considering
are determi nistic , t he network's act ual input-out put relat ion is a funct ion, too. In a real­
world situat ion , t he t raining data M may conta in a certa in amount of noise. By t hat , we
mean two t hings. For one, we extend our definit ions to include the case where a few of
the elements of M may be inconsistent with t he rule we are t rying to find (i.e., t hey lie
ou tside R). Second, in the presence of noise, M could easily be a relat ion that is not a
functi on. Learn ing from noisy data is perh aps th e most. impor tant use of networks that
we can foresee. We will return to th is topi c below.
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sure of how accurately the network 's actual input -output re la t ion matches
the desired relation M. We define t he network 's extraction score (for t he
ru le R) t o be t he t he accuracy with whi ch the network 's inpu t -out pu t rela­
tion agrees wit h th e X relat ion- th at is, the data that it did not see during
learning.

Occasionally, kibitzers suggest that we could improve the ext ract ion score
of our networks by includ ing a "few" of the points from X in the learning
pro cess; we emphasize that to do so would by defini t ion defeat the idea of
rule extraction . T he network's ability to produce the desired output, given
input data that it saw during training, we call memorization; th e ability to
produce t he des ired output corresponding to input data that it has never
seen before , we some t imes call generalization of t he ru le R, but we prefer to
ca ll it ru le ex t raction.

We emphasize that rule ext ract ion is a rather slippery concept, since
it is possible to change a network's ext ract ion score (without changing t he
network) simply by chang ing one 's mind abou t what rule was "supposed" to
be ext racted .

In order for rule ex t raction to make sense , we require t he property we call
representativitYi that is , t he M and X sets must be representative samples of
R . It generally suffices to construct M and X by the same rando m process.
(Figure 12 should not be taken to mean that M and X are systematically
diffe ren t .) T he point is to rul e out nonsen se of t he following sor t : suppose
we were see king to extract t he odd-even predicate. Imagine that the subsets
were manipulated so t hat the abscissas in M were all equal to 0 or 7 mod 8,
while the abscissas in X were equal t o 1 or 6 mod 8. T hat is, in one se t there
is a po sitive correlat ion between the bit we care a bout and its two neighb ors ,
while in the other set there is a negative correlat ion . In such a perverse case,
we should not ex pe ct good rule ex t raction .

We have performed experimen ts to see how well the generalized delta
method and variants thereof ca n ex t ract t he clumps ru le. In some circum­
st ances, the rule extract ion score is quite d isappointing, and in ot her circum­
st a nces, it is rather good. Our st ruggle to reconcile these two result s led to
most of t he ide as in t he following sect ions .

For smallish networks (lI ~ N ~ 10 or less), an d eve n usi ng a subst a nti al
fraction of all ava ila ble data fo r training, we observed rather poor ru le ex­
traction. To confirm this result , we per formed a perturbation analysis simi lar
to the one descri bed above in sect ion 10.

The network used in t hese ex perime nts had lJ = N , not H = N + 1, so
t he best performance (measured with respect t o the test ing set X = R - M)
would occur for large bj specifica lly, b 2: 4 suffices . For lesser values of b,
t he in it ial cond ition do es not con stitute a solut ion, but is only a hint, having
the same symmetry and topology as t he true solut ion . Given a n exceed ingly
strong hin t , t he performance was 100 percent, even with no training data, as
can be seen in figure 12. G iven no hin t a t all, the performance was po or eve n
after t ra ining . G iven a mo derate ly st rong hint, training with one or two
hundred examples led to good performance. T he amount of hint requi red
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decreased dramatically when the size of the t raining set was increased.
In similar expe riment, the network was always given a strong hint (b =

3.5), bu t the weights were perturbed by adding random noise. Thi s is shown
in figure 12.

The data in figures 12 and 12 shows a distinct basin of attraction. That
is, there is a special region in W space sur rounding the geometric solut ion.
When started from any point with in th is region, the learning pro cedure leads
to a final point with a rather good rule extraction score (X score) . Starting
outs ide that region produces a final point with a rather poor X score (even
though it has E '" 0).

T his is in contrast to figur e 10, which did not show any basin of att rac­
tio n. From this, we conclude that the geometric solut ion, indeed t he whole
mult idimensiona l solution set related to the geometric solut ion, is a very
small subset of the region of W space that has a good X score.

On the other hand, figures 12 and 12 show that beyond a cert ain distance,
th e learning procedure does not lead to a point with a good X score, geomet­
ric or otherwise. Thi s is the basis for our strongest negati ve conclu sion: we
have reason to believe that our implementation of the learning pro cedure is
not faulty (since it does exhibit learning and ru le ext ract ion for some starting
points), yet for general start ing points it does not find a set of weights with
a reasonable rule extraction score.

This result applies unde r the stated condit ions of H , N , m , etc .; we
emphasize that under ot her condit ions we have achieved a very good X
score , as will be discussed below.

13 . D efin it ion of "generalizat ion"

To purs ue t hese ideas, we must now define what we mean by t rue gener al­
iza t ion (as dist inct from rule extraction). As before, let U be the universe of
rela t ions, and let M be the memoriza t ion data , a subse t of U. Now consider
the sets Gv, G2 , G3 , etc. (For simp licity, let us rest rict M and G j to be
functions for now.) We say th at G i is a generalization of M if M is a proper
subset of G i , as shown in figure 13. That is, the relation G, has a larger
domain than M, and th e two relations agree wherever their domains overlap.

Note that we do not spea k of the generalization, but one of many gener­
alizations. Th ere are, in fact , an enormous numb er of generalizations, and
it is interest ing to calculate t he number. Consider a network, a definite net­
work that is not, for now, undergoing training. T his network per forms some
definit e Boolean funct ion , and we can tabulate this funct ion in a truth table.
Since there are N input bits , the t ruth table will have 2N rows. We now ask
how many dist inct funct ions can exist . If there are a output bits, t here are 2(1
possible output symbols for each row of th e t ruth table and a total of 2N x a
independent bits on th e output side of t he tab le. We choose values for those
bits in all possible ways and calculate how ma ny different t ru th tables exist ;
namely, #(1') = (2,),N (where F denotes the set of all funct ions, i.e. truth
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Figure 10: Many generalizations are possible.

tables) . In the case of a single outp ut hit , this simplifies' to # (F) = 22
'

possible Boolean fun ctions.
It is sometimes useful to imagine th e space of an possib le t rut h tables as

a hypercub e with 2N dimensions. Each dimension is a row of th e t rut h tab le,
and each corne r is one of the 22N distinct functions.

Now in quest of generaliza t ions , we ask which fun cti ons are consistent
with OUf tr ain ing data M. Let m = # (M) be the numb er of data items
(ordered pairs) in the M set . Thi s data dictates th e ou tput values for m of
t he rows in th e truth table, freezing out m of th e dimensions in the truth
hyp ercube. Th ere remain (2N - m) X a un det ermined bits, and hence the
number of possihie genera liza t ions is

(13. 1)

where 9 denotes th e set of all Gi - Thi s calculat ion is similar in spirit to
th e definit ion of Kolmogorov complexity [22]. Th e numb ers in thi s equat ion
are fant asti cally large. As a modest example, take a single output bit (a =
1), thirty input h its (N = 30), and a thousand t raining exam ples (m =
1000). T hen there are # (1]) = 210' /210' = 2'°' generalizat ions. Th ese are all
pe rfect ly valid generalizations, in the sense that t hey are pe rfect ly cons istent
wit h the training data M .

14 . Entropy a nd information

We can use th ese ideas of function-count ing to discuss rule ext raction, and
at first glance, th e numbers seem very discouraging. The learning procedure

8We will hencefor th discuss only the a = 1 case; the interested reader will have no
difficulty in deriving th e corresponding general expressions .
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can result in any one of a vast number of possible genera lizat ions. The data
does not provide any reason to prefer any of these over any other. The set of
networks that compute the rule we ar e seeking is a vanishin gly small fraction
of th e set of all possible network s. It is inconceivabl e th at any automa t ic
learning proce dure would be ab le to stumble on to the "co rrect" extension.

T here fore, we must not sear ch the space of all possible functions or all
possible network s. We must perform a constrained search. There are man y
ways of doing thi s.

One crucia l idea is to search the space of a ll efficient networks. In some
cases, we may know a priori that the task that has been posed can be solved
by an efficient network. This special knowledge may come, for instance, from
considerations of th e geometry, symmet ry, or intrinsic complexity of the task.

In other cases , we may not have such special knowledge, and we must in
principle search all possible functions. Tbese are what Abu-Mo stafa [i] ca lls
"ran dom problems" . However, all is not lost, becau se we have a choice: t he
cru cial idea is t hat we choose to sea rch the efficient network functions first.
We have powerfu l sear ch techniques for such functi ons. If, after efficient ly
searching the efficient networks, we st ill do not have a solut ion, we can then
decide whe ther or not fur ther searching is worth th e troub le.

14.1 Preview

We are now almost ready to deri ve the main resu lts of t his paper . The
discussion is a bit complex, so we will briefly list th e main ideas and then
proceed to deri ve them in detail.

1. We will be searching through th e space of networ ks (i.e. weight space) .
Note that the previous sect ion discussed sea rching through the space
of fun cti ons; we will exploit the connection betwee n the two spaces.

2. Since we will be calculating a probability , we need some notion of a
prior distribution . We call thi s "throwing dar ts at weight space." It
allows us to assign a probability P(W)dW to each volume element dW
in weight space.

3. We will extend the idea of exact ly correct ru le ext ract ion by accepti ng
nearly correct extractions with some error to lerance f . You can of
course set f = 0 if you want to recover st r ict ru le ext raction.

4. We use the tr aining data M and al l other information at our disposal
to restrict as much as possible the por tio n of weight space that we need
to cons ide r; call this por t ion W. We then calc ulate the probability that
a poin t in HI will meet our f-acceptance criterion. If t his probability
is near 100 percent , we conclude th a t this network can be expecte d to
perform ru le extract ion with the required acc uracy f . On the other
hand, if this probabi lity is small, we conclude that the network can not
he relied upon to perform rule extraction.
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We remind th e read er that one is not allowed to sea rch W space to find
th e "correct" rule extract ing network. That cannot be done without using
data from the testing set X I which defeats the purpose, by definition. That
would be like betting on the winning horse after th e face is over . We are
only allowed to play th e prohabilities in W space.

14 .2 Derivation

Th e task of choosing a probability distribution in W space is a bit tri cky. Th e
choice depends on just what method is used for "lea rning" , i.e. for searching
W space. Fort unately, the exact form of the distribut ion is not important for
our argument. You could, for ins tance, use a probability den sity proportional
to elWl/w, for some "radius'! w. We will for most purposes use a distribut ion
th at is uniform inside a hypercubical volume (won a side) and zero elsewhere.
We choose w to be big enough to enclose reasonable weight values, but not
too much higger than that.

We can map weigh t space on to function space as follows: for each con­
figurat ion of weights, W, build a network with those weights. Present it all
possible binary inp uts. Observe th e corres ponding outputs, and convert to
binary. This mapping associates a definite t ruth table , i.e. a defin it e Boolean
functi on , with each point in W space. To say it the other way, t he inverse
image of a function is a region in weight space.

By integrating over weight space, we can ass ign a probability Pi to each
function. Ifw is large enough, and if there are enough hidden uni ts (H ex 2N

) ,

the re will be non -zero probability ass igned to every function , acco rding to
th e discussion in sect ion 5. On the other hand , we are par ticular ly interested
in the case where th ere a re very few hidden un its , perhaps H ex N 2 or N 3 •

In th at case, we expect many functions to have zero probability.
It is int eresting to consider the quantity we ca ll the "funct iona l ent ropy",

namely

S = L - P;log Pi
ieF

(14.1)

where F is the set of a ll functions. All logarithms in this paper ar e base 2, so
ent ropy is measured in bits. It has its maximal value when aU fun ctions are
equally likely, in which case S = 2N . IT some fun ctions are less likely than
others (or ru led out completely), the value of 8 is reduced.

We define 8 0 to be the initial value of 8 , measured before any training
has taken place. A large So means that the network is capable of solving a
large class of pro blems; a small So means th at the architecture has restri cted
th e class of prob lems th at thi s network can handle.

Now we get to use th e t raining data M. Th e tr aining data appl ies dir ectl y
to funct ion space, bu t we can use the mapping to "black out" the regions of
W space t ha t are (inverse images of funct ions that ar e) incon sistent with the
t ra ining data. We can also define a reduced fun ctional ent ropy,
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s; = L -P;"IogPt
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(14.2)

where the "*n indicates that we have removed from consideration all t hose
funct ions that are inconsistent with the training data M and normalized the
remaining probabilit ies. If all funct ions were equally likely, we might hope
that each element of training data would reduce the entropy by one bit, so
that Sm = So - m. Alas, we forsee that th is will not always be the case, so
we define fJ to be the average efficiency9 with which the learning procedure
extracts iniotmetioti from the treinin g data, defined by the exp ression

SO-Sm
m

(14.3)

It is sometimes useful to treat m as an indepe ndent variable and define
t he local efficiency,

~m = -dSm/dm. (14.4)

Th ere are a number of possible reason s why 11 might be less than uni ty.
The most obvious possibility is that th e training data might contain duplicate
points. The first copy of that point would freeze out one axi s of th e truth­
hypercube, reducing the entropy by one bit, but succeeding copies of t hat
point would cont ribute not hing . We have obscured this issue by referri ng to
the training data (M) as a set- and a set ca nnot have duplica te points. In
th e rea l wor ld, however, the tr aining data is t rea ted as a list , not a set , so
it can have dup licate points. We also point out t hat in th e case where M
is not a funct ion , th e phrase "rule out" is too st rong a term. Perh aps "pro­
vide evidence again st" would be bet ter. Con flict ing evidence, like dupli cate
evidence, will lower t he efficiency.

A more profound and interest ing case occurs when a t ra ining item cuts
the t ruth-hy percube across an axis such that th e ent ropy is not equally dis­
t ributed among the two halv es. It is well known that the optimum st rat egy
for playing the game of twenty quest ions is to use quest.ions that divide the
number of possible obj ects in half each t ime. Thi s st ra tegy ret urns one bit
of useful information per quest ion; any other type of question returns less.

In the oth er direct ion, it might seem possible to const ruct a network with
an artificially large 11, even greater than uni ty, by hindsightfully choos ing a
rule R that coincides with whatever functi on the network initia lly produced.
In such a case , th e network could seem to "learn " t he function with no
data whatsoever! We insist , however, that this can not be considered a rule
ext ract ion. Any cla im of rule ext raction which implies an efficiency greater
than unity must be viewed with extreme skept icism.

It is possible, of course, every so often to st umble onto a good rule extrac­
tion based on very litt le da ta, just by dumb luck and wait ing for coincidences.

9This is not to be confused with other forms of effic iency, such as efficiency of repro­
scntation mentioned in sect ion 6.
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For instance, consider the following unusual game of 20 questions: Q: "Is your
name R umplestiltskin?" A: "Yes," This ou tcome is t echnica lly possible, but
any strategy that asks such questions is a very poor one. It can only search
20 names, whereas a good strategy ca n sea rch 220 names. An apparent 7J > 1
will only occur if the rule R is very special , and/or the init ial value of the
weights W is very special. This sor t of nonsense can be detected an d pre­
vented by evaluating 17 for a number of different , sensible rules an d/or using
an ens emble of randomized initial weights.

15. Calculating the efficiency

By int roducing some approximations and restrictions, we ca n arrive at a
convenient way of est imating the ini ti al entropy in practical sit ua tions.

In the network of figur e 4, each hidden un it has :::::::: N weights connect ed
to its input wire. If a signal of size u is sign ificant to t he hidd en un it's input
wire , a ro undoff erro r of size u/VN per weight would add up to be significant,
if the errors added in quadrature, which is characteristic of random numbers.
(Errors of size ulN would add up to be significant if tbey all added in the
same direction .] From t his , we con clude t hat each weight needs ro ughly
.5log N (or perhaps log N ) bit s of precis ion . The fact that our solut ion ,
figu re 6, has only t hree non -zero weights per hidden uni t does not count,
since we don't know t hat fact until after lea rn ing is completed .

Let us calculate the nu mber of bit s B needed to specify the configurat ion
of the network. A network with H:::::::: N hidden uni t s has O(N2

) weights, in
which case B = .5N 2 log N . Therefore, t here are of order 2_sN'l log N different
netwo rks that we can bui ld. That is a large number, but it is quite a reduction
from 22N

•

In general, to obtain a va lue for B, one mus t know L i , the nu mber of
(significantly) different levels that each weight i in t he network can take.
Specifically,

B= L 10g L,.
weights

(15.1)

It is difficul t to obtain an exact value for Ls, but it easy to obtain a
good est imate, and only it s logari thm mat ters anyway. The es t imate can be
performed by iteration: start wit h a sma ll L a nd increase it, bu ilding a series
of net works. Stop when you get a net work that is capable of learning.

O ur emphas is on networks with t he minimum number of specificat ion bits
B is important not on ly for information-t heoret ic reasons, but also because
t here are important te chnologica l lim it s to t he precision wit h which weigh t s
can be fab ricated in real-world net works. T he notion of an efficient repre­
sent at ion, which was int roduced back in section 6, can now be made pr ecise:
we requi re that B grow no fas ter t han som e polynomial in N , the size of the
problem.

We take as our pr ior dist ribution the notion t hat all of our 2B networks
are equally likely.
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We tried to arrange by construction t hat each of the B bits is "signifi­
cant". Imagine for a moment that each bit was sufficiently significant that
each time we change a bit the network implements a different Boolean Iunc­
t ion. In that case, there would be 28 different functions, all equally likely,
and the functional entropy would be So = B.

Th is is clearl y an overest imate for So, for a numbe r of reasons. For one
thing} the act ual number of different functions implemented by our B-bit
netwo rk will be less than 28 , because of the various symmetr ies discussed
in sect ion 7. Furthermore} there will most likely be some low-order bit in
the network specificat ion somewhere th at does not change the inp ut out put
relat ion AO. Th is means that the 2B imaginary networks are "folded" onto
some smaller number of act ual networks. We can get an expression for S by
taking into account as many of these foldings as possible.

H !2H (F, )(F, )(F3 ) · · •

28

:s H!2 H

(15.2)

The first factor in the denominator accounts for t he permutation sym­
metry of the hidden units. The second factor accounts for the polar ity sym­
metry. T he factor F I represents the fact that altho ugh our construct ion of
B guarantees that most of the bits will he significant} quite likely not all
of t hem will be. T he fudge factor F2 represen ts the e-symmetry: we do not
know how much of this symmetry survives the coarse-graining involved in
our construct ion of B . T he factors F3 • · • represent any other symmet ries
that have simply escap ed our attent ion. Set t ing these unkn own factors to 1
gives us an upper bound on So.

We believe that whenever the final rule extract ion score is significantly
better than SO/50}t he final entropy must be very small}for reasons given in
sect ion 16. In t hat ease}we can est imat e the efficiency as TJ ~ So/m } using
the value of So est ima ted from equation 2.

Other V iewpoints

Equ at ion 14.3 defines an average efficiency TJ that was actually achieved in
a part icular case. Another viewpoint would be to imagine that there is a
definite expected efficiency fi that the network is capable of. We can t hen
consider the expression

oS = So- Sm- ijm (15.3)

If fJS is positive, then the number of consistent generalizat ions (consistent
with the training data M ) is large compared to the number of I-acceptable
extractions, and we would expect t hat the rule extract ion score would be
very poor . On the ot her hand} if we increase m (the amount of t rain ing
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data), th en we can presumably winnow th e numb er of valid generaliza t ions
down to the p oin t (6S :'0 0) whe re they are all J-acceptable ex tract ions .

Similarly, we could hold SS = 0 and ho ld Tl fixed, and solve equat ion 15.3
for th e expected err or rate J as a fun ction of m .

Yet another po ssibility would be to cons ider everything but So fixed . T his
equation would then tell us how much we would need to rest rict t he space
of a priori likely fun ct ions, by limit ing t he number of hidden un its or th eir
connectivity, etc.

OUf experiments indicate th at the network ca n learn the 2 versus 3
clumps predi cate with reasonably high efficiency, as shown in table 4. For
inst an ce, using N = 16, the network was able to ext ract the thr ee-or-more
clumps ru le with a 18 : 1 gain factor (E= 5.4 percent) , an d 97 per cent correct
rule ext ra ct ion (f = 3.3 percent ) . This gives 'TJ = 56 percent (assuming
s.; = 0).

# Inputs
N
16

Data Used
m

800

Er ror Ra te

J
.033

Efficiency

~

.56

Table 4: Rule extraction score versus N .

16. A model system

There is a mod el syst em which captures the our main ideas about rule ex­
traction , yet is simple enough to be soluble. Consider th e followin g feat: a
particular card in a de ck of 52 cards is marked , and a blindfolded mentalist
offers to deduce which one it is. Now the simplest way is for him to ask
a series of questions: Is th e marked card in th e top half of th e de ck? Is it
in th e first or third quarter? Is it in an odd-numbered eighth? and so on.
After six questions, th ere is no doub t as to which of th e ca rd s is the marked
one. The analogy to automatic learning is this: t he deck is an ensemble of
fun ctions- imagine that a t ruth tab le is writ ten on the back of each card.
T he distribution is weight space is such that it gives each of th ese fun cti ons
equal probability and all oth er functions zero probability. The questions
(with an swers) a re th e training data.

This vers ion of the model is not very realis t ic, since in real applications th e
training da ta gen erally has not been cons t ructed to be optimal and ort hogo­
nal. T herefor e, consider a second version of the model, in which the questions
divide the cards in a random way. It is easy to visualize randomizing the
ca rds , which is equivalent to randomizing the quest ions . The mental ist first
as ks if the marked card is in the top half of the deck . He th en punches a hole
th rough every card in the ha lf that does not contain th e marked card . Then
the deck is shuffied . Again, he asks if t he card is in the top half , and pu nches
all t he cards in the excluded half. This continues, with t he deck bein g shuf­
fled befor e each question. In t his version, six quest ions do not suffice, but
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after man y quest ions have been asked it becomes exponentially unlikely for
any card except the marked one to remain unpunched .

We now come to the t hird and final version of the mod el. We must take
into account th e fact th at we do not expect the questions to divide the deck
in a nice 50/50 way- the shuffle will not be per fect. What real ly happens is
t hat each trai ning item {i.e. ordered pair ) focuses attent ion on a particula r
row of th e t rut h tables that are written on the ca rds, namely, th e row t hat
matches the abscissa. of t hat t ra ining item. Th e deck is t hen divided into
two pieces , according to whether the ordinat e on the card agrees or disagrees
wit h th e marked card. T he ones that disagree get punched . T he fractio n
that disagree is denoted 4>i this is the principal free parameter of th is model.
A perfect shuffle would give q, = 1/ 2.

Let the expected number of unp unched cards (after m questions) be Zi
t hen,

Z= 1 + (250 - 1) I1{1- q,m).
m

(16.1)

The first te rm, I , represe nts the ma rked card, and the second te rm repre­
sents all the oth er unpunched cards, which are reduced by a factor of (1-tPm)
each t ime . For simplicity, we will trea t ¢ as a constant from now on; it is
easy to generalize th e formulas.

If we pick a card at random from the set of unpunched car ds, t he prob­
ability of not picking the marked card is (Z - I )/ Z , and t herefore the total
prob ability of picking up a card that disagrees wit h the ma rked card is

J = q,Z - 1
Z

(16.2)

We have used th e principle of representa t ivity (discussed back in section
12) to connect 4>, which is a property of the M set , with [ , which is a proper ty
of the X set .

Now, suppose that we wish to t ra in the network unti l it does bet ter tha n
some specified error ra te / '" . How much data do we expect it to require?
We assume that the network learns as efficient ly as possible given adve rse
t ra ining data. Wi thin this model, tbe worst q, that could be produced by any
t rai ning set would be tP ::::::: / . , becau se if tP were smaller than this, equat ion
16.2 would imply that / was less than r ,an d the task would be complete ,
while if ¢ were larger tha n t his, the network would learn fas ter accord ing to
equa t ion 16.1. For small [" , we expect

ffi"" SoIn 2/ J". (16.3)

T he network can learn faster than th is if t he error rate stays tip near
50/ 50 unti l near the end of tr aining, and it can, of course, learn more slowly
if it does not live up to its informat ion-theoretic potential.

T he ent ropy is
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F igure 11: Entropy and error rate versus m.

s.; = 10gZ. (16.4 )

It is useful to int ro duce the pre-efficiency J.I. == - log(l - 4» an d recall
that the local efficiency rym == -dSm / dm. We assume 1> and hence I" will
be constant, or at least relat ively constant. Init ially, f = 4> and 17m = Il,
but f and 17m decrease exponentially after the entropy has been squeezed out
of the network (p.m > So). F igure 16 shows the entropy an d erro r rate for
So = 50, I" = 1/ 3. Changing So would rigidly shift the curves horizontall y,
and changing J.L would just resca le t he horizontal axis by a uniform factor.

17 . Associative memory and cl ustering

The ability of massively parallel networks to perform assoc iations, and to cat ­
egorize th e inpu ts into clus ters , has received eno rmo us amounts of a ttention­
for a review, see reference (32). Somet imes people get ca rr ied away an d take
associat ive memory as the definition of what a network ought to do, or even
as the definit ion of comp utat ion ' ? in genera l. We take the opposite view,

lOTh e Tu ring machine, although not a practical device, is widely used as a formal ,
th eoret ical model of "comp utation in general." An associative memory is clear ly less
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Figure 12: R ule ext rac tion under various cond it ions.

nam ely that clustering is a particular case of ru le extraction in which th e
rule is (rou ghly) of the form "nearby inputs should produce nearby outputs."
The definition of "nearness" depends on t he specific task in question.

A general learning machine can learn to do clust ering, but th e reverse
is not true: there are huge categories of tasks a special ized clus ter an alysis
machine ca nnot do. At worst , th e general machine 's tas k can be discussed
in two phases: first the network discovers th at clustering is appropriate, and
th en it learns where th e cluster boundaries should be. A cluster analysis
mach ine has less work to do , since it already "knows" that clustering is t he
way to go. There are a number of qu ite efficient clustering methods ({21] an d
references t here in), and they should he used whenever they are appropr iate .
More genera l rule extract ion procedures must be used in the remaining cases.

T he upper trace figure 17 shows the rule ext ract ion score for a very simple
layered network-no parti cular effort was mad e to optimize its performance.
The lower t race shows th e analogous resul ts for t he most powerful clustering
an alysis we could think of, as describ ed in appendix A. The layered network
was clearly sup erior in this case . The figure also displays th e data from table

powerful t han a Turing machine; for starters, it cannot perform loops.
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4, showing the importance of stochastic weight decay,

18. Symmetry, easiness, and programming

At first glance, the amount of data required for learning, as indicated in table
4, seems rather la rge. Humans seem to "discover the rule" using far fewer
training examples. To understand th is phenomenon, consider the following
modificat ion of the task : let us permute the bits of the input pattern, leaving
un changed the numerical value of the output. (T here is only one permu ta­
Lion, applied to all patterns .) An example of th is is shown in table 5, in
which the pe rmutat ion (0123456789) ---> (3120459786) was applied . This is a
very simple permuta t ion (two pairs are exchanged : 0 with 3, and 6 with 9) ,
but it has a drastic effect on the appearance of the input pat terns.

Old Input Output Permuted Input
fff t ttffff F tfffttffff
ffft tftfff T t f fft f tff f
f tttt t t ttt F t ttftttttt
tttffttfft T ft t tftttff
ffffffffff F ffffffffff

Table 5: Permutation of the input.

This change has a sim ilarly drastic effect on the rate at which hu mans
lea rn t he rule. First of a ll, t he humans must guess that the task requires treat­
ing the inpu t as a geometric pat tern , which is not an obv ious assumption-for
all they know, t he task might requ ire treating the inputs as binar y numbers
and factoring them! Even if they guess tha t permuted geometry is important ,
t hey must guess what par ticular permuta tio n has been applied and then d is­
cover the clu mp-count ing or edge-count ing rule. T he humans would req uire
a st upendous number of examples in order to ach ieve this .

Permutation of the input bits is an exact symmetry of the architecture;
that is, the first ste p in the operat ion of the network is a calculation of the
form

(18.1)

in which th e symbol i is a du rruny index. This is in add itio n to the simi lar
symmet ry of the hid den units, described above.

Humans have a very strong prejudice in favor of geometric solutions. T hey
cons ider the original task easy and th e permuted task hard. The network
has no such prej udice. It has no built- in notion of geometry or to pology. For
the network, the original task is just as difficult as the per muted task.

We feel th a t this difficulty is ar tificial. It ar ises when one asks an over­
general net work to solve an under-speci fied task. In real-world situat ions,
the data does not exist in a vacu um, but ex ists together with import ant
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ancillary information such as symmet ry, geometry, topology, an d so fort h.
Wh en we presented the t wo-or-more clumps predicate back in sect ion 3,
we presented the topologica l information to the reader) along with the data.
T hrowing away the ancillary informat ion makes the prob lem more abstract
and certainly ma kes it less tractable. Why should we ask the network to
solve a very hard general task, when all we care d about was a rat her easier
special task?

Learning from examples and related techniques will never replace programming­
they will supp lement it. Someone who understands a task will always do
better than someo ne who does not . It is important to realize th at search
techniques are useful when you have an interm ediat e amount of know ledge
ab out a task. T here are some tasks (such as finding the minimum of a
para bola) that are so well und erstood t hat the answer is obvious, or obtain-
ab le by by conventiona l analys is. At the other ext reme, in the case of a t ru ly
random function, sophist icated procedures will not do any better than simple
procedures. (You use grandmo ther cells to memorize the M data, and gues s
at the rest .)

In an ar t ificial example such as th e three-or-more cl umps predicat e ) it
is a questi on of taste as to what constitutes "giving ancillary information"
an d what consti tutes "giving away the whole answer. " Rea l-world tasks are
so much more comp licated that giving all ava ilable ancillary inform ation st ill
leaves plenty of work for th e network to do.

Having decided to provide ancilla ry information to the network, we need
sensi ble techniques for doing so. T hese techn iques can be t houg ht of as a
st range sort of "prog ramming language" for networks. One way is to change
the architecture of the network, restrict ing t he "recep t ive field" of each of
the input units. For example, we could require that

whenever Ii - il > p (18.2)

where p rep resen ts the rad ius of the recept ive field.
A gentl er an d more general way to implemen t limited recep tive fields

would be to add to the E function a term of the form

E3 = '\ 3L:Wj~ K(l i - ii, pl · (18.3)

In th e case where the multiplier .A3 is large and the kernel J( is a suit ­
able step funct ion , th is method becomes effect ively identical to t he previous
restrict ion. The idea of "p rogramming" the network by adding terms to th e
E function is traceable to the traveling sa lesman network pa per of Hopfield
and Tan k [15] .

Either of these meth ods provide hints that the solut ion should be sparse,
topologically one-dimensional, and local along that dim ension. They break
the pe rmutation symmet ry of i . To say it another way, we give t he net ­
work a notion of neighborhoods (each containing ss 2p input bit s) , and these
neighb orhoods ind uce a topology on t he input space.
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T he work on "feat ure spin" systems [24,3,4,21] used carefully const ructed
input and output spaces to perform automa t ic clustering . Hinton [43] used a
network with three layers, one of which had one-dimensiona l limited recep­
t ive fields, to good advantage. OUf studies of th e rep resent at ion s found by
networks when given such hin ts will be reported elsewhere [341.

A different type of ancillary informat ion can he provided. We notice
that the solut ion presented in sect ion 6 has a high degree of t ra nslationa l
invariance. It is easy to concoct a term analogous to equation 18.3 that
penalizes solut ions that are Dot translat ionally invar ian t . It is also possible
to impose a rigorous rest riction , analogou s to eq uation 18.2, but one must
be careful since the solut ion is not exact ly invarian t .

T he human prejudice in favor of geometr ic solutions is not an accident; it
is the result of thousa nds of cent uries of accum ulated informat ion about the
world . For any particular geometric task, there may be a very efficient ad
hoc, non-geometric representat ion, which has not hing in common wit h the
solut ion to any other task. T he geometric solution is useful for many, ma ny
tasks. In order to test this idea, we are checking the stability of the human
solut ion when a network with several out put un its is required to per form the
combined 3/4/5/6/ ... cl umps task [34).

19 . NERFs , r egulariza tion, and cu rve fit t ing

Once again , let us consider a collect ion of data and assume we have a reaso n
to believe t hat it adheres to some simple rule. For instance, the data might
be obtained by measu ring some very simple physical system. This does not
give us any reason to believe th at the data can be represented efficiently by
a network (i.e. by a network with H < 2N hidd en units). What 's more , in
cases where a representation exists, the solut ion may well not be unique, and
(as discussed back in sect ion 8) the learni ng process may be NP -complete,
in which case t here is no general automat ic learning procedure th at will find
the solut ion ap preciab ly faster than an exhaustive search of weight space .

It is quit e important to reconc ile these sobering points with th e obser­
vat ion t hat automat ic learn ing procedures in general, and layered networks
in particular , are capable of doing rea l-world tasks, somet imes astonishingly
well (see examples and references listed in sect ion 2). It is also imperative
that we understand what the limitations are. Fortunately, there is a powerful
analogy that sheds cons iderable light on this sit uation, namely the analogy
to curve fitting.

Consider the task of fitt ing a smoot h curve through the four data points
shown in figure 19a. One way to do this would be to minimize the error
function

E = " [Yi - f (x;)I'
c: u7
• •

(19.1)

where ( X i , Yi) are the experimental data points, Ui is the uncertainty in Yi,
and f() is the theoretical funct ion (actually a family of funct ions, depend-
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Figure 13: Curve fitting.

ing on some adjustable par ameters) to be fitted so we can ext rapolate and
interpolate over some interval D. For concreteness, let us consider the case
where I () is restricted to be a parabola. T his is the most elementary form
of curve fitt ing.

The resulting fit funct ion 10 can be considered a generalizat ion of the
da ta points ( Xi , Yi), in the sense of extending th e domain. The da ta can be
considered a function (or relat ion) on a very small domain-just th e isolated
points {s. }. The funct ion JO is defined on t he whole interval D. T hat is a
fantast ic degree of generalizat ion, a huge extension of the domain.

Curve fitt ing is also generalization in th e sense of averag ing noisy data.
T he da ta could be qui te unsrnooth , yet a low-degree polynomial that fits the
data cannot possibly have very much curvature on t he interval D.

Curve fitting can, however , be very t ricky. In figure 19, t he dat a has
uncertaint ies in Xi as well as Yi' Only sma ll horizontal sh ift s, much less th an
the length of an error bar , would be needed to make the four point s form
two pairs, each pair having a single abscissa. In that case, there would be an
infinite number of parabolas that could be fit through the points, all having
the same E value or "chi-square" or "goodness of fit". Also, when the data is
nearly pai red, small changes in the data can lead to arb itrarily large changes
in the parameters of the "best" parabola , as illustrated by going [rom figure
19a to figure 19b. Thi s is a double-purpose example of what Hadamard [12J
classified as ill-posed or ill-conditioned problems; that is, th e solut ion is not
uniquely determi ned by the data, or the solut ion depends discont inuously on
tbe data.

T ikbonov [38] showed how to deal with such problems; in thi s case, we
just need to remember that what we originally wanted was a smooth curve
through th e data, i.e. a function with low curvat ure. Thi s is expressed in the
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following formula by the second te rm, which explicitly and precisely penal izes
funct ions th at have a large curvature.

E =L: Iy; - f( x;}I' + A [ Id' f I'
i <7[ I» dr 2

(19.2)

Of course, thi s is just an example of a possible Tikhonov regularization
te rm. One chooses a penal ty term th~t is appropriate to the actua l task. T he
idea is th at the penalty term expresses an estimate of the a prio6 imp lausi­
bili ty of each possible solut ion / 0- T here is a vast literature on maximum­
likelihood est imation-s-see,Press et al . {31). and references therein.

Note that we have invoked two subtly different ways of limiting t he curva­
ture. One is what we call stru ctural stabilizat ion, in which we explicitly limit
the degree of the polynomial so that it cannot have much curvat ure. The sec­
ond case we call formal stabilizat ion, such as equation 19.2, in which it is not
really necessary to require that 10 have a small degree. The T ikhonov regu­
larization te rm will automatically select a function of low curvature, whether
or not it can be expressed. as a low-order polynomial.

We emphasize t hat neither st abilization by struct ura l restri ctions nor
formal, T ikhonov-style regularizat ion is the exclusive, universal solut ion.
The latter is more elegant, and it provides a mathemati cal language for
discussing things that would otherwise be "teleological and anthropomor­
phic" , as George Furnas put it [44]. On the ot her hand , there are impor tant
pract ical reasons why structural restri ct ions are often more appropriate; for
instance, they can greatly red uce the number of free parameters, making the
search more efficient and mak ing the answer more read ily describable and
underst andab le.

Practically all of these ideas can be applied equally well to layered net­
works. Just as a polynomial with high enough degree can closely approxi mate
most reasonable functions, a network with enough hidden units can represent
any Boolean function. Low-degree polynomials can only represent relat ively
smooth functio ns, and smal l networks can only represent a certain class of
relatively simple Boolean functions. We call these particular funct ions net­
work efficiently representable functions, or NERFs.

If the training dat a is noisy, and only defined on a sparse set of points,
·fit ting a NERF to it will average out the noise and provide us an extension
that covers t he entire input space. If the data is inadequate to speci fy a
uniqu e NERF, we can add to the optimization equation a stabilizat ion term
such as in equa tion 18.3, which is quite analogous to t he second term in
equation 19.2. It expresses the designer 's preference among solut ions t hat
would otherwise have equivalent E-functions.

T he quest ion immediately arises: what is 50 special abo ut NERFs? For
that mat ter , what is 50 special about polynomials?

Polynomials are special for several reasons. Perhap s the main reason is
that polynomials occur in nature. To a good approximation, the path of a
thrown sto ne draws a parabola in the sky. A second reason is t hat poly­
nomials are reaso nab ly easy to evaluate by elementary methods. Third, a
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polynomial has a small number of adj ustable parameters, so even if th e fit
is pu rely phenomenological and fort uitou s, it is a handy way of describing
the data. Finally, people just have a lot of experience dea ling with polyno­
mia ls and can readi ly visualize what they look like and how (as th e degree is
increased) th ey come to resemble ot her functions.

NERFs have some analogous virtues. It is hard to say just how corrunon
NERFs are in nature, but it is not easy to concoct a meaningful, natu ral
function th at is not a NERF. Th is is in contras t to single-layer perceptrons,
which Minsky and Pepert (27) showed could not solve th e par ity problem ,
TIc problem, or any of variou s connectedness problems. For the N- Iayer
network s, which are much more power ful, it would be nice to have an anal­
ogous pons asinorum which the network cannot solve, as well as a simple
analyt ic concept (analogous to linear separability) to help us understand the
limitations.

It might be said the NERFs exist in nature in another, quite different
sense: recall t hat the reason that this family of funct ions came originally to
be considered is t hat th ey seem to be a modest model of t he computational
operations that are implemented by the neural circuits in the brain.

As for the second virtue, there is no dou bt that NERFs are espec ially
easy to evaluate . Ana log integrated circuits have been built which perform
th e requir ed pro ducts and sums using far less t ime and space t han would be
required for ot her, seemingly similar, function s [17,18].

As for the th ird and fourth virt ues, NERFs are not widely used for phe­
nomenological data reduction , precisely because most people do not ha ve a
keen intuitive understanding of what the y look like. To a certain exte nt, this
defines th e present and future task of everyone in t his field: our job is to
underst and NERFs, until th ey become as familiar as polynom ials.

Of course, neit her polynomials nor NE RFs are a panacea . Suppose that
rather th an th e points in figure 19, the data consisted of a thousand points
with very small error bars, closely fitti ng ten cycles of a sine wave. It would
be insane to fit that data with a high-degree polynom ial; it would be much
more sensible to use a low order Four ier series. T he set of low-order Fourier
series and the set of low-degree polynomials are both subsets of the set of all
smooth functions. Any given smooth function might belong to one, or th e
other , or neither of th ese subsets .

Similarly, the set of low-order NERFs is an important but st ill limited
subset of th e set of all "reasonable" Boolean functions. Surely for some appli­
cat ions we must turn to oth er families of functions to smooth and ext rapola te
our data. Various extensions to the basic network models, such as sigma-pi
network s and higher-ord er terms (numerous references in {32]j also {7]) are
analogous to th e way in which rational functions are an extension of th e
family of polynomials.



918 Denker, Schwartz, Wi tt ner, Salla, Haward, Jackel, and Hapl1eld

20. Summary

A generalization is a funct ion that extends the doma in of the t ra ining data.
T his is very useful for averaging noisy data. Practi cally all of the problems
(and th e power) of thi s sor t of genera liza t ion can be un derst ood by comparing
it with the well-studied discipline of curve fit ting.

Given enough training data , the generalization will be unique. Mor e
com monly, though , ther e are an enormous number of perfectly valid gener­
a liza t ions, i.e. fun ctions that are pe rfect ly consistent with the t rainin g da ta.
The amount of data needed to de termine the result allows us to define a
measure of efficiency with which the network ext racts information from its
t ra ining data. Giv ing th e network too many resources (e.g. too many hidden
uni ts) increases the init ial ent ropy and hinders rule extraction.

Rul e ext raction involves comparing the general ization found by the net­
work with some prechosen rule. T he distin ctio n be tween the memor iza t ion
set and the extraction set must be scrupu lously respected. The langu age of
regularization theory is important because it allows us to speak quant ita­
tively of "good" genera lizations and "b ad" generaliza t ions.

A layered network is capable of extracting the t wo-or- more c l ump s pred­
icate from th e t raini ng data. Indeed , it extracts it with ra ther high efficiency.
The internal represen tation that it uses does not have any discernible degree
of symmet ry, sparsen ess , or locality; th e symmet ric, low-ord er, loca l solut ion
that humans pr efer is of course a fixed poi nt of the traini ng process, bu t is
not st able agains t perturbations.

A gen er al, ta bula rasa network is a fine subject for abs tract, form al stud­
ies, but one should not tr y to use it to solve practical problems. Automatic
learning will never replace program ming- it will sup plement it . One should
pre-p rogram the netwo rk with a ll available information about the structure
of the problem, especially information about th e symmet ry and topology of
the dat a.
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Appendix A . C on d it ions of the experiments

The data in t able 3 was taken using th e LMD objective function [401 . T he
predicat e was 2 versus 3 clumps. Th e memorization set was exhaust ive,
using complete smoothing. The logical levels were T = 1 and F = - 1, and
th e convergence criterion was 100 percent categorically correct [i.e. closer to
the right target than th e wrong target ). The ini tial dist ributio n of weight s
was uniform on th e interval [-.2, .2]. Each data point is th e median of an
ensemble of fifteen t rials. All hidd en units in all the t rials repo rted in this
paper were fully connected.

The data in figure 9 was take n using the LMS objec t ive function. The
predicate was 1 ve rsus 2 cl umps . T he memor izat ion set included 40 items
(20 of each class), and there was extreme incomplete smoothing---one by one.
The logic levels were T = 1 and F = 0, and the convergence criterion was
RMS error :S .005. The initi al dist ribut ion of weights was Gaussian, with
unit variance. Each data point is the median of an ensemble of ten tr ials.

For figures 12 and 12, t he memori zation dat a was t he same as in the
previous paragraph , except that the predicate was 2 versus 3 clumps, and
the size of th e memorization set was varied as indicated in th e figure (always
half in each class). The extract ion set consisted of all the remaining pattern s,
so the rule extraction gain ratio (1 - e.)/e is a st rong funct ion of N , a nd the
extract ion set was not half in each class. Note: the number of pattern s wit h
C clumps is )(~&l). The criterion for correctn ess during the test ing phase
was being with .2 of the target.

In figure 17, the predicate was 2 versus 3 clumps . The memorization
set included 50N items and t he extraction set consisted of another 50N
patterns (half in each class). The data.in the upper curve was taken using the
LMS objective function, using the generalized delta met hod with incomplete
smoothing (one by one). The criterion for correctness du ring the testing
phase was being with .2 of the target. T he high isolated point represents
the data. from table 4, which was taken under the same condit ions, with
the add it ion of stoc hastic weight decay, according to the following scheme:
For each weight , wit h pro bability P, multiply by (1 - a K ) , where ]( is the
number of completed passes through the data, and in thi s case P = 1/ 256
and a = 0.1.

T he lower curve in figure 17 was generat ed as follows: All elements of the
M set were used as "prototypes", i.e. the cente rs of clust ers. Each element
of th e X set was compared with each of the prototypes, and a. histogram
of distance was mad e. All prototypes in th e minimal bin (closest dist ance)
voted on what class th e X element should be in.
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