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Abstract. Since antiquity, man has dreamed of building a device
that would “learn from examples”, “form generalizations”, and “dis-
cover the rules” behind patterns in the data. Recent work has shown
that a highly connected, layered network of simple analog processing
elements can be astonishingly successful at this, in some cases. In
order to be precise about what has been observed, we give definitions
of memorization, generalization, and rule extraction.

The most important part of this paper proposes a way to measure
the entropy or information content of a learning task and the efficiency
with which a network extracts information from the data.

We also argue that the way in which the networks can compactly
represent a wide class of Boolean (and other) functions is analogous
to the way in which polynomials or other families of functions can be
“curve fit” to general data; specifically, they extend the domain, and
average noisy data. Alas, finding a suitable representation is gener-
ally an ill-posed and ill-conditioned problem. Even when the problem
has been “regularized”, what remains is a difficult combinatorial op-
timization problem.

When a network is given more resources than the minimum needed
to solve a given task, the symmetric, low-order, local solutions that
humans seem to prefer are not the ones that the network chooses from
the vast number of solutions available; indeed, the generalized delta
method and similar learning procedures do not usually hold the “hu-
man” solutions stable against perturbations. Fortunately, there are
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ways of “programming” into the network a preference for appropri-
ately chosen symmetries.

1. Overview of the contents

Section 2 gives several examples that illustrate the importance of automatic
learning from examples. Section 3 poses a test-case problem (“clumps”)
which will be used throughout the paper to illustrate the issues of interest.
Section 4 describes the class of networks we are considering and introduces
the notation. Section 5 presents a proof by construction that a two-layer
network can represent any Boolean function, and section 6 shows that there
is an elegant representation for the clumps task, using very few weights and
processing units. Sections 7 and 8 argue that the objective function E(W)
has a complicated structure: good solutions are generally not points in W
space, but rather parameterized families of points. Furthermore, in all but
the simplest situations, the E surface is riddled with local minima, and any
automatic learning procedure must take firm measures to deal with this.
Section 9 shows that our clumps task is a very simple problem, according
to the various schemes that have been proposed to quantify the complexity
of network tasks and solutions. Section 10 shows that a general network
does not prefer the simple solutions that humans seem to prefer. Section
11 discusses the crucial effect of changes of representation on the feasibility
of automatic learning. We prove that “automatic learning will always suc-
ceed, given the right preprocessor,” but we also show that this statement
is grossly misleading since there is no automatic procedure for constructing
the required preprocessor. Sections 12 and 13 propose definitions of rule ex-
traction and generalization and emphasize the distinction between the two.
Section 14 calculates the entropy budget for rule extraction and estimates the
information available from the training data and from the “programming” or
“architecture” of the network. This leads to an approximate expression for
the efficiency with which the learning procedure extracts information from
the training data. Section 16 presents a simple model which allows us to
calculate the error rate during the learning process. Section 17 discusses the
relationship between rule extraction in general and associative memory in
particular. In section 18, we argue that when special information is avail-
able, such as information about the symmetry, geometry, or topology of the
task at hand, the network must be provided this information. We also discuss
various ways in which this information can be “programmed” into the net-
work. Section 19 draws the analogy between the family of functions that can
be implemented by networks with limited amounts of resources and other
families of functions such as polynomials of limited degree. Appendix A
contains details of the conditions under which our data was taken.
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2. Why learn from examples?

Automatic learning from examples is a topic of enormous importance. There
are many applications where there is no other way to approach the task.

For example, consider the problem of recognizing hand-written characters.
The raw image can be fed to a preprocessor that will detect salient features
such as straight line segments, arcs, terminations, etc., in various parts of the
field. But what then? There is no mathematical expression that will tell you
what features correspond to a “7” or a “Q”. The task is defined purely by
the statistics of what features conventionally go with what meaning—there
is no other definition. There is no way to program it; the solution must be
learned by examples [6,11].

Another example is the task of producing the correct pronunciation of a
segment of written English. There are patterns and rules of pronunciation,
but they are so complex that a network that could “discover the rules” on
its own would save an enormous amount of labor [37].

Another example concerns clinical medicine: the task of mapping a set
of symptoms onto a diagnosis. Here the inputs have physical meaning—they
are not purely conventional as in the previous examples—but we are still a
long way from writing down an equation or a computer program that will
perform the task a priori. We must learn from the statistics of past examples
[41].

Other examples include classifying sonar returns [10], recognizing speech
[5,16,30,23], and predicting the secondary structure of proteins from the pri-
mary sequence [42].

In the foregoing examples, there was really no alternative to learning from
examples. However, in order to learn more about the power and limitations
of various learning methods and evaluate new methods as they are proposed,
people have studied a number of “test cases” where there was an alternative—
that is, where the “correct” solution was well understood. These include
classifying input patterns according to their parity [33], geometric shape
[33,35], or spatial symmetry [36].

3. Example: two-or-more clumps

The test case that we will use throughout this paper is a simple geometric
task which an adaptive network ought to be able to handle. The network’s
input patterns will be N-bit binary strings. Sometimes we will treat the
patterns as numbers, so we can speak of numerical order; sometimes we will
also treat them as one-dimensional images, in which false bits ( F's) represent
white pixels and true bits (T's) represent black pixels. A contiguous clump
of T's represents a solid black bar. We then choose the following rule to
determine the desired output of the network, as shown in table 1: if the
input pattern is such that all the T's appear in one contiguous clump, then
the output should be F', and if there are two or more clumps, then the
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Input pattern Output Interpretation
fEftEtfEff F 1 clump

B 8 T 1 e T 2 clumps
frtttttttt F 1 clump
tttffttfft T 3 clumps

B ik s i 5 e F no clumps

Table 1: Examples of the two-or-more clumps predicate.

output should be T'. We call this the two-or-more clumps predicate.” We
will consider numerous variations of this problem, such as three-versus-two
clumps and so forth. The one-versus-two clumps version is also known as
the contiguity predicate [25]. Questions of connectedness have played an
important role in the history of networks and automatic learning: Minsky and
Papert devoted a sizable portion of their book [27] to this sort of question.

There are a host of important questions that immediately arise, some of

which are listed below. In some cases, we give summary answers; the details
of the answers will be given in following sections.

Can any network of the type we are considering actually represent such
a function? (Yes.) This is not a trivial result, since Minsky and Papert
[27] showed that a Perceptron (with one layer of adjustable weights)
absolutely could not perform a wide class of functions, and our function
is in this class.

Can it perform the function efficiently? (Yes.) This is in contrast, say,
to a solution of the parity function using a standard programmable logic
array (PLA) [26], which is possible but requires enormous numbers of
hardware components (O(2V) gates).

Can the network learn to perform this function, by learning from ex-
amples? (Yes.)

How quickly can it learn it? (It depends; see below.)

How many layers are required, and how many hidden units in each
layer? How do the answers to the previous questions depend on the
architecture (i.e. size and shape) of the network?

How sensitive are the results to the numerical methods and other details
of the implementation, such as the analog representation of 7' and F|,
“momentum terms”, “weight decay terms”, step size, etc.?

Does the solution (i.e. the configuration of weights) that the network
finds make sense? Is it similar to the solutions that humans would
choose, given the task of designing a set of weights to perform the
assigned task? Is its solution logical and systematic, or is it a kludge?

LA predicate is a Boolean-valued function; that is, its range is the set {7, F}. The
domain can be anything you like.
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Does the network discover the rule? That is, when it is trained on a
subset of the possible input patterns, does it find a configuration that
yields the “correct” output for the remaining input patterns?

4. Basics

The purpose of this section is to establish the notation. We assume that
the reader has a basic familiarity with layered analog networks. This is a
brutally brief review of a standard, vanilla model; there are many possible
refinements and extensions that will not be mentioned here.

Information on the history of these ideas can be found in reference [29].
A good survey of many successful applications of adaptive networks can
be found in reference [39]. A sophisticated and detailed analysis, dealing
mainly with one-layered networks, appears in reference [27]. A collection
of recent work on parallel networks and learning from examples appears in
reference [32]. Papers on related topics, including the feasibility of building
such networks, can be found in reference [8].

Figure 4 shows a typical layered analog network. It has two layers of
weights (L = 2), and, equivalently, two stages of processing. There are N
processing units in the output layer, and N[ units in the hidden layer; we
use a superscript in square brackets to indicate layer number. There are
N input wires, which are not considered processing units, although we
sometimes refer to them as the 0'* layer. The input bits have value V,-[Dl.
The weights in layer [ have values W,[f], for I =1 to L. The empty triangles
are amplifiers with a sigmoid transfer function g() such as g(z) = tanh(z).
The amplifiers do not have a separate “bias” or “threshold” input; the bias
function is implemented by the weights connected to the “stuck bits”. The
stuck bits are provided by the triangles with no inputs; a “+” or “—” inside
indicates that the output is stuck at 7" or F respectively. In each layer I, we
number the unstuck bits from 0 to N — 1, and designate the stuck bit as
number N for a total of N 4 1 connections to each unit in layer [ + 1.

The input to each amplifier in layer [ is given by:
i
M= 5 wlyl (4.1)

and the corresponding output is:

VI = g(ul) (4.2)

bl

Equations 4.1 and 4.2 define the input-output relation of the network,
depending on the W values of course. Denoting the input of the network as
I = V,-[u] and the actual output as Ap = Vk[L], we write this overall input-
output relation as:

A= A(W;I). (4.3)
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Figure 1: Typical network.

Suitable W values could be chosen by hand, but we are mainly interested
in choosing them automatically—learning from examples. The training ex-
amples are ordered pairs: (input, desired output), denoted (/% D*), where
a runs over all examples. The traditional measure of how well the network
has memorized the training examples is:

E(W) = Y |D* — AW; ), (4.4)

that is, what you wanted minus what you got, norm squared. This makes the
task of learning equivalent to the task of searching W space for a minimum
of E(W), hence the name “least mean squares” (LMS) learning method.
In the case when E(W) is differentiable, there are several powerful meth-
ods for descending the E surface. Notable among these is the “generalized
delta method,” which can be efficiently calculated by the “back propagation”
algorithm.

5. Representability

Here is a proof that a two-layer network can implement any Boolean function.
Note that we are discussing representability, not learning, so it suffices to
construct by hand a representation.

The discussion here essentially parallels the proof in reference [27] that
any predicate can be expressed in terms of masks. Also, for those readers
with a background in digital circuits, there is a one-line proof: the two-layer
network contains the PLA as a special case, a PLA contains a ROM as
a special case, and an N-input ROM can implement an arbitrary Boolean
function of NV bits.
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Figure 2: Network to represent an arbitrary predicate.

In fancy network language, the proof goes like this: construct a two-
layer network with N = N inputs and 2" hidden units. There are exactly
2N possible input patterns, and we dedicate one hidden unit to each input
pattern. You can call the hidden units “match filters” or “grandmother cells”
if you like. The weight matrix W for the first layer is chosen as follows:
the weight connecting input bit z to hidden unit j will be called wi for

3i

i=0toN—1andj=0to2¥ —1. W},ll is set to +b if the i*" bit is set
in the binary representation of the number j, and is set to —b otherwise.
This ensures that when input pattern number j is present at the input, the
7" hidden unit will receive a contribution of strength +/Nb from the matrix,
and all other units will receive lesser contributions (by steps of 2b). We give
each hidden unit a threshold of (N — 1)b. We make b very large, which
is equivalent to making the gain of the transfer function very large (so the
transfer function becomes a step function). Then the j*" unit will be turned
on, practically to saturation, and all the other hidden units will be turned
off, practically saturated in the negative direction.

The rule for choosing the second layer of weights is similarly straightfor-
ward: if the &*! output bit is supposed to be a T' when the j* input pattern
is presented, then the weight WE] is set to +p, and set to —p otherwise. The
bias of output unit & is set to Sy, the algebraic sum of all the weights feeding
that unit.
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The circuit diagram in figure 5 is practically a picture of the truth table
of the chosen input-output relation. The weights in the first layer are an enu-
meration of the possible input patterns, and the weights in the second layer
are the corresponding output patterns. The device can also be thought of as
a fully decoded Read Only Memory (ROM). The first layer of weights forms
the decoder, and the weights in the second layer are the stored memories.

This demonstrates that the two-layer network can represent any Boolean
function.? This is in stark contrast with the single-layer network, which can
only represent linearly separable functions [27], which are not very interest-
ing. The term refers to the fact that a one-layer network can only separate
the input space into simple categories: the separation boundary can only be
a function linear in the input variables, i.e., a hyperplane.

This solution is quite general, but it is also quite inefficient. The number
of weights in the network grows exponentially as the number of input bits is
increased.

The astute reader may have noticed that in the case of a single output
bit, the number of hidden units can be reduced by a factor of at least two,
by using a wired-or (or wired-and). This trick doesn’t work for A > 1.

6. Efficient representations

For many tasks of practical interest, there exist efficient representations.
Figure 6 shows an efficient representation for our clump-counting task. The
solution capitalizes on the idea that clumps have edges. The first layer of
weights is used as an array of (falling, right-hand) edge detectors, and the
second layer counts the number of edges that were detected.

Figure 6 is laid out in a non-standard way in order to clarify a special
case: what happens if the edge of a clump coincides with the edge of the
input field? To eliminate this, we embed the N real input bits using N 4 2
wires, where the rightmost and leftmost wires are stuck in the F state. Now
every edge of every clump can be seen a transition from T' to F' or vice versa.
The N real inputs are labeled 0 to N — 1; the special edge wires are labeled
—1 and N. The ordinary bias line is stuck at T and is labeled N + 1. Of
course, when actually building such a network, the function of the edge bits
would be combined with the ordinary bias line.

The weights are assigned as follows: WJ[‘I] is set to +b if j =1, —b if
j =1i+1, and zero otherwise. The biases are all set to —b. This ensures that
hidden unit j will be “high” if and only if the corresponding input bit is in

2We are quite aware that in many practical cases, the inputs are not Boolean, but
can take on a range of values. That situation is quite a bit more complex. Consider a
network with a single input wire, taking values z in the half-open interval (0, 1]. The simple
function which yields the parity of the largest integer less than 1/z will obviously require an
arbitrarily large number of hidden units. Furthermore, Lippmann (private communication;
see also [23]) has shown that in the case of continuous-valued (non-Boolean) output levels,
there are functions that cannot be represented with two layers, no matter how many hidden
units are used.
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Figure 3: Efficient network for clump counting.

the T state and its neighbor to the right is in the F" state. Specifically, the
input to hidden unit j will have one of three possible values:

+b if (Ii_y,I;) = (T, F)
W:{w if (Ij-1,1;) = (T, T) or (F,F) (6.1)
—3b if (Ij_y,I;) = (F,T)

The weights in the second layer are +p, and the bias unit in the second
layer is ¢. Hence, for a pattern containing C' clumps, the input signal to the
output unit will be

u= Cpg(+b) + Cpg(—b) + (N+1-2C)p g(—3b) + q. (6.2)

We want the network to return T when there are C' clumps and F when
there are C — 1 clumps. This leads to the following equation, which deter-
mines the optimal value of p:

97U T) = g7 (F) = pg(+b) + pg(~b) — 2pg(—3b) (6.3)
=~ pg(+b) — pg(—b) for large b

This construction shows that it is possible to represent the clump-counting
problem using a two-layer network with only H = N + 1 hidden units. This
proves that at least one efficient representation exists, for all N; we do not
claim that this is the only such representation or even the best representa-
tion. We call this the geometric solution. We also refer to it as the human



886 Denker, Schwartz, Wittner, Solla, Howard, Jackel, and Hopfield

solution, since when asked to design a network to solve this task, people tend
to choose this solution.

We emphasize that in the case where all the training patterns contain
either C' or C' — 1 clumps, this is an exact, F = 0 solution.

Since g() is bounded and monotonic, b — oc implies g(—b) — g(—3b).
One consequence is that in this limit, the output of the 7 = 0 hidden unit is
nearly constant. That hidden unit can be eliminated entirely and its output
weight lumped in with the ordinary bias unit, simplifying the construction
of the network. The problem of searching for a minimum of E(W) must
be stated properly in this case, since for finite b there is no solution with
E =0, or even with F equal to a minimum. Yet in all situations that we
care about, F = F, is not required; £ < Epi, + ¢ is the proper criterion
for the solution, and e can be made as small as you like by increasing b. We
will return to this point in section 8 (see also [40]).

The clumps predicate can also be represented by a one-layer network of
sigma-pi units, which has been explored by reference [25].

7. The structure of weight space

Solutions should not be thought of as a single configuration of weights, but
as a class of equivalent configurations, differing only by certain symmetries.
One important symmetry comes from our freedom to choose b; we call this
the b-symmetry. Also, in the large b limit it is possible to choose a different
b; for each hidden unit j; we call this the b;-symmetry. This means that the
solution set includes a large region of a H-dimensional subspace of weight
space.

This phenomenon is not confined to our clumps example. Clearly, when-
ever a unit is being used as a linear threshold element, uniformly increasing
its input weights leaves the result unchanged.

Another important symmetry comes from the fact that the ordering of
the hidden units is arbitrary. In each hidden layer, we can relabel the units
in H! ways, where H is the number of units in that layer. Specifically, if we
set W’m WP () and W, '[H'l] = VV,EIFIJ for any hidden layer [ and for any
permutatlon B then the behavwr of the network is absolutely unchanged.

Yet another symmetry comes from the fact that in most networks that
have been considered the polarity of the hidden units is arbitrary. In the
representation where the transfer function is odd (which is typical when
T =1 and F = —1), this symmetry is very simple and easy to visualize:
for each hidden unit, if we change the sign of every weight on its input and
every weight on its output, then the behavior of the network is unchanged.
In other representations where the transfer function is an odd function plus
a constant (which is typical when T' =1 and F = 0), the symmetry is still
there, but requires an adjustment to the bias terms in the next layer.® The
number of equivalent configurations in each hidden layer is 2 H!. Whenever

30ne can construct networks in which the transfer function has no particular symme-
tries, but we have seen no advantage in doing so.
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one wishes to compare two solutions, one must remove these symmetries by
converting the configuration to some standard form.

These symmetries imply a certain periodicity in W space. This leads us
to visualize the E(W) surface as resembling a sombrero, or as a phono record
that has been warped in certain symmetric ways: near the middle (W = 0)
all configurations have moderately bad E values. Radiating out from the
center are a great number of ridges and valleys. The valleys get deeper as
they go out, but asymptotically level out. In the best valleys, E is exactly
or asymptotically zero; other valleys have higher floors. This picture is, of
course, an oversimplification.

8. Search methods

When the weights are very large (or g() is a sharp threshold function), the
task of “learning” the best set of weights is an unvarnished combinatorial
optimization problem, and the network formulation does not offer any dis-
cernible advantage over conventional combinatorial optimization procedures.
However, by varying the gain (steepness) of the transfer function, Hopfield
and Tank were able to improve the results of a similar search. It is possible
for the system to express temporary compromises, moving through weight
space along complex paths such that many components (i.e. the weights)
have intermediate values. In favorable situations, this allows the system to
circumnavigate small barriers in the E(W) surface, exploiting the high di-
mensionality of W space.

In order to promote this sort of behavior, one can introduce an additional
term in the learning process which we refer to as deterministic weight decay.
(Other types of weight decay will be discussed shortly.) This additional term
effectively defines a new surface E'(W) = E(W) + E(W), where E; is large
when |W| is large. Of course, searching the new surface is a different task
than searching the original surface. If E, is too large, then the solutions to
the new task do not correspond t6 the solutions of the original task, and we
have accomplished nothing. Indeed, if E; is extremely large, it is possible to
have only one solution, the parasitic solution W = 0. On the other hand, if
E, is very small, it doesn’t do any harm, but then it doesn’t do any good
either. A better procedure is to use a term E3(W,t), which is an explicitly
decreasing function of time. Then, the real solutions will gradually emerge
out of the parasitic solutions. It is hoped that the best solution will be the
first to emerge, whereupon the system will find it and follow it as it evolves to
its final form. This is one example of a class of techniques we call simulated
ironing, because they remove wrinkles from the E surface. It is a nice vision
of what might happen, but there is no guarantee that it will happen in a
particular case. It is not a bad heuristic, but it is not guaranteed, either.

Weight decay also improves the performance of certain learning methods
by preventing the method from wasting time seeking the b — oo solutions
discussed in section 6. Most versions of the generalized delta rule learn very
slowly when the weights are large. Weight decay is a rather artificial way of
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introducing stable local minima at finite values of b. We have shown that a
better choice of objective function (i.e. other than LMS) greatly reduces the
b — oo problem [40].

Another heuristic that is very easy to implement involves using Euler’s
method with a step size that is a little too large. This situation was analyzed
by Jeffrey and Rosner [19]. Basically, it can be thought of as introducing into
the equation of motion some higher-order terms, notably terms proportional
to the curvature of the E-surface. This penalizes narrow basins of attraction,
relative to wide basins of comparable depth. The resulting trajectory in W
space is very complex, and F(W(t)) is not monotonic. We call this behavior
“thrashing”. It is a quick and dirty expedient that helps when a clean,
accurate descent of the E surface would have gotten stuck in narrow local
minima.

There are several methods for escaping local minima which depend on
introducing an element of randomness into the search procedure. The clas-
sical way is to simply restart the search many times from different random
initial conditions and choose the best of these trial solutions [31]. Another
well-known technique is to use simulated annealing [20], which systematically
allows the system to take steps uphill on the E surface, with a probability
depending on the “temperature”, which is an explicitly decreasing function
of time. One can introduce a free energy surface, F, and show that tem-
perature smoothes the F surface just as simulated ironing smoothes the £
surface. We wish to emphasize a point that is widely misunderstood: the
two procedures, although similar, are not completely equivalent. Specifically,
a probabilistic system will eventually cross a small barrier in the F' space by
activated hopping, while a deterministic system that always goes downhill
can never cross a barrier, however small, in the E space.?

Another way in which an element of randomness can be injected is by
using “incomplete smoothing”. Recall that the F function is defined with
respect to (a sum over) all the items in the memorization set M. It is possi-
ble, however, to consider partial contributions to E, defined with respect to
subsets (or even single elements) of M. This leads one to compute motions in
W space that minimize the various partial contributions, and the choosing of
the subsets can introduce enough randommness to help the search escape from
local minima. Global minima will remain stable if E = 0 there; otherwise,
they might not.

Another technique is known as “stochastic weight decay” [43]. Rather
than decaying all the weights a little bit, one may decay a (random) sub-
set of the weights somewhat more. This, too, allows the system to escape
local minima and encourages solutions that are robust against this sort of
perturbation.

We use the term “jostling” to refer collectively to ironing, annealing,

4This depends somewhat on the order of limits: here we have taken the limit of long
time before taking the limit of small fluctuations and averaging over large ensembles. We
are conducting “slow” annealing. To do otherwise would defeat much of the purpose of
annealing.



Large Automatic Learning, Rule Extraction, and Generalization 889

Measure® Parity  Clumps
Layers 2 2
Hidden Units N N
Order of Predicate N 2
Number of Weights N? N
Dynamic Range N 2
Bits Required N?log N Nlog N

Table 2: Comparison of complexity.

stochastic weight decay, and similar procedures. There are a number of
questions associated with such procedures; for example, it is difficult to decide
how quickly the amplitude of the random forces should be decreased. This
scheduling problem first arose in the context of simulated annealing and has
been extensively studied. Perhaps it should not be called the “annealing
schedule” problem, but rather the “jostling schedule” problem, since it crops
up in numerous methods that are distinctly not equivalent to annealing.

All of these methods for escaping local minima incur an enormous time
penalty, and the penalty increases as the size (V) of the problem increases.
This leads to the strong suspicion that the learning process is formally in-
tractable in general. The similar problem of finding the minimum number
of minterms for a PLA is known to be NP-complete [9], but we know of no
proof one way or the other for networks.

9. Measures of complexity

In the general case, a network having H = N hidden units would require
roughly H x N = N? weights, but our geometric solution (section 6) is very
sparse. The number of (non-zero) weights is proportional to N to the first
power only. In fact, each hidden unit has only two input weights, so this
is what Minsky and Papert [27] called a second-order predicate. (We know
that no first-order solution exists.) Also, note that the weights need only take
on small integer values, so the number of bits needed to specify the entire
configuration is very small, proportional to N log N. Finally, note that the
input weights have the property of short range, or locality: the two nonzero
weights are not distributed at random, but are in fact adjacent.

We will argue that not all of these concepts are accurate measures of
the complexity or difficulty of a task, but in this case, the preponderance
of the evidence indicates that this is a very easy task. The order of the
predicate, the number of layers, the number of weights, the number of bits
of specification, and the range are all small. If they got much smaller, the
problem would be reduced to a triviality. Table 2 contrasts this task with the
parity predicate [33], which is often cited as a demonstration of the power
of this sort of network.

The network can indeed learn to solve the clumps task, learning from
examples. Table 3 shows how the learning time depends on the width of the
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N H Median # Passes
6 2 1484

6 3 422

6 4 390

6 5 393

6 6 414

6 7 439

10 6 1747

10 10 1180

10 11 1072

Table 3: Learning time versus network size and shape.

hidden layer for two different sizes of input. Figure 9 is similar, showing how
the learning time depends on the width of the hidden layer for fixed input
size.

The data reported in the table and figure represent the median number of
passes, where each pass consists of one presentation of each of the patterns in
the training set M. Note that the median is a better measure than the mean,
because sometimes the network fails to memorize the M data perfectly, even
after arbitrarily long training time. It would be impossible to compute a
mean in such cases, yet the median is still well behaved.

The discussion of intrinsic complexity and learnability will be continued
below in section 18.

10. Stability of the human, geometric solution

It is interesting that table 3 indicates that the network was able to solve
the task in those cases where the number of hidden units was less than the
number of input bits. This answers one of the questions posed in section 3:
the network is quite happy to find solutions that don’t correspond to human
designs. Humans seem to have a very hard time designing a solution in
which H < N. Actually, our observations go further: even in the case where
H > N, the network does not find the geometric solution.

To confirm and extend this result, we conducted a perturbation analysis
as follows: we constructed a network with the geometric solution as the initial
condition and then proceeded to further train it with the generalized delta
method. Since the network was already at a solution, £ = 0, no further
adaptation took place. We then perturbed the system, moving the weights
to a point Wy in weight space, and re-trained it. We found that the system
was quite able to re-solve the task, returning to £ = 0, but did not do so
by undoing the perturbation. In fact, it moved in some other direction and
settled on a new point Wp.

The learning procedure can be considered a dynamical system, describing
the motion of the point W in weight space. Each local minimum of E is an
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attractor, and each will have its own basin of attraction. The “b symme-
try” means that the attractor associated with the geometric solution is not
pointlike but is at least one-dimensional.

To make the data in figure 10 more meaningful, we “projected out” this
dimension by using the following slightly peculiar distance measure: first, we
ignore the output weights and all the bias weights, so that only H x N weights
remain. Then, we normalize by dividing by the biggest weight. Finally, we
calculate the distances, using what we call the RMS metric: square each
component of weight-difference, divide by the number of weights, and take
the square root. We denote Dg = |Ws — Wy| and Dp = |Wr — Wy|, where
W, represents the geometric solution. In this projected space, the geometric
solution is not a sole point, but a set of isolated points, because of the discrete
symmetries discussed above.

If (in the projected space) the geometric solution had consisted of isolated
pointlike attractors, figure 10 would have shown a characteristic flat region:
Dg = 0 for all Dg < D*, where D* represents the radius of the basin of
attraction. Since the figure shows no sign of a flat, zero region, we conclude
that either the basin of attraction is exceedingly small, or that the attractor
is not pointlike in the projected space, i.e. the attractor in the full W space
has dimensionality greater than one. To say it another way, the b symmetry
is not the only continuous transformation that leaves E invariant.®

Since we know that the b; symmetry exists, we repeated the above exper-
iment using a metric that projected out this larger symmetry. Specifically,
for each hidden unit we normalized its weights to make the largest one equal
to unity. This experiment checked the stability of a wider class of solutions,
which have the same topology but not the same translational symmetry of
the human solution. The results are shown in figure 10. Once again, there is
no indication of any basin of attraction, and so we conclude that the £ =0
solution set is multidimensional in the projected space, and more than H
dimensional in the original W space.

The slope in figures 10 and 10 are remarkably close to unity. We conjec-
ture that this is essentially a consequence of the law of similar triangles. That
is, the learning procedure can be seen roughly as a projection operator, which
projects the whole W space onto the solution set. That would explain why
doubling the perturbation Dy would double its projection Dp. We believe
the intercept in these figures reflects the dimensionality of the solution set,
relative to the number of dimensions collapsed by the learning-projection.

These experiments show that the human solution does not have positive
stability—it is a neutrally unstable subset of a larger attractor. This is
evidence against an important conjecture [42], namely that “the network
is lazy; it will find the lowest-order predicate that is consistent with the
data.” We showed in section 6 that a second-order solution exists, yet the

SWe reserve the word symmetry to refer to guaranteed universal symmetries such as
the ones discussed in section 7. We use the broader term invariance to refer to anything
that leaves F unchanged, including things which depend critically on the training data for
this particular task.
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generalized delta method does not show any sign of preferring this or any
other second-order solution. In fact, it seems greatly to prefer N'"-order
solutions (perhaps because they are more numerous).

We do not mean to imply that networks never find human-type solu-
tions. Rumelhart, Hinton, and Williams [33] report that a back propagation
network of precisely the type we are considering found a sensible “human”
solution to the parity task, and Maxwell et al. [25] report that a one-layer
network of sigma-pi units found a sensible “human” solution to the clumps
task.

The concept of the order of a predicate is useful for some purposes but not
all. For a task with (uniformly) bounded order, the number of connections
required is less than it would be in a task of order N, and this could affect
the practicality of building a system to solve the task. On the other hand,
if a network is given the resources to build representation of a given order,
we see no reason why it should not use all its resources. Perhaps one should
use the notion of order to discuss restrictions on the resources available (or
resources needed), rather than the resources used.

11. Preprocessors, representations, and feasibility

Although the network’s ability to memorize and recall data is impressive,
the thing that really stirs the imagination is the hope that the network could
extend this behavior to “similar” data it had never seen. Indeed, in the early
days of network research, it was hoped that the network would be able to
generalize in several dramatic ways. Some of these powers have already been
demonstrated; others remain topics of research, and others we believe to be
unachievable. It might be hoped that:

The network builds a sensible internal representation.

The network serves as a “rule-finding” system (in contrast to conven-
tional Al programs, which are referred to as “rule-following systems”).

The network behaves “as if it knew the rules.”

The learning process is largely unhindered by local minima.
The network is good for “discovering hidden symmetries.”
The network generalizes.

In discussing these ideas, it is important to be clear about the meaning
of the terms. Also, if we claim to be designing a network, we must be careful
to specify in advance just what the network is expected to do. All too often,
people build a network and then retrospectively discover what it is good for.
This sort of analysis is useful, but should not be confused with synthesis.

It is also important not to make intemperate claims. It is clear that some
networks can discover exceedingly general solutions to some tasks. For in-
stance, let the input consist of binary numbers z and consider the predicate
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“z is an odd number.” Even a one-layer network can learn this predicate,
using a very modest number of examples. It does in fact find an approxima-
tion of the “human” solution—it connects the output to the low-order input
bit and ignores the other input bits. The network will then generalize from
those few examples to every representable integer, which is a high ratio of
generalization indeed.

On the other hand, consider a different predicate, namely “the number
z has an odd number of prime factors.” We can’t prove that there is no
network that can learn this predicate, but such a thing seems too good to be
true. Factorization is considered an intractable computer-science problem,
and the network is surely no more powerful than a standard computer.

Obviously, blatantly superficial structural properties (like the oddness
of binary numbers) are easier to learn than deep abstract properties (like
primality). But note that the question of what is superficial and what is deep
is very sensitive to change in representation. In the base 3 representation,
oddness is not such a simple structural property. Similarly, it is easy to
imagine a representation in which a number is stored in terms of its factors,
which would make factoring easy (and make addition hard).

In many cases, the practicality of solving a problem hinges on constructing
a preprocessor that transforms the data into a reasonable representation.
Indeed, here is a proof that “automatic learning will always succeed, given
the right preprocessor”: let the preprocessor accept the raw input and “tag”
it with the desired answer. (By this we mean combining the two using the
Cartesian product, i.e. concatenating the bit strings.) Feed this processed
input into a one-layer perceptron. It is guaranteed to learn to ignore the raw
data part of its input and copy the desired output to the actual output, just
as it learned to copy the low-order bit in the odd-even task. This settles the
debate concerning the importance of preprocessors; they are all-important.
It is, alas, completely wrong to conclude from this that “automatic learning
will always succeed,” since we have no automatic procedure for generating
the required preprocessor.

The questions of generalization, learnability, and representability are also
sensitive to the architecture of the network. For example, the solution to the
parity task using H = N hidden units depends on the analog accuracy of
the weights. If the weights could take on only binary values (which is the
way it is in standard digital VLST processes), then a two-layer network would
need O(2") hidden units. That would be a very silly representation, since
a digital solution using log N layers of N units is much more efficient. For
that matter, there is a digital solution using only a total of N XOR gates
(although no simple learning method is known for such an architecture). The
point is that the resources needed to do a good job on a given task are very
sensitive to the shape of the network, the accuracy of the weights, the form
of the objective function F(), and other architectural specifications.

Therefore, we emphasize that the question of generalization must be an-
swered quantitatively, not categorically. Some network architectures, some
learning methods, and some representations are suitable for some problems.
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Figure 7: Rule extraction.

12. Definition of “rule extraction”

We hereby propose the following definition of rule extraction. This is, we
believe, what most people mean by “finding the rules” or “discovering the
symmetries” or “induction”, and what some people mean by generalization.
Reference works include Angluin and Smith [2], Holland et al. [14], Packel
and Traub [28], and references therein.

Let I be the set of all possible inputs to the network, and let A be the set of
all possible outputs. Let the set U = I x A be the universal set of all possible
ordered pairs (input, output). All functions and other relations” are subsets
of U. As indicated in figure 12, let us choose a particular function, a rule
R C U, and see how well the network can discover it. In our specific example,
the two-or-more clumps predicate defines the rule of interest. Now we
identify a subset of R which we call the memorization set, M, and another
set X which is disjoint from M, i.e. X C R — M. We call X the extraction
set or the extension set, since the idea is to extract the rule from the data
M, and extend it to the testing data X.

The network adaptively learns the data in the M set. The error function
E which the generalized delta method seeks to minimize is defined as a mea-

"The two-or-more clumps predicate is, mathematically speaking, a function, since for
each input pattern there is a unique output. The same is true for parity and most other
predicates considered in the literature. Since all networks in the class we are considering
are deterministic, the network’s actual input-output relation is a function, too. In a real-
world situation, the training data M may contain a certain amount of noise. By that, we
mean two things. For one, we extend our definitions to include the case where a few of
the elements of M may be inconsistent with the rule we are trying to find (i.e., they lie
outside R). Second, in the presence of noise, M could easily be a relation that is not a
function. Learning from noisy data is perhaps the most important use of networks that
we can foresee. We will return to this topic below.



898 Denker, Schwartz, Wittner, Solla, Howard, Jackel, and Hopfield

sure of how accurately the network’s actual input-output relation matches
the desired relation M. We define the network’s extraction score (for the
rule R) to be the the accuracy with which the network’s input-output rela-
tion agrees with the X relation—that is, the data that it did not see during
learning.

Occasionally, kibitzers suggest that we could improve the extraction score
of our networks by including a “few” of the points from X in the learning
process; we emphasize that to do so would by definition defeat the idea of
rule extraction. The network’s ability to produce the desired output, given
input data that it saw during training, we call memorization; the ability to
produce the desired output corresponding to input data that it has never
seen before, we sometimes call generalization of the rule R, but we prefer to
call it rule extraction.

We emphasize that rule extraction is a rather slippery concept, since
it is possible to change a network’s extraction score (without changing the
network) simply by changing one’s mind about what rule was “supposed” to
be extracted.

In order for rule extraction to make sense, we require the property we call
representativity; that is, the M and X sets must be representative samples of
R. 1t generally suflices to construct M and X by the same random process.
(Figure 12 should not be taken to mean that M and X are systematically
different.) The point is to rule out nonsense of the following sort: suppose
we were seeking to extract the odd-even predicate. Imagine that the subsets
were manipulated so that the abscissas in M were all equal to 0 or 7 mod 8,
while the abscissas in X were equal to 1 or 6 mod 8. That is, in one set there
is a positive correlation between the bit we care about and its two neighbors,
while in the other set there is a negative correlation. In such a perverse case,
we should not expect good rule extraction.

We have performed experiments to see how well the generalized delta
method and variants thereof can extract the clumps rule. In some circum-
stances, the rule extraction score is quite disappointing, and in other circum-
stances, it is rather good. Our struggle to reconcile these two results led to
most of the ideas in the following sections.

For smallish networks (H = N = 10 or less), and even using a substantial
fraction of all available data for training, we observed rather poor rule ex-
traction. To confirm this result, we performed a perturbation analysis similar
to the one described above in section 10.

The network used in these experiments had # = N, not H = N + 1, so
the best performance (measured with respect to the testing set X = R — M)
would occur for large b; specifically, b > 4 suffices. For lesser values of b,
the initial condition does not constitute a solution, but is only a hint, having
the same symmetry and topology as the true solution. Given an exceedingly
strong hint, the performance was 100 percent, even with no training data, as
can be seen in figure 12. Given no hint at all, the performance was poor even
after training. Given a moderately strong hint, training with one or two
hundred examples led to good performance. The amount of hint required



Large Automatic Learning, Rule Extraction, and Generalization 899

100

a0

80

80

Rule Extraction Score (%)

4 200 training patterns
0 100 training patterns

50

i L 1 i L L L

0.0 0.5 1.0 1.6 2.0 25 3.0 3.5 4.0
Strength of Hint

40

Figure 8: Rule extraction with weak hints.



900 Denker, Schwartz, Wittner, Solla, Howard, Jackel, and Hopfield

a0 90 100

70

Rule Extraction Score (%)
80

a4 200 training patterns
0 100 training patterns
0 0 training patterns

50

(=] i ' 1 i i
b

0.0 0.5 1.0 1.5 2.0 2.6 3.0
Gaussian Noise Amplitude

Figure 9: Rule extraction with noisy hints.



Large Automatic Learning, Rule Extraction, and Generalization 901

decreased dramatically when the size of the training set was increased.

In similar experiment, the network was always given a strong hint (b =
3.5), but the weights were perturbed by adding random noise. This is shown
in figure 12.

The data in figures 12 and 12 shows a distinct basin of attraction. That
is, there is a special region in W space surrounding the geometric solution.
When started from any point within this region, the learning procedure leads
to a final point with a rather good rule extraction score (X score). Starting
outside that region produces a final point with a rather poor X score (even
though it has £ = 0).

This is in contrast to figure 10, which did not show any basin of attrac-
tion. From this, we conclude that the geometric solution, indeed the whole
multidimensional solution set related to the geometric solution, is a very
small subset of the region of W space that has a good X score.

On the other hand, figures 12 and 12 show that beyond a certain distance,
the learning procedure does not lead to a point with a good X score, geomet-
ric or otherwise. This is the basis for our strongest negative conclusion: we
have reason to believe that our implementation of the learning procedure is
not faulty (since it does exhibit learning and rule extraction for some starting
points), yet for general starting points it does not find a set of weights with
a reasonable rule extraction score.

This result applies under the stated conditions of H, N, m, etc.; we
emphasize that under other conditions we have achieved a very good X
score, as will be discussed below.

13. Definition of “generalization”

To pursue these ideas, we must now define what we mean by true general-
ization (as distinct from rule extraction). As before, let U be the universe of
relations, and let M be the memorization data, a subset of U. Now consider
the sets G1, G2, G3, etc. (For simplicity, let us restrict M and G; to be
functions for now.) We say that G; is a generalization of M if M is a proper
subset of G, as shown in figure 13. That is, the relation G; has a larger
domain than M, and the two relations agree wherever their domains overlap.

Note that we do not speak of the generalization, but one of many gener-
alizations. There are, in fact, an enormous number of generalizations, and
it is interesting to calculate the number. Consider a network, a definite net-
work that is not, for now, undergoing training. This network performs some
definite Boolean function, and we can tabulate this function in a truth table.
Since there are N input bits, the truth table will have 2" rows. We now ask
how many distinct functions can exist. If there are a output bits, there are 2*
possible output symbols for each row of the truth table and a total of 2V x a
independent bits on the output side of the table. We choose values for those
bits in all possible ways and calculate how many different truth tables exist;
namely, #(F) = (2°)?" (where F denotes the set of all functions, i.e. truth
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Figure 10: Many generalizations are possible.

tables). In the case of a single output bit, this simplifies® to #(F) = 22"
possible Boolean functions.

It is sometimes useful to imagine the space of all possible truth tables as
a hypercube with 2" dimensions. Each dimension is a row of the truth table,
and each corner is one of the 22" distinct functions.

Now in quest of generalizations, we ask which functions are consistent
with our training data M. Let m = #(M) be the number of data items
(ordered pairs) in the M set. This data dictates the output values for m of
the rows in the truth table, freezing out m of the dimensions in the truth
hypercube. There remain (2V — m) x a undetermined bits, and hence the
number of possible generalizations is

#(9) = (22" /2" (13.1)

where G denotes the set of all G;. This calculation is similar in spirit to
the definition of Kolmogorov complexity [22]. The numbers in this equation
are fantastically large. As a modest example, take a single output bit (a =
1), thirty input bits (N = 30), and a thousand training examples (m =
1000). Then there are #(G) = 219 /2% = 219 generalizations. These are all
perfectly valid generalizations, in the sense that they are perfectly consistent
with the training data M.

14. Entropy and information

We can use these ideas of function-counting to discuss rule extraction, and
at first glance, the numbers seem very discouraging. The learning procedure

8We will henceforth discuss only the a = 1 case; the interested reader will have no
difficulty in deriving the corresponding general expressions.
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can result in any one of a vast number of possible generalizations. The data
does not provide any reason to prefer any of these over any other. The set of
networks that compute the rule we are seeking is a vanishingly small fraction
of the set of all possible networks. It is inconceivable that any automatic
learning procedure would be able to stumble onto the “correct” extension.

Therefore, we must not search the space of all possible functions or all
possible networks. We must perform a constrained search. There are many
ways of doing this.

One crucial idea is to search the space of all efficient networks. In some
cases, we may know a priori that the task that has been posed can be solved
by an efficient network. This special knowledge may come, for instance, from
considerations of the geometry, symmetry, or intrinsic complexity of the task.

In other cases, we may not have such special knowledge, and we must in
principle search all possible functions. These are what Abu-Mostafa [1] calls
“random problems”. However, all is not lost, because we have a choice: the
crucial idea is that we choose to search the efficient network functions first.
We have powerful search techniques for such functions. If; after efficiently
searching the efficient networks, we still do not have a solution, we can then
decide whether or not further searching is worth the trouble.

14.1 Preview

We are now almost ready to derive the main results of this paper. The
discussion is a bit complex, so we will briefly list the main ideas and then
proceed to derive them in detail.

1. We will be searching through the space of networks (i.e. weight space).
Note that the previous section discussed searching through the space
of functions; we will exploit the connection between the two spaces.

2. Since we will be calculating a probability, we need some notion of a
prior distribution. We call this “throwing darts at weight space.” It
allows us to assign a probability P(W)dW to each volume element dW
in weight space.

3. We will extend the idea of exactly correct rule extraction by accepting
nearly correct extractions with some error tolerance f. You can of
course set f = 0 if you want to recover strict rule extraction.

4. We use the training data M and all other information at our disposal
to restrict as much as possible the portion of weight space that we need
to consider; call this portion W. We then calculate the probability that
a point in W will meet our f-acceptance criterion. If this probability
is near 100 percent, we conclude that this network can be expected to
perform rule extraction with the required accuracy f. On the other
hand, if this probability is small, we conclude that the network can not
be relied upon to perform rule extraction.
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We remind the reader that one is not allowed to search W space to find
the “correct” rule extracting network. That cannot be done without using
data from the testing set X, which defeats the purpose, by definition. That
would be like betting on the winning horse after the race is over. We are
only allowed to play the probabilities in W space.

14.2 Derivation

The task of choosing a probability distribution in W space is a bit tricky. The
choice depends on just what method is used for “learning”, i.e. for searching
W space. Fortunately, the exact form of the distribution is not important for
our argument. You could, for instance, use a probability density proportional
to e"I/«_ for some “radius” w. We will for most purposes use a distribution
that is uniform inside a hypercubical volume (w on a side) and zero elsewhere.
We choose w to be big enough to enclose reasonable weight values, but not
too much bigger than that.

We can map weight space onto function space as follows: for each con-
figuration of weights, W, build a network with those weights. Present it all
possible binary inputs. Observe the corresponding outputs, and convert to
binary. This mapping associates a definite truth table, i.e. a definite Boolean
function, with each point in W space. To say it the other way, the inverse
image of a function is a region in weight space.

By integrating over weight space, we can assign a probability P; to each
function. If w is large enough, and if there are enough hidden units (H o 2V),
there will be non-zero probability assigned to every function, according to
the discussion in section 5. On the other hand, we are particularly interested
in the case where there are very few hidden units, perhaps H o« N? or N3,
In that case, we expect many functions to have zero probability.

It is interesting to consider the quantity we call the “functional entropy”,
namely

§S=3 —PlogP (14.1)

i€F

where F is the set of all functions. All logarithms in this paper are base 2, so
entropy is measured in bits. It has its maximal value when all functions are
equally likely, in which case § = 2V. If some functions are less likely than
others (or ruled out completely), the value of S is reduced.

We define S; to be the initial value of S, measured before any training
has taken place. A large Sy means that the network is capable of solving a
large class of problems; a small Sp means that the architecture has restricted
the class of problems that this network can handle.

Now we get to use the training data M. The training data applies directly
to function space, but we can use the mapping to “black out” the regions of
W space that are (inverse images of functions that are) inconsistent with the
training data. We can also define a reduced functional entropy,
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Sm= ) —FPlogP; (14.2)
f€r™
where the “*” indicates that we have removed from consideration all those

functions that are inconsistent with the training data M and normalized the
remaining probabilities. If all functions were equally likely, we might hope
that each element of training data would reduce the entropy by one bit, so
that S, = So — m. Alas, we forsee that this will not always be the case, so
we define 7 to be the average efficiency® with which the learning procedure
extracts information from the training data, defined by the expression

B

m

(14.3)

It is sometimes useful to treat m as an independent variable and define
the local efficiency,

N = —dS/dm. (14.4)

There are a number of possible reasons why 7 might be less than unity.
The most obvious possibility is that the training data might contain duplicate
points. The first copy of that point would freeze out one axis of the truth-
hypercube, reducing the entropy by one bit, but succeeding copies of that
point would contribute nothing. We have obscured this issue by referring to
the training data (M) as a set—and a set cannot have duplicate points. In
the real world, however, the training data is treated as a list, not a set, so
it can have duplicate points. We also point out that in the case where M
is not a function, the phrase “rule out” is too strong a term. Perhaps “pro-
vide evidence against” would be better. Conflicting evidence, like duplicate
evidence, will lower the efficiency.

A more profound and interesting case occurs when a training item cuts
the truth-hypercube across an axis such that the entropy is not equally dis-
tributed among the two halves. It is well known that the optimum strategy
for playing the game of twenty questions is to use questions that divide the
number of possible objects in half each time. This strategy returns one bit
of useful information per question; any other type of question returns less.

In the other direction, it might seem possible to construct a network with
an artificially large 7, even greater than unity, by hindsightfully choosing a
rule R that coincides with whatever function the network initially produced.
In such a case, the network could seem to “learn” the function with no
data whatsoever! We insist, however, that this cannot be considered a rule
extraction. Any claim of rule extraction which implies an efficiency greater
than unity must be viewed with extreme skepticism.

It is possible, of course, every so often to stumble onto a good rule extrac-
tion based on very little data, just by dumb luck and waiting for coincidences.

®This is not to be confused with other forms of efficiency, such as efficiency of repre-
sentation mentioned in section 6.
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For instance, consider the following unusual game of 20 questions: Q: “Is your
name Rumplestiltskin?” A: “Yes.” This outcome is technically possible, but
any strategy that asks such questions is a very poor one. It can only search
20 names, whereas a good strategy can search 220 names. An apparent 5 > 1
will only occur if the rule R is very special, and/or the initial value of the
weights W is very special. This sort of nonsense can be detected and pre-
vented by evaluating 5 for a number of different, sensible rules and/or using
an ensemble of randomized initial weights.

15. Calculating the efficiency

By introducing some approximations and restrictions, we can arrive at a
convenient way of estimating the initial entropy in practical situations.

In the network of figure 4, each hidden unit has = N weights connected
to its input wire. If a signal of size u is significant to the hidden unit’s input
wire, a roundoff error of size u/v/N per weight would add up to be significant,
if the errors added in quadrature, which is characteristic of random numbers.
(Errors of size u/N would add up to be significant if they all added in the
same direction.) From this, we conclude that each weight needs roughly
5log N (or perhaps log N) bits of precision. The fact that our solution,
figure 6, has only three non-zero weights per hidden unit does not count,
since we don’t know that fact until after learning is completed.

Let us calculate the number of bits B needed to specify the configuration
of the network. A network with H ~ N hidden units has O(N?) weights, in
which case B = .5N?log N. Therefore, there are of order 2-°N* 196N different
networks that we can build. That is a large number, but it is quite a reduction
from 22",

In general, to obtain a value for B, one must know L;, the number of
(significantly) different levels that each weight ¢ in the network can take.
Specifically,

B= Y legks (15.1)

weights

It is difficult to obtain an exact value for L;, but it easy to obtain a
good estimate, and only its logarithm matters anyway. The estimate can be
performed by iteration: start with a small L and increase it, building a series
of networks. Stop when you get a network that is capable of learning.

Qur emphasis on networks with the minimum number of specification bits
B is important not only for information-theoretic reasons, but also because
there are important technological limits to the precision with which weights
can be fabricated in real-world networks. The notion of an efficient repre-
sentation, which was introduced back in section 6, can now be made precise:
we require that B grow no faster than some polynomial in V, the size of the
problem.

We take as our prior distribution the notion that all of our 27 networks
are equally likely.



Large Automatic Learning, Rule Extraction, and Generalization 907

We tried to arrange by construction that each of the B bits is “signifi-
cant”. Imagine for a moment that each bit was sufficiently significant that
each time we change a bit the network implements a different Boolean func-
tion. In that case, there would be 2B dlﬂ'erent functmns all equally likely,
and the functlonal entropy would be Sy =

This is clearly an overestimate for Sy, for a number of reasons. For one
thing, the actual number of different functions implemented by our B-bit
network will be less than 28, because of the various symmetries discussed
in section 7. Furthermore, there will most likely be some low-order bit in
the network specification somewhere that does not change the input output
relation A(). This means that the 28 imaginary networks are “folded” onto
some smaller number of actual networks. We can get an expression for S by
taking into account as many of these foldings as possible.

2% = 25 (15.2)
T HRA(R)(F)(Fs) - ‘

23

= mor

The first factor in the denominator accounts for the permutation sym-
metry of the hidden units. The second factor accounts for the polarity sym-
metry. The factor F; represents the fact that although our construction of
B guarantees that most of the bits will be significant, quite likely not all
of them will be. The fudge factor F; represents the b-symmetry; we do not
know how much of this symmetry survives the coarse-graining involved in
our construction of B. The factors I - represent any other symmetries
that have simply escaped our attention. Setting these unknown factors to 1
gives us an upper bound on Sy.

We believe that whenever the final rule extraction score is significantly
better than 50/50, the final entropy must be very small, for reasons given in
section 16. In that case, we can estimate the efficiency as n & So/m, using
the value of Sj estimated from equation 2.

Other Viewpoints

Equation 14.3 defines an average efficiency n that was actually achieved in
a particular case. Another viewpoint would be to imagine that there is a
definite expected efficiency 7 that the network is capable of. We can then
consider the expression

65 = So— S — im (15.3)

If 5 is positive, then the number of consistent generalizations (consistent
with the training data M) is large compared to the number of f-acceptable
extractions, and we would expect that the rule extraction score would be
very poor. On the other hand, if we increase m (the amount of training
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data), then we can presumably winnow the number of valid generalizations
down to the point (65 < 0) where they are all f-acceptable extractions.

Similarly, we could hold 65 = 0 and hold 5 fixed, and solve equation 15.3
for the expected error rate f as a function of m.

Yet another possibility would be to consider everything but Sy fixed. This
equation would then tell us how much we would need to restrict the space
of a priori likely functions, by limiting the number of hidden units or their
connectivity, etc.

Our experiments indicate that the network can learn the 2 versus 3
clumps predicate with reasonably high efficiency, as shown in table 4. For
instance, using N = 16, the network was able to extract the three-or-more
clumps rule with a 18 : 1 gain factor (e = 5.4 percent), and 97 percent correct
rule extraction (f = 3.3 percent). This gives 7 = 56 percent (assuming
S =0).

# Inputs Data Used Error Rate Efficiency
N m T 7
16 800 .033 .56

Table 4: Rule extraction score versus V.

16. A model system

There is a model system which captures the our main ideas about rule ex-
traction, yet is simple enough to be soluble. Counsider the following feat: a
particular card in a deck of 52 cards is marked, and a blindfolded mentalist
offers to deduce which one it is. Now the simplest way is for him to ask
a series of questions: Is the marked card in the top half of the deck? Is it
in the first or third quarter? Is it in an odd-numbered eighth? and so on.
After six questions, there is no doubt as to which of the cards is the marked
one. The analogy to automatic learning is this: the deck is an ensemble of
functions—imagine that a truth table is written on the back of each card.
The distribution is weight space is such that it gives each of these functions
equal probability and all other functions zero probability. The questions
(with answers) are the training data.

This version of the model is not very realistic, since in real applications the
training data generally has not been constructed to be optimal and orthogo-
nal. Therefore, consider a second version of the model, in which the questions
divide the cards in a random way. It is easy to visualize randomizing the
cards, which is equivalent to randomizing the questions. The mentalist first
asks if the marked card is in the top half of the deck. He then punches a hole
through every card in the half that does not contain the marked card. Then
the deck is shuffled. Again, he asks if the card is in the top half, and punches
all the cards in the excluded half. This continues, with the deck being shuf-
fled before each question. In this version, six questions do not suffice, but
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after many questions have been asked it becomes exponentially unlikely for
any card except the marked one to remain unpunched.

We now come to the third and final version of the model. We must take
into account the fact that we do not expect the questions to divide the deck
in a nice 50/50 way—the shuffle will not be perfect. What really happens is
that each training item (i.e. ordered pair) focuses attention on a particular
row of the truth tables that are written on the cards, namely, the row that
matches the abscissa of that training item. The deck is then divided into
two pieces, according to whether the ordinate on the card agrees or disagrees
with the marked card. The ones that disagree get punched. The fraction
that disagree is denoted ¢; this is the principal free parameter of this model.
A perfect shuffle would give ¢ = 1/2.

Let the expected number of unpunched cards (after m questions) be Z;
then,

Z=1+2%-1)JJ(1 - ¢m)- (16.1)

The first term, 1, represents the marked card, and the second term repre-
sents all the other unpunched cards, which are reduced by a factor of (1—¢,,)
each time. For simplicity, we will treat ¢ as a constant from now on; it is
easy to generalize the formulas.

If we pick a card at random from the set of unpunched cards, the prob-
ability of not picking the marked card is (Z — 1)/Z, and therefore the total
probability of picking up a card that disagrees with the marked card is

Z -1
f=a 7 (16.2)

We have used the principle of representativity (discussed back in section
12) to connect ¢, which is a property of the M set, with f, which is a property
of the X set.

Now, suppose that we wish to train the network until it does better than
some specified error rate f*. How much data do we expect it to require?
We assume that the network learns as efficiently as possible given adverse
training data. Within this model, the worst ¢ that could be produced by any
training set would be ¢ & f*, because if ¢ were smaller than this, equation
16.2 would imply that f was less than f*, and the task would be complete,
while if ¢ were larger than this, the network would learn faster according to
equation 16.1. For small f*, we expect

m = Soln 2/ f*. (16.3)

The network can learn faster than this if the error rate stays up near
50/50 until near the end of training, and it can, of course, learn more slowly
if it does not live up to its information-theoretic potential.

The entropy is
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Figure 11: Entropy and error rate versus m.
S = log Z. (16.4)
It is useful to introduce the pre-efficiency g = —log(l — ¢) and recall

that the local efficiency 7, = —dS,./dm. We assume ¢ and hence p will
be constant, or at least relatively constant. Initially, f = ¢ and n,, = g,
but f and 5, decrease exponentially after the entropy has been squeezed out
of the network (pm > Sp). Figure 16 shows the entropy and error rate for
So = 50, p = 1/3. Changing S would rigidly shift the curves horizontally,
and changing g would just rescale the horizontal axis by a uniform factor.

17. Associative memory and clustering

The ability of massively parallel networks to perform associations, and to cat-
egorize the inputs into clusters, has received enormous amounts of attention—
for a review, see reference [32]. Sometimes people get carried away and take
agsociative memory as the definition of what a network ought to do, or even
as the definition of computation!® in general. We take the opposite view,

The Turing machine, although not a practical device, is widely used as a formal,
theoretical model of “computation in general.” An associative memory is clearly less
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Figure 12: Rule extraction under various conditions.

namely that clustering is a particular case of rule extraction in which the
rule is (roughly) of the form “nearby inputs should produce nearby outputs.”
The definition of “nearness” depends on the specific task in question.

A general learning machine can learn to do clustering, but the reverse
is not true: there are huge categories of tasks a specialized cluster analysis
machine cannot do. At worst, the general machine’s task can be discussed
in two phases: first the network discovers that clustering is appropriate, and
then it learns where the cluster boundaries should be. A cluster analysis
machine has less work to do, since it already “knows” that clustering is the
way to go. There are a number of quite efficient clustering methods ([21] and
references therein), and they should be used whenever they are appropriate.
More general rule extraction procedures must be used in the remaining cases.

The upper trace figure 17 shows the rule extraction score for a very simple
layered network—no particular effort was made to optimize its performance.
The lower trace shows the analogous results for the most powerful clustering
analysis we could think of, as described in appendix A. The layered network
was clearly superior in this case. The figure also displays the data from table

powerful than a Turing machine; for starters, it cannot perform loops.
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4, showing the importance of stochastic weight decay.

18. Symmetry, easiness, and programming

At first glance, the amount of data required for learning, as indicated in table
4, seems rather large. Humans seem to “discover the rule” using far fewer
training examples. To understand this phenomenon, consider the following
modification of the task: let us permute the bits of the input pattern, leaving
unchanged the numerical value of the output. (There is only one permuta-
tion, applied to all patterns.) An example of this is shown in table 5, in
which the permutation (0123456789) — (3120459786) was applied. This is a
very simple permutation (two pairs are exchanged: 0 with 3, and 6 with 9),
but it has a drastic effect on the appearance of the input patterns.

Old Input  Output Permuted Input
ffftttffff F tEffttffff
i i o v g s e e o T L e o i v s e
fttttttttt E tttftttttt
tttffttfft T ftttftttff
i e e 0 0 F i i s i s 6 o s e

Table 5: Permutation of the input.

This change has a similarly drastic effect on the rate at which humans
learn the rule. First of all, the humans must guess that the task requires treat-
ing the input as a geometric pattern, which is not an obvious assumption—for
all they know, the task might require treating the inputs as binary numbers
and factoring them! Even if they guess that permuted geometry is important,
they must guess what particular permutation has been applied and then dis-
cover the clump-counting or edge-counting rule. The humans would require
a stupendous number of examples in order to achieve this.

Permutation of the input bits is an exact symmetry of the architecture;
that is, the first step in the operation of the network is a calculation of the
form

iji]i (18.1)

in which the symbol 7 is a dummy index. This is in addition to the similar
symmetry of the hidden units, described above.

Humans have a very strong prejudice in favor of geometric solutions. They
consider the original task easy and the permuted task hard. The network
has no such prejudice. It has no built-in notion of geometry or topology. For
the network, the original task is just as difficult as the permuted task.

We feel that this difficulty is artificial. It arises when one asks an over-
general network to solve an under-specified task. In real-world situations,
the data does not exist in a vacuum, but exists together with important



Large Automatic Learning, Rule Extraction, and Generalization 913

ancillary information such as symmetry, geometry, topology, and so forth.
When we presented the two-or-more clumps predicate back in section 3,
we presented the topological information to the reader, along with the data.
Throwing away the ancillary information makes the problem more abstract
and certainly makes it less tractable. Why should we ask the network to
solve a very hard general task, when all we cared about was a rather easier
special task?

Learning from examples and related techniques will never replace programming—
they will supplement it. Someone who understands a task will always do
better than someone who does not. It is important to realize that search
techniques are useful when you have an intermediate amount of knowledge
about a task. There are some tasks (such as finding the minimum of a
parabola) that are so well understood that the answer is obvious, or obtain-
able by by conventional analysis. At the other extreme, in the case of a truly
random function, sophisticated procedures will not do any better than simple
procedures. (You use grandmother cells to memorize the M data, and guess
at the rest.)

In an artificial example such as the three-or-more clumps predicate, it
is a question of taste as to what constitutes “giving ancillary information”
and what constitutes “giving away the whole answer.” Real-world tasks are
so much more complicated that giving all available ancillary information still
leaves plenty of work for the network to do.

Having decided to provide ancillary information to the network, we need
sensible techniques for doing so. These techniques can be thought of as a
strange sort of “programming language” for networks. One way is to change
the architecture of the network, restricting the “receptive field” of each of
the input units. For example, we could require that

Wi;=0  whenever |i — j| > p 7 (18.2)

where p represents the radius of the receptive field.
A gentler and more general way to implement limited receptive fields
would be to add to the E function a term of the form

By =% Y WEK(i - jl, o). (183)

In the case where the multiplier A3 is large and the kernel K is a suit-
able step function, this method becomes effectively identical to the previous
restriction. The idea of “programming” the network by adding terms to the
E function is traceable to the traveling salesman network paper of Hopfield
and Tank [15].

Either of these methods provide hints that the solution should be sparse,
topologically one-dimensional, and local along that dimension. They break
the permutation symmetry of 7. To say it another way, we give the net-
work a notion of neighborhoods (each containing =~ 2p input bits), and these
neighborhoods induce a topology on the input space.
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The work on “feature spin” systems [24,3,4,21] used carefully constructed
input and output spaces to perform automatic clustering. Hinton [43] used a
network with three layers, one of which had one-dimensional limited recep-
tive fields, to good advantage. Our studies of the representations found by
networks when given such hints will be reported elsewhere [34].

A different type of ancillary information can be provided. We notice
that the solution presented in section 6 has a high degree of translational
invariance. It is easy to concoct a term analogous to equation 18.3 that
penalizes solutions that are not translationally invariant. It is also possible
to impose a rigorous restriction, analogous to equation 18.2, but one must
be careful since the solution is not exactly invariant.

The human prejudice in favor of geometric solutions is not an accident; it
is the result of thousands of centuries of accumulated information about the
world. For any particular geometric task, there may be a very efficient ad
hoc, non-geometric representation, which has nothing in common with the
solution to any other task. The geometric solution is useful for many, many
tasks. In order to test this idea, we are checking the stability of the human
solution when a network with several output units is required to perform the
combined 3/4/5/6/... clumps task [34].

19. NERFSs, regularization, and curve fitting

Once again, let us consider a collection of data and assume we have a reason
to believe that it adheres to some simple rule. For instance, the data might
be obtained by measuring some very simple physical system. This does not
give us any reason to believe that the data can be represented efficiently by
a network (i.e. by a network with H < 2" hidden units). What’s more, in
cases where a representation exists, the solution may well not be unique, and
(as discussed back in section 8) the learning process may be NP-complete,
in which case there is no general automatic learning procedure that will find
the solution appreciably faster than an exhaustive search of weight space.

It is quite important to reconcile these sobering points with the obser-
vation that automatic learning procedures in general, and layered networks
in particular, are capable of doing real-world tasks, sometimes astonishingly
well (see examples and references listed in section 2). It is also imperative
that we understand what the limitations are. Fortunately, there is a powerful
analogy that sheds considerable light on this situation, namely the analogy
to curve fitting.

Consider the task of fitting a smooth curve through the four data points
shown in figure 19a. One way to do this would be to minimize the error
function

i— flz)l?
Ezzly fg( )| (19.1)

gy

where (z;,y;) are the experimental data points, o; is the uncertainty in y;,
and f() is the theoretical function (actually a family of functions, depend-
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Figure 13: Curve fitting.

ing on some adjustable parameters) to be fitted so we can extrapolate and
interpolate over some interval D. For concreteness, let us consider the case
where f() is restricted to be a parabola. This is the most elementary form
of curve fitting.

The resulting fit function f() can be considered a generalization of the
data points (z;,y:), in the sense of extending the domain. The data can be
considered a function (or relation) on a very small domain—just the isolated
points {z;}. The function f() is defined on the whole interval D. That is a
fantastic degree of generalization, a huge extension of the domain.

Curve fitting is also generalization in the sense of averaging noisy data.
The data could be quite unsmooth, yet a low-degree polynomial that fits the
data cannot possibly have very much curvature on the interval D.

Curve fitting can, however, be very tricky. In figure 19, the data has
uncertainties in z; as well as y;. Only small horizontal shifts, much less than
the length of an error bar, would be needed to make the four points form
two pairs, each pair having a single abscissa. In that case, there would be an
infinite number of parabolas that could be fit through the points, all having
the same E value or “chi-square” or “goodness of fit”. Also, when the data is
nearly paired, small changes in the data can lead to arbitrarily large changes
in the parameters of the “best” parabola, as illustrated by going from figure
19a to figure 19b. This is a double-purpose example of what Hadamard [12]
classified as ill-posed or ill-conditioned problems; that is, the solution is not
uniquely determined by the data, or the solution depends discontinuously on
the data.

Tikhonov [38] showed how to deal with such problems; in this case, we
just need to remember that what we originally wanted was a smooth curve
through the data, i.e. a function with low curvature. This is expressed in the
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following formula by the second term, which explicitly and precisely penalizes
functions that have a large curvature.

o F(eA2 2
E= E |y :,;(m’)l +)\_/;,|%|2 (19.2)

Of course, this is just an example of a possible Tikhonov regularization
term. One chooses a penalty term that is appropriate to the actual task. The
idea is that the penalty term expresses an estimate of the a priori implausi-
bility of each possible solution f(). There is a vast literature on maximum-
likelihood estimation—see. Press et al. [31]. and references therein.

Note that we have invoked two subtly different ways of limiting the curva-
ture. One is what we call structural stabilization, in which we explicitly limit
the degree of the polynomial so that it cannot have much curvature. The sec-
ond case we call formal stabilization, such as equation 19.2, in which it is not
really necessary to require that f() have a small degree. The Tikhonov regu-
larization term will automatically select a function of low curvature, whether
or not it can be expressed as a low-order polynomial.

We emphasize that neither stabilization by structural restrictions nor
formal, Tikhonov-style regularization is the exclusive, universal solution.
The latter is more elegant, and it provides a mathematical language for
discussing things that would otherwise be “teleological and anthropomor-
phic”, as George Furnas put it [44]. On the other hand, there are important
practical reasons why structural restrictions are often more appropriate; for
instance, they can greatly reduce the number of free parameters, making the
search more efficient and making the answer more readily describable and
understandable.

Practically all of these ideas can be applied equally well to layered net-
works. Just as a polynomial with high enough degree can closely approximate
most reasonable functions, a network with enough hidden units can represent
any Boolean function. Low-degree polynomials can only represent relatively
smooth functions, and small networks can only represent a certain class of
relatively simple Boolean functions. We call these particular functions net-
work efficiently representable functions, or NERFs.

If the training data is noisy, and only defined on a sparse set of points,
fitting a NERF to it will average out the noise and provide us an extension
that covers the entire input space. If the data is inadequate to specify a
unique NERF, we can add to the optimization equation a stabilization term
such as in equation 18.3, which is quite analogous to the second term in
equation 19.2. It expresses the designer’s preference among solutions that
would otherwise have equivalent E-functions.

The question immediately arises: what is so special about NERFs? For
that matter, what is so special about polynomials?

Polynomials are special for several reasons. Perhaps the main reason is
that polynomials occur in nature. To a good approximation, the path of a
thrown stone draws a parabola in the sky. A second reason is that poly-
nomials are reasonably easy to evaluate by elementary methods. Third, a
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polynomial has a small number of adjustable parameters, so even if the fit
is purely phenomenological and fortuitous, it is a handy way of describing
the data. Finally, people just have a lot of experience dealing with polyno-
mials and can readily visualize what they look like and how (as the degree is
increased) they come to resemble other functions.

NERFs have some analogous virtues. It is hard to say just how common
NERFs are in nature, but it is not easy to concoct a meaningful, natural
function that is not a NERF. This is in contrast to single-layer perceptrons,
which Minsky and Papert [27] showed could not solve the parity problem,
T/C problem, or any of various connectedness problems. For the N-layer
networks, which are much more powerful, it would be nice to have an anal-
ogous pons asinorum which the network cannot solve, as well as a simple
analytic concept (analogous to linear separability) to help us understand the
limitations.

It might be said the NERFs exist in nature in another, quite different
sense: recall that the reason that this family of functions came originally to
be considered is that they seem to be a modest model of the computational
operations that are implemented by the neural circuits in the brain.

As for the second virtue, there is no doubt that NERFs are especially
easy to evaluate. Analog integrated circuits have been built which perform
the required products and sums using far less time and space than would be
required for other, seemingly similar, functions [17,18].

As for the third and fourth virtues, NERFs are not widely used for phe-
nomenological data reduction, precisely because most people do not have a
keen intuitive understanding of what they look like. To a certain extent, this
defines the present and future task of everyone in this field: our job is to
understand NERFs, until they become as familiar as polynomials.

Of course, neither polynomials nor NERFs are a panacea. Suppose that
rather than the points in figure 19, the data consisted of a thousand points
with very small error bars, closely fitting ten cycles of a sine wave. It would
be insane to fit that data with a high-degree polynomial; it would be much
more sensible to use a low order Fourier series. The set of low-order Fourier
series and the set of low-degree polynomials are both subsets of the set of all
smooth functions. Any given smooth function might belong to one, or the
other, or neither of these subsets.

Similarly, the set of low-order NERFs is an important but still limited
subset of the set of all “reasonable” Boolean functions. Surely for some appli-
cations we must turn to other families of functions to smooth and extrapolate
our data. Various extensions to the basic network models, such as sigma-pi
networks and higher-order terms (numerous references in [32]; also [7]) are
analogous to the way in which rational functions are an extension of the
family of polynomials.
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20. Summary

A generalization is a function that extends the domain of the training data.
This is very useful for averaging noisy data. Practically all of the problems
(and the power) of this sort of generalization can be understood by comparing
it with the well-studied discipline of curve fitting.

Given enough training data, the generalization will be unique. More
commonly, though, there are an enormous number of perfectly valid gener-
alizations, i.e. functions that are perfectly consistent with the training data.
The amount of data needed to determine the result allows us to define a
measure of efficiency with which the network extracts information from its
training data. Giving the network too many resources (e.g. too many hidden
units) increases the initial entropy and hinders rule extraction.

Rule extraction involves comparing the generalization found by the net-
work with some prechosen rule. The distinction between the memorization
set and the extraction set must be scrupulously respected. The language of
regularization theory is important because it allows us to speak quantita-
tively of “good” generalizations and “bad” generalizations.

A layered network is capable of extracting the two-or-more clumps pred-
icate from the training data. Indeed, it extracts it with rather high efficiency.
The internal representation that it uses does not have any discernible degree
of symmetry, sparseness, or locality; the symmetric, low-order, local solution
that humans prefer is of course a fixed point of the training process, but is
not stable against perturbations.

A general, tabula rasa network is a fine subject for abstract, formal stud-
ies, but one should not try to use it to solve practical problems. Automatic
learning will never replace programming—it will supplement it. One should
pre-program the network with all available information about the structure
of the problem, especially information about the symmetry and topology of
the data.
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Appendix A. Conditions of the experiments

The data in table 3 was taken using the LMD objective function [40]. The
predicate was 2 versus 3 clumps. The memorization set was exhaustive,
using complete smoothing. The logical levels were 7' =1 and F' = —1, and
the convergence criterion was 100 percent categorically correct (i.e. closer to
the right target than the wrong target). The initial distribution of weights
was uniform on the interval [—.2,.2]. Each data point is the median of an
ensemble of fifteen trials. All hidden units in all the trials reported in this
paper were fully connected.

The data in figure 9 was taken using the LMS objective function. The
predicate was 1 versus 2 clumps. The memorization set included 40 items
(20 of each class), and there was extreme incomplete smoothing—one by one.
The logic levels were T' = 1 and F' = 0, and the convergence criterion was
RMS error < .005. The initial distribution of weights was Gaussian, with
unit variance. Each data point is the median of an ensemble of ten trials.

For figures 12 and 12, the memorization data was the same as in the
previous paragraph, except that the predicate was 2 versus 3 clumps, and
the size of the memorization set was varied as indicated in the figure (always
half in each class). The extraction set consisted of all the remaining patterns,
so the rule extraction gain ratio (1 — €)/e is a strong function of N, and the
extraction set was not half in each class. Note: the number of patterns with
C' clumps is j(N;gl) The criterion for correctness during the testing phase
was being with .2 of the target.

In figure 17, the predicate was 2 versus 3 clumps. The memorization
set included 50N items and the extraction set consisted of another 50N
patterns (half in each class). The data in the upper curve was taken using the
LMS objective function, using the generalized delta method with incomplete
smoothing (one by one). The criterion for correctness during the testing
phase was being with .2 of the target. The high isolated point represents
the data from table 4, which was taken under the same conditions, with
the addition of stochastic weight decay, according to the following scheme:
For each weight, with probability P, multiply by (1 — a¥), where K is the
number of completed passes through the data, and in this case P = 1/256
and a = 0.1.

The lower curve in figure 17 was generated as follows: All elements of the
M set were used as “prototypes”, i.e. the centers of clusters. Each element
of the X set was compared with each of the prototypes, and a histogram
of distance was made. All prototypes in the minimal bin (closest distance)
voted on what class the X element should be in.
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