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Abstract. The fractal nature of quantum paths contributing to Feyn-
man path integral formulation of quantum mechanics is investigated.
A computer simulation of both one- and two-dimensional quantum
harmonic oscillators yields results in agreement with rigorous results
on the Hausdorff-Besicovitch dimension for Brownian motion.

1. Introduction

It is well known that classical mechanics can be reformulated in terms of
a minimum principle. The Euler-Lagrange equations of motion follow from
demanding that the action

Sle(t)] = [ * La, 2)at

be stationary with respect to variations in the path z(¢) taken between
z(t;) = z; and z(ty) = z;. An alternative formulation of quantum me-
chanics, due to Feynman (1], is in terms of a kernel, F(z,,ty; x;,t;), defined

by
Wapts) = [deif(egtsizt) ¥ (it

The kernel is expressed as a “path integral”: the path integral sums over all
possible trajectories z(t) from z(¢;) = z; to z(f;) = z; with an amplitude
which depends on the classical action for that path. Formally, this is written
as

z(ty)=zy

Flentpnent) = (const)/ Dz(t) exp[%S[x(i)]]

z(ti)==;
where the symbol Dz(t) is Feynman’s famous “sum over all paths”, and the
overall constant does not concern us here. The sum over all paths may be
defined more precisely by introducing a time lattice and dividing up the time
interval, ¢; —;, into equal time slices, £ apart, and integrating over all z,, at
each time slice ¢,,.

© 1987 Complex Systems Publications, Inc.



924 S. Amir-Azizi, A. J. G. Hey, and T. R. Morris

f’Dm(t} s TR f_z dz,,

where N = (t; —t;)/e. The limit as N — oo defines the path integral. More
details on path integrals and the relationship to the Trotter product formula
are to be found in the book by Schulman [2].

In this paper, we are more concerned with the question of which paths
are most important in this path integral. The classical path corresponds
to a minimum of the action, and since 85 is zero for small variations dz(t)
about the classical trajectory z.(t), these paths interfere constructively and
dominate the path integral as i — 0. However, as observed by Feynman
and Hibbs (see figure 1 taken from [1]), quantum mechanical paths are very
irregular. Furthermore, as indicated in the figure, when observed at a finer
resolution, they appear just as irregular as on the coarser resolution. In
fact, the paths are everywhere continuous but nowhere differentiable. This
is the characteristic behavior of a fractal [3] and mathematicians, in particu-
lar Hausdorff and Besicovitch [4,5], have investigated the properties of such
curves extensively. The classical example of a fractal is the so-called Koch
curve, which is constructed by the sequence of steps shown in figure 2. At
each increase in resolution by a factor of 3, the length of the curve increases
by 4/3. It is clear that the measured length of this curve will depend on the
resolution of our measuring instruments: the normal definition of length is
therefore not very helpful for such objects. A modified definition of length for
such self-similar curves, the so-called fractal length L, has been introduced
by Mandelbrot [3] as

L = {(Az)P?

where £ is the usual length measured when resolution is Az and D, the fractal
dimension, is a number chosen so that L will be independent of Az in the
limit Az — 0. (We will give a mathematically more precise definition of
fractal dimension later in the paper.) Notice that for differentiable curves
whose length, £, is independent of Az, D reduces to one, the usual topological
dimension of a line. For the Koch curve, however, for two successive steps
€y = 4/3¢; and Az, = 3(Az;). Thus, demanding that the fractal length L
be independent of Az yields the result D = fnd/In3 ~ 1.2618.

Having observed that paths contributing to the path integral are con-
tinuous but non-differentiable, one is naturally led to ask whether one can
determine a fractal dimension for these paths. It is this question which we
set out to answer in this paper, and along the way, we clarify the connec-
tion between quantum mechanics and Brownian motion, and between the
fractal dimension of Mandelbrot and the Hausdorff-Besicovitch dimension of
mathematicians.

The paper is constructed as follows. In the next section, we discuss
Monte-Carlo simulations of quantum mechanics and explicitly analyze the
problem of one- and two-dimensional harmonic oscillators using a euclidean
version of the path integral. Our data allows us to determine the relevant
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Figure 1: Typical quantum path.
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Figure 2: Construction of the Koch curve.
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fractal dimension for the quantum paths in these cases, and we contrast this
with the prediction of Abbot and Wise [6]. Section 3 contains a heuris-
tic discussion of the mathematics of fractals and a review of Hausdorff and
Besicovitch’s analysis and definition of fractal dimension. The work of Levy
and Taylor [7-9] on Brownian paths is discussed along with the connection
between these rigorous mathematical statements and Mandelbrot’s heuristic
definition of D. The relevance of these analyses to our quantum example will
then be clear. Our conclusions are briefly summarized in section 4.

2. Monte-Carlo simulations of quantum harmonic oscillator

In this section, we present the results of Monte-Carlo simulations of Feyn-
man’s path integral formulation of the quantum harmonic oscillator problem.
In the imaginary time formalism, the Feynman path integral is mathemat-
ically equivalent to a partition function of a statistical mechanical system
with only nearest-neighbor interactions. As shown by Creutz and Freedman
[10], this euclidean version of the harmonic oscillator can provide information
on the ground and first excited states of this problem. Our interest in such
simulations is rather different: we wish to examine the fractal nature of the
trajectories that dominate the path integral.

The formalism is by now fairly standard [10]. In euclidean time, the
kernel becomes

F ~ /D{: e~ SkEl/A

with the euclidean action given by
¥ o ol g
= [ driz(57 + V(@)

where 7 = it (¢ is real time) and [ Dz denotes integration over all functions
2(7) obeying the boundary conditions:

1‘(0) =
&) = &y

To define the “sum over all paths” precisely, we introduce a time lattice
as discussed in the introduction. The action for a discrete time lattice is just

N
§=3 aly mo( BTy 4 V(z;)
= 2 a
where a = ¢ is the euclidean lattice spacing.

To perform the sum over paths, we use the standard Monte-Carlo method
due to Metropolis et. al. [11]. To make connection with continuum physics,
the lattice size a must be sufficiently small and Na sufficiently large to isolate
the ground-state properties of the theory. It is straightforward to reproduce
the results of reference [10] for the one-dimensional harmonic oscillator with
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1
Viz) = 3 nxl.

To investigate the fractal character of the dominant paths contributing
to the path integral, we need to examine the variation in length of these
paths as we vary the “resolution” of each simulation. Thus, for fixed t = Na,
we varied N and a and calculated the average path lengths as a function of
a = A7. Then, according to Mandelbrot’s formula

L = #{Az)??

a plot of ¢n(¢) versus n(A7) has a slope of (1 — D), enabling Mandelbrot’s
fractal dimension D to be determined.

The numerical simulations were carried out on a number of ICL com-
puters: the PERQ and the 2970 at Southampton and the Distributed Array
Processor (DAP) at QMC London. A thermalization time of 50 to 60 Monte-
Carlo sweeps was allowed in most simulations. Values of “a” ranged from
0.02 to 0.1. For each value of a, the optimum value of the Monte-Carlo
change, Az,y, was found by finding the value which resulted in the fastest
thermalization and the smallest statistical error. We found that Az, equal
to (a)'/? was a good approximation in general. For each data point, we gen-
erated about 8000 sweeps; however, to minimize the effects of correlations in
the Monte-Carlo data, measurements were carried out only on every tenth
sweep. To estimate the correlation in the remaining data, the method of
Daniell, Hey, and Mandula [12] was used.

Our results for the one- and two-dimensional harmonic oscillator are
shown in figures 3 and 4 respectively. In both cases, we see that the so-
called fractal dimension D is approximately 1.5. This is in contrast to the
fractal dimension D = 2 suggested by Abbot and Wise [6] in the context of
quantum trajectories.

How can our results be understood? For Brownian motion, which as we
will see, is closely related to this quantum mechanical problem, it can be
rigorously shown [7-9] that the fractal dimension of a Brownian graph is 1.5
for one-dimensional Brownian motion but 2 for two- or three-dimensional
motion. Qur results therefore seem surprising, since we do not expect the
presence of a smooth potential V(z) in the quantum problem to modify
these conclusions from Brownian motion. We were therefore led to examine
in more detail the connection between Mandelbrot’s heuristic definition of
D and the rigorous mathematical results available on Brownian motion and
their relevance to the quantum mechanical problem.

3. The Hausdorff-Besicovitch dimension

The procedure to be described was first set down by Hausdorff and Besi-
covitch [4,5] and is applicable to all kinds of geometrical objects. Since we
are primarily interested in Feynman paths, we will restrict our discussion
to objects of topological dimension one: generalization to higher topological
dimensions is straightforward.
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Figure 3: Quantum path in one space dimension.
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Figure 4: Quantum path in two space dimensions.
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To determine the Hausdorff-Besicovitch (HB) dimension, we first cover
the curve completely with a finite set of spheres of various radii “p;”. These
spheres may overlap. For each of these spheres, we calculate the quantity

h(p:) = (p3)"*

where d is a real number whose value is arbitrary for the moment. We then
sum the results:

o{pi} = Z h(p:)

Now consider all such coverings in which no spheres are used with radii
greater than some radius “p”. Since o{p;} is greater than zero for all such
coverings, there must be a greatest lower bound (infinum) S, for o{p;}.

Sp = Inf(p&p) a{pi}

Finally, let p — 0; since this simply reduces the set of possible coverings
allowed (from which we are finding the “smallest” o{p;}), S, can only increase
or stay constant. It follows that S5, tends to some limit Sy which is either
infinite or a finite non-negative number.

The value of Sy depends on the value d used in the construction of k(p;).
The essential step of HB was the proof that there exists a unique number D
such that:

For any d > D So= lim S,=0
(p—0)

For any d < D So= lim S, =0
(p—0)

This D is called the Hausdorfl-Besicovitch dimension.

For simple objects, D will be equal to the topological dimension (e.g. for
a plane surface I} = 2, h(p) = p? and the spheres indeed measure area),
but this need not be the case for geometrical objects with detail on every
small scale and indeed D may turn out to be non-integral. Such objects
have been called fractals by Mandelbrot [3]. Note that we have said nothing
about the limit of 5, at d = D. This may be zero, finite and positive, or
infinite. This situation is illustrated in figure 5. In general, for a fractal,
using h(p) = pP will lead to Sy = 0 or Sy = co; some more subtle function
h(p) is needed to obtain a non-trivial value. For example, the path left by
Brownian motion in two or more dimensions has HB dimension D) = 2, but
the use of 2(p) = p? leads to Sp = 0. In three or more spatial dimensions,
however, use of h(p) = p?log log(1/p) leads to a finite positive answer for
So [6]. The more subtle function does not change the power law behavior of
h(p). For example, in this case we have

h(p)/p* — 0 for A <2 as
—ooforA>2 [ p—0.
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Curve and Infinum covering p—0
simple covering pi < p

Figure 5: Curve and simple coverings.

In a sense, the form of h(p) is indicating that the HB dimension is infinites-
imally less than two [3] since in fact:

h(p)/p* o for A >2 asp—0.

It should therefore be clear that k(p) need only be known up to a power
in p in order to determine the HB dimension. The function A(p) that yields
a finite positive result for Sp at d = D is known as the intrinsic (see figure
6). The limit So is known as the measure and we see here that it depends on
the function A(p).

Some simple properties of the HB dimension are intuitively obvious (and
easily proved):

1. D > (topological dimension of the space), e.g. for our quantum paths
D=1,

2. D < (topological dimension of the space in which the curve is embed-
ded).

3. The HB dimension D, of the projection of a curve down on to a sub-
space satisfies D, < D (where D is the HB dimension of the original

curve).

We now discuss the connection of the HB dimension with Mandelbrot’s
heuristic definition of a fractal dimension. Mandelbrot defines D by the
formula

L = {(a)P?
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Figure 6: Graph of S5y = lim,_.¢ 5, as a function of d.

where L is a quantity independent of the “resolution” a, and £ is the length
of the curve at the resolution “a”. This formula strictly only holds for sta-
tistically self-similar curves—curves whose behavior looks exactly the same
(or statistically the same) on every scale.

Suppose that instead of covering the curve with spheres of varying radii
pi < p, we cover the curve with spheres of all the same radius “a”. We can
still consider all possible such coverings and form the infinum value of the
quantity, 3 h{a), where the sum is over all spheres in the covering. In this
case, therefore, we can define a length L, by

L, =Inf ¥ hia)
= Nh(a)
= Na*

where N is the minimum number of spheres of radius a needed to cover the
curve. Now consider the limit Ly of (Na?) as @ — 0. Since

Inf (pi=a) 3 h(pi) 2 Inf(pi<a) 3 h(p3)

we have

Ly> lim S, =5,

(a—0)
Moreover, it is clear that there must be some value D' such that

forall d> D' ,Lg=0 while
forall d< D', Ly=cc.
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The inequality above then implies that D' > D.

We may reformulate this definition of length and fractal dimension D
in terms of “resolutions”. If “a” is the resolution, then, using this infinum
covering, we would call the length of the curve £ = Na. We may then rewrite
our expression for L, in terms of £ and a:

o Bl

If, further, we only determine this length £ up to some power of “a”, then
there will be some value of “d” for which L, will not depend on “a” as a — 0.
Thisisd = D' = D.

Hence we arrive at
L =¢(a)P~' (L independent of a)

Although this formula was originally introduced by Mandelbrot for self-
similar curves [3], it should be clear from our derivation that, provided we
can determine the appropriate “a” for a given approximation to a fractal,
this formula may be applied to fracta.ls that are not self-similar.

Note that, except in very simple cases, no importance can be attached to
the value of L: the formula being derived from approximations in the covering
and “¢” being determined only up to a power law in “a”. The determination
of the HB dimension is reduced to determining the beha.vmr of the length
“” as a power law in the resolution according to £ o< a'~P.

4. The fractal dimension of paths associated with the path inte-
gral

As stated before, the most important paths contributing to the path integral
are paths lying closely around the classical path which are highly irregular
and non-differentiable on all scales. The natural approximation to these
paths is that obtained by chopping up the path integral into time slices
At = €. Consider the action

j(—AVg ) dt,

for K space dimensions z = z1,...,2k). Rotating into euclidean space, the
path integral is

i o =1 z -z zn)e
/‘D(m(t))E%S[I(i)]HnN:llf dK.’L'n E_lenml {ﬁ(—n+1 —n)2+v(—n) 1

The jump, Az, in the z position for a time increment At = ¢ is given by

(A2)* = ((Zms1 = Tm))
IV 22, dXgen AR @z V@)l (p g )2

n=1

i >, d¥ e % 2AR(za g1 2, P4V (z,)e}

n=1

Clearly, as ¢ — 0, the potentlal term becomes unimportant and the integrals
factorize. Hence, we obtain (for sufficiently small ¢) the well-known result
that
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Figure 7: The graph.

Ag ~ g?

This formula is sufficient to determine the fractal dimension of both the
graph, a plot of z(t) against time (see figure 7), and the path, the trace left
in K-space as time evolves (see figure 8). Notice that the length of a link in
both the graph and the path is £'/2 (since &€ < €'/2 for € — 0). This means
that the total length of both graph and path for time slice At = ¢ may be
defined as £ = N &'/ = (T [e) €'/? = T ¢~/ (where T is the total time).

In order to use the final formula of the previous section, we must now
determine the resolution “a”. It is important to realize that the resolution
is not necessarily @ = At = &: it should be clear from the analysis in the
previous section that the resolution “a” has nothing to do with time slices, a
priori, but is equal to the radius of spheres that define the size of the detail
in the diagram. To be more precise, we can give the following definition: let
the resolution be a o £” (where p is some power to be determined). This
is the radius of a sphere that on the average, as € — 0, covers two or more
lines in the diagram, but not infinitely many. This is illustrated for the path
(in K > 2 dimensions) in figure 9 with step size Az ~ '/2. Any sphere with
radius e? with p < 1/2 would become infinitely large (as ¢ — 0) compared
with the /2 step size (figure 9a). Conversely, any sphere with p > 1/2
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Figure 8: The path.

will become infinitely small compared with the steps '/ in figure 9b. It is
therefore clear that the appropriate resolution is for the radius of the sphere
to be a = £'/2. Hence,

1/2 1

Loce e g™

and from the final formula of the last section, D = 2.

Note that since the length of the links in the graph is also €'/%, we may
ignore the time displacements of ¢ and obtain a diagram similar to that
shown in figure 9 (for K > 2 dimensions). Hence, for the graph we also have
D=2,

The case of one spatial dimension (K = 1) must, however, be treated
separately. In this case, the diagram in figure 9 is no longer appropriate for
both the graph and the path. For the path, two links can overlap, whereas in
the graph, the two links are spread £ apart. Using properties (1) and (2) of
the HB dimension (given in the previous section), we have immediately the
result that D = 1 for the path. For the graph, the separation of € between
overlapping links implies that we must take a oc €. Hence,

Lx e =q"1?

and in this case, D = 1.5. It is important to note that in this case, the
fractal is not self-similar: as we increase our resolution (i.e. decrease ¢ = ¢),
the jumps in the curve vary ever more widely since (Az/a) — oo as a — 0.
Thus, this fractal does not have the same behavior on all scales. Nevertheless,
from our derivation of Mandelbrot’s formula, we see that it is still possible
to determine a fractal dimension.
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(a) (b)

Figure 9: Different covering scales for Brownian paths.
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1 1 1.5
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Table 1: HB dimensions of paths and graphs for different K-space
dimensions.

These results are summarized in table 1. Notice that Dgapn = Dpam,
consistent with property (3) of the previous section. (The path is obtained
from the graph by projecting down the time axis.) It is worth stressing that
the formula £ o< e~1/2 is true for all entries in the table; the differing HB
dimensions arise from different choices of resolution “a”.

Finally, in this section we should comment on the work of Taylor [8,9].
Taylor studied extensively the fractal nature of Brownian paths. These paths
are a set of functions {z(¢)} on which a certain probability measure is defined
[8]. One of the definitions required is that the probability of z(t;) € [a1, 4]

and z(t;) € [az,B2) and ... and z(tm) € [@m, 8] (in K = 1 dimensions) is

B Ba
p= ORI — )V [ dny [ das..

ay a2

Bin = e Ermme )P
d(l:m e {221 +22 2“--',--1)}
Om.

Since the potential played no role in our analysis of the fractal dimension
of the quantum mechanical path integral, it is clear from the similarity of
that analysis and this definition that Taylor’s Brownian motion will have the
same fractal nature as our quantum mechanical paths. Indeed, Taylor proved
that Brownian paths in K-space (K > 2) have fractal dimension D = 2 [§]
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and that the graph of a one-dimensional Brownian path has D = 1.5 [9].
In addition, he obtained information regarding the measure and intrinsic for
these cases. For K = 2, the intrinsic for the path is L(p) = p?logloglog(1/p),
while for K > 3, the intrinsic for the path is L(p) = p®loglog(1/p). (The
more complicated expression for K = 2 is due to the fact that the path is
able to cross over itself infinitely often.) He also showed that for K = 1, the
graph has zero measure with k(p) = p°/2.

In view of the correspondence between Taylor’s rigorous definitions of
Brownian motion and the concept of the path integral as introduced by
Feynman, it is comforting to note that our heuristic analysis yields answers
in agreement with his work.

5. Conclusions

We have investigated the fractal nature of the dominant paths contribut-
ing to Feynman’s path integral for the quantum oscillator in both one and
two dimensions. A naive application of Mandelbrot’s formula for fractal di-
mension yields D = 1.5 in both cases, in contrast to the result of Abbott
and Wise, who arrived at the result D = 2 for quantum motion, albeit in
a different context. More worrying was the apparent contradiction with the
results of Taylor, who predicted D = 1.5 and D = 2 for graphs of one-
and two-dimensional Brownian motion respectively. Since the quantum me-
chanical case differs only by an irrelevant potential function, we would expect
these results to be true for quantum paths. However, a clearer examination of
the connection of Mandelbrot’s definition of fractal dimension shows that the
appropriate resolution must be chosen with care. For the one-dimensional os-
cillator, the resolution is indeed the time separation, a, and we have D = 1.5.
For the two-dimensional oscillator, the appropriate resolution is a'/? corre-
sponding to the average step size resulting in D = 2, in agreement with that
expected from the work of Taylor.
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