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Abstract. T he fractal natu re of quantum paths contributing to Feyn­
man path integral formul ation of Quantum mechanics is investigated.
A comp ute r simula t ion of both one- and two-dimensional qu antum
harmonic oscilla.tors yields resul ts in agreement wit h rigorou s results
on the Hausdorff-Besicovitch dimension for Brownian motion .

1. Introduction

It is well known that classical mechanics can be reformul ated in terms of
a min imum pr inciple. Th e Euler-Lagrange equ ations of mot ion follow from
demanding tha t th e actio n

tS[x( t») = L(x , x)dt
"

be stat iona ry with resp ect to va riat ions in the path x( t) taken between
x(t j) = Xj and x( t /) = xI' An alternative formulat ion of quantum me­
chanics, due to Feynman [1], is in terms of a kernel, F(x"t/; Xj ,ti), defined
by

'Ii (x"t, ) = JdXiF(X"t' iXi, t;) 'Ii (Xi,t i)

T he kerne l is expresse d as a "path integra l": the path integral sums over a ll
possible t rajectories x(t) from X(ti) = Xi to x(t,) = X, wit h an ampli tu de
which depend s on the classica.l action for that path. Formally, th is is wri t ten
as

r£(I,) = Xj i
F( x"t'i xi ,ti) = (canst) J r ( .; )=r ; V x(t) exp[/iS[x(t)]]

where th e symbo l 'Dx(t ) is Feynman 's famous "sum over all pa th s", and the
overall constant does not concern us here. The sum over all paths may be
defined more precisely by int rod ucing a time lattice and dividing up the time
interval , t f - t i, into equal t ime slices, e apa rt, and integra tin g over all X n at
each t ime slice In'
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where N = (t f - t;)/ c. The limit as N --> 00 defines th e pat h integral. More
details on pa th integr als and the relat ions hip to the Trotter pro duct formula
are to be found in the book by Schulman [2) .

In thi s pap er , we are more concern ed with the question of which path s
ar e most impor tant in this path int egral. The class ical path corresponds
to a minimum of the act ion, and since 6S is zero for small va riations 8x(t)
about th e classical tr aj ect ory xc(t ), t hese paths interfere construct ively an d
dominate the path integral as 1i -jo O. However, as observed by Feynma n
and Hibbs (see figur e 1 taken from [1]), quantum mechanica l paths are very
irregu lar . Furtherm ore, as indicated in the figure, when obser ved at a finer
resolution, t hey ap pear ju st as irregular as on the coarser resolu tion . In
fact , t he pa th s a re everyw here contin uous but nowhere differenti ab le . T his
is the characteristic behavior of a fract al [3} and mathematicians, in par ticu­
lar Hausdorff and Besicovitch [4,5], have investi gated th e propert ies of such
cu rves extensively. The classical example of a frac tal is th e so-called Koch
curve, which is cons t ructed by th e seque nce of steps shown in figure 2. At
each increase in resolu tion by a facto r of 3, the length of th e curve increases
by 4/3. It is clear tha t the measured length of t his curve will depend on the
resolut ion of our measuring instruments: the normal definition of length is
therefore not very helpful for such objects. A modified definit ion of length for
such self-simila r curves, the so-called fractal lengt h L , has been introduced
by Mand elbrot [3J as

L = f(~x)D-l

where £ is the usual length measured when resolut ion is ~x and D , the fract al
dimension , is a number chosen so that L will be independent of ~x in the
lim it .6.x --+ O. (We will give a mathematically more precise defini t ion of
fra ct al dimension later in th e paper .) Not ice that for differen t iabl e curves
whose length , l, is independent of ~x, D reduces to one, the usual to po logical
dimension of a line. For the Koch cur ve, however, for two successive steps
f , = 4/3e, and ~x, = ~ (~x, ). Thus, demanding that the fractal lengt h L
be independ ent of ~x yields the result D = f n4/ fn3 '" 1.2618.

Having obse rved th a t paths cont ribut ing to the path integral are con­
tin uous but non-differentiable , one is naturally led to ask whether one can
determine a fractal dim ension for these paths . It is t his question which we
set out to answer in thi s paper, and along t he way, we clar ify the connec­
tion between qu antum mechan ics an d Brownian motio n, an d bet ween t he
fract al dim ension of Mandelbrot and th e Hau sdorff-Besicovitch dimension of
mathemat icians.

T he pape r is constructed as follows. In th e next section, we discu ss
Monte-Carlo simulat ions of quantum mechanics and exp licit ly ana lyze the
problem of one- and two-dimensional harmoni c oscillators using a euclidean
vers ion of the path integral. Ou r da ta allows us to determine the relevant
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F igure 1: Typical quant um pat h.

Figure 2: Cons truction of t he Koch cu rve.
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fractal dimension for the quantum paths in th ese cases. and we cont ras t this
with th e prediction of Abbot and Wise (6). Section 3 contains a heuris­
t ic discussion of the mathematics of fra ctals and a review of Hau sdorff and
Besicovitch 's analysis and defini tion of fractal dimension. The wor k of Levy
and Taylor [7- 9] on Brownian pa ths is discussed along with th e connection
between th ese rigorous mathematical state ments and Mandelbrot 's heuristic
definition of D. The relevance of these analyses to OUf quantum example will
th en be clear . O Uf conclusions are briefly summ arized in section 4.

2. Monte-Car lo s im ulat ions of qua ntum ha rm onic oscilla t or

In th is section, we present th e results of Monte-Carlo simu lations of Feyn­
man's path integral formul ation of the quant um harm onic oscillator problem.
In the imaginary time formali sm, the Feynman path integral is mathemat ­
icaUy equivalent to a partit ion function of a stat ist ical mechan ical system
with only nearest-neighbor interactions. As shown by Creutz and Freedman
[10] , this euclidean version of the harmonic oscillator can provide information
on the grou nd and first excited states of this prob lem. Our interest in such
simulat ions is ratber different: we wish to examine the fractal nature of the
t rajectories t hat domin ate the path integral.

The formalism is by now fairly standard [IOJ. In euclidean time, the
kernel becomes

F ~ JVx <-S«l/h

with the euclidean act ion given by

rT I dx
S = Jo dr[2"(dr)' + Vex)]

where T = it (t is real t ime) and fVx denotes integrat ion over all funct ions
x(T) obeying the boundary condit ions:

x(O) = X;

x( r ) X J

To define the "sum over all paths" precisely, we introduce a time latti ce
as discussed in the introdu ctio n. Th e action for a discrete t ime lat tice is just

N

S = L: a [~ mo(Xi- 'a- Xi)' + V (x;)J
)=1

where a = ie is the euclidea n lattice spacing.
To per form t he sum over paths, we use the standard Monte-Carlo method

due to Metropolis et . al. [I I]. To make connection with conti nuum physics,
the lat t ice size a must be suffi ciently small and Na sufficiently large to isolate
the grou nd-state properties of the theory. It is st raightforward to reproduce
the results of reference [10] for the one-dimensional harmoni c oscillator with
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1 ,
V(x ) = 2 JlX .

To investigate the fractal charact er of the dominant paths cont ribut ing
to th e path integral , we need to examine the varia tion in length of these
paths as we vary the "resolut ion" of each simulat ion. Thus, for fixed t = Na ,
we varied N an d a and calculated the average path length s as a funct ion of
a = Sr, Then, according to Mandelbrot's formu la

L = t(t>x)D-l

a plot of tn (t ) versus tn(t>T) has a slope of (1 - Dj , ena bling Mandelbrot 's
fract al dimension D to be determined.

T he numerical simulat ions were carried out on a number of IeL com­
puters: the P ERQ and the 2970 at Southampton and the Dist ributed Array
Processor (DAP) at QMC London. A thermalizat ion t ime of 50 to 60 Monte­
Carlo sweeps was allowed in most simulations. Values of "a " ran ged from
0.02 to 0.1. For each value of a, th e optimum value of t he Monte-Carlo
chan ge, .!:lxopt, was found by finding t he value which resul ted in the fas test
th ermalization and t he sma llest statist ical error. We found that tlxoPt equal
to (a)l/2 was a good approximation in general. For each data poi nt , we gen­
erated about 8000 sweeps; however , to minimi ze the effects of corre lations in
the Monte-Carlo data, measurements were carr ied out only on every tenth
sweep. To est imat e the correlat ion in the remaining data, the method of
Daniell, Hey, and Mandula [12J was used .

Our results for th e one- and two-dimensional harmonic oscillator are
shown in figures 3 and 4 respect ively. In both cases, we see t hat the so­
called fractal dimension D is approximately 1.5. This is in contrast to the
fract al dimension D = 2 suggested by Abbo t and Wise [61 in the context of
quantum tr ajectories.

How can our results be understood ? For Brownian motion, which as we
will see, is closely related to this quantu m mechanica l problem, it can be
rigoro usly shown {7-9] that the fractal dimension of a Brownian graph is 1.5
for one-dimensional Brownian motion bu t 2 for two- or th ree-d imensional
motion . Our results therefore seem surprising, since we do not expect the
presence of a smooth potential Vex) in t he quantum probl em to modify
these conclusions from Brownian motion . We were therefore led to exami ne
in more detail th e connect ion between Mandelbrot's heuri stic definition of
D and the rigorous math ematical results available on Brownian motion and
th eir relevance to the quantum mechanical problem.

3. The Hausdorff-Besicovitch d imension

T he procedure to be described was first set down by Hausdorff and Besi­
covitch [4,5] and is applicable to all kinds of geometrical ob jects. Since we
are prim aril y interested in Feynm an paths, we will restrict our discussion
to objects of topological dimension one: generaliza t ion to higher topological
dimensions is st raightforward.
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Figure 3: Quantum path in one space dimension.
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Figure 4: Quantum path in two space dimensions.
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To determine the Hausdorff-Besicovltch (HB) dimension, we first cover
t he cu rve completely with a finite set of sphe res of var ious radii "'Pi" . T hese
spheres may overlap. For each of these sphe res , we ca lculate the quant ity

h{Pi) = {pol"

whe re d is a real nu mber whose value is arbitrary for the moment. We then
sum the results:

alp;} = L h{Pi)

Now consider all such coverings in which no spheres arc used with radii
greater t han some radius "p". Since a{pil is. greater than zero for all such
coverings, there must be a greatest lower bound (infinum) Sp for o- {Pi}'

F inally, let p -+ 0; since t his simply reduces the set of possib le cove rings
allowed (from which we are find ing the "smallest " a{piJ ), Sp can only increase
or stay constant . It follows that Sp te nds to some limit So which is either
infinite or a finite non-negative number.

The value of So dep ends on the value d used in the construction of h{pJ
Th e essent ial step of HB was the proof that there exists a unique number D
such that:

For any d > D

For any d < D

So = lim S, = 0
(,_0)

So = lim S, = 00
(p--+o)

Thi s D is called th e Hau sdorff-Besicovitch dimen sion .
For simple ob jects, D will be equal to t he topological dimension (e.g. for

a plane surface D = 2, k(p) = p2 and the spheres indeed measure area) ,
but th is need not be the case for geometrical objects wit h detail on every
small scale and indeed D may turn out to be non-integra l. Such objects
have been called fractals by Mandelbrot [31. Note that we have said nothing
about the limit of Sp at d = D. This may be zero, finite and posit ive, or
infinite. Thi s sit uat ion is illustrated in figure 5. In general, for a fractal,
using h(p) = pD will lead to So = 0 or So = 00 ; some more subt le funct ion
k(p) is needed to ob tain a non-trivial value. For example, the path left by
Brownian motion in two or more dimen sions has HB dimension D = 2, but
the use of h(p) = p2 leads to So = O. In th ree or more spat ial dimensions,
however, use of h(p) = p' log log{l / p) leads to a finit e positi ve answer for
SO[6J . T he more subtle funct ion does not change the power law behavior of
h(p). For exampl e, in th is case we have

h(p)/ pA --> 0 for A < 2} as
---+ 00 for ,\ > 2 P ---+ O.
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Curve an d
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Figure 5: Curve and simple coverings.

In a sense , the form of h(p) is indicating th at the HB dimen sion is infinites­
imally less than two [3] since in fact:

h(p)/p ' --+ 00 for ), 2: 2 as p -+ o.

It should therefore be clear that h(p) need on ly be known up to a power
in p in order to determ ine the HB dimension . The funct ion h(p) that yields
a finite positive resul t for So at d = D is known as the int rinsic (see figure
6). T he limit So is known as the measure and we see here that it depends on
the funct ion h(p).

Some simple properties of the HB dimension are intui ti vely obvious (an d
eas ily proved):

1. D 2 (topological dimension of th e space), e.g. for our quantum paths
D2:1.

2. D .5 (topological dimension of th e space in which th e curve is embed­
ded).

3. Th e HB dimension Dp of the pro ject ion of a curve down on to a sub­
space sa t isfies Dp S D (where D is the HB dimen sion of the original
curve).

We now discuss the connect ion of the HB dimension with Mandelbrot's
heurist ic definition of a fract al dimension. Mandelbrot defines D by th e
formula

L = €(a)D- l
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Figure 6: Graph of So = limp.....oSp as a function of d.

where L is a quant ity ind ep endent of t he "reso lu t ion" G , and l is t he length
of the curve at the resolution "an. Thi s formula st rictly only holds for st a­
t istical ly self-sim ila r curves-curves whose behavior looks exact ly t he same
(or sta t ist ica lly the sa me) on every scale.

Su ppose tha t instead of covering the cur ve wit h spheres of va rying radii
Pi ~ p, we cove r t he curve wit h spheres of all th e same radi us "c". We can
st ill consider all possible such coverings and form the infinum value of the
qua nti ty, L h(a), where th e sum is over all spheres in the covering. In th is
case, t herefore, we ca n define a lengt h L(J. by

L. = Inf 2:h(a)
=N h(a)
= Nad

where N is the minimum number of spheres of radi us a needed to cover the
curve. Now consider the limit Lo of (N ad) as a -j. O. Since

we have

Lo 2 lim 5. = 50
(0.-0)

Moreover , it is clea r that there must be some value D' such that

for all
for a ll

d > D', Lo = 0 while
d < D', Lo = 00 .
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T he inequa lity above th en imp lies th at D' 2: D.
We may reformulate this definit ion of length and fract al dimension D

in te rms of "res olut ions" . If "a" is the resolutio n, then, using t his infinum
covering, we would call th e length of the curve f. = No. We may then rewrite
our expression for La in te rms of eand a :

L . = f (a)d-l

If, further, we only determine thi s length f. up to some power of "a", then
there will be some value of I'd" for which La will not depend on "a" as a ---+ O.
This is d = D' = D.

Hence we arr ive at

L = f (a)D- l (L independent of a)

Alt hough this formula was origina lly int rod uced by Ma nd elb rot for self­
simila r curves [3], it sho uld be clear from our derivat ion that , provided we
can determine the appropriate "a" for a given approximat ion to a fract al,
th is formu la may be app lied to fractals tha t ar e not self-sim ilar.

Note that, except in very simple cases, no import ance can be at tached to
th e va lue of L: t he formula being derived from approximations in the coveri ng
and "e" being determined only up to a power law in "a" . T he determinat ion
of the HB dimension is red uced to dete rmining th e behavior of the lengt h
"f." as a power law in the resolution according to f. ex: a I - D .

4. T he frac tal dimension of paths associa t ed with the path int e-
gra l

As stated before , the most import ant paths cont ribut ing to the path integra l
are pa th s lyin g closely around the classical path which are highly irregular
and non-different iab le on all scales. The natural ap proximat ion to these
paths is that obtained by chopping up the pat h integral into t ime slices
!:1t = E . Consider the action

J
m x2

S[;(J = (:2 - V (;( )) dt ,

for I< space dimensions ~ = Xl , ... , XK). Rotat ing into eucl idean sp ace, th e
pa th integral is

,,\,N-l 2J'D(x ( t) ) e ~ S[x( t )ln~,;/i:dKx
n

e=tLJn : 1 {~(.£n+ l -Ln) + V (~ ). }

T he ju m p, .6.x, in the x position for a t ime increment .6.t = e is given by

(L>x)' {(Ln+l-;(m)'}
rrN - I foo dK x e- i L{ :¥;(1::n+ l -lZ,1 )2 +V (~ )~}( ~ _ ~ ) '

n-l 00 n ~m+I ::.lo:.m

n~=Il J~oodKXne kL)¥;~+l ~)2 +V (~)~ }

Clearly, as e ---+ 0, the po tent ial ter m becomes unimportant and th e integrals
factorize. Hence, we ob tain (for sufficient ly small s ) the well-known result
that
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time
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Figure 7: The graph.

!J.. x ......, c l / 2

)

This formula is sufficient to determine the fractal dimension of both the
graph, a plot of ;r(t ) against time (see fignre 7), and the path , the trace left
in [{-space as time evolves (see figure 8) . Notice that the length of a link in
both the graph and t he path is , 1/2 (since e « , 1/2 for' ---> 0). This means
that the total length of both graph and pat h for time slice t:>t = e may be
defined as l = N e l / 2 = (Tie) e1/ 2 = T e- 1/ 2 (wbere T is the total t ime).

In order to use the final formula of the previous section, we must now
determine the resolution "an . It is important to realize that the resolution
is not necessarily a = ilt = s : it should be clear from the analysis in the
previous section that the resolu tion "a" has nothing to do with time slices , a.
priori, but is equal to the radius of spheres that define the size of the detail
in the diag ram. To be more precise, we can give the following definition: let
the resolution be a ex: £11 (where p is some power to be determined). This
is the radius of a sphere that on the average, as e --+ 0, covers two or more
lines in the diagram, but not infinitely many_ This is illustrated for the path
(in J( ~ 2 dimensions) in figure 9 with step size ~x rv e1/ 2 . Any sphere with
radius e with p < 112 would become infinitely large (as e ---> 0) compared
with the el / 2 step size (fi gure gal. Conversely, any sphere with p > 1/ 2



Quant um Fractals 935

l..-----.... x,
Figure 8: Th e path .

will become infinitely small compared with th e steps e. 1/ 2 in figure 9b. It is
therefore clear that the appropriate resolut ion is for the radius of the sphere
to be a = e. 1/ 2 • Hence,

lex: e.-1/ 2 ex: a - I

and from the final formula of the last section, D = 2.

Note that since the length of the links in the graph is also e.1/2, we may
ignore t he time displacements of e and obtain a diagram similar to that
shown in fi gure 9 (for J( ~ 2 dimensions). Hence, for the graph we also have
D =2.

Th e case of one spatial dimension (I< = 1) must , however, be treated
separa tely. In th is case, the diagram in figure 9 is no longer appropriate for
both the graph and the path. For the path , two links can overlap , whereas in
t he graph, the two links are spread e apar t. Using prop erti es (1) and (2) of
the HB dimension (given in the previous section) , we have immedia tely the
result t hat D = 1 for the path. For the graph , the separat ion of e between
overlapping links implies that we must take a ex: e. Hence,

lex: £ - 1/2 = a -1 / 2

and in this case, D = 1.5. It is important to note that in this ease, the
fractal is not self-similar : as we increase our resolutio n (i.e. decrease a =s ),
the jumps in the curve vary ever more widely since (f:j.x/a) .......... 00 as a -+ O.
Th us, thi s fractal does not have t he same behavior on all scales. Nevertheless,
from our derivation of Mandelbrot's formula, we see that it is st ill possible
to determine a fractal dimension.
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(a ) (b)

Figure 9: Different covering scales for Brownian paths.

1
2

Table 1: HD dim ensions of paths and graphs for different J(-space
dime nsions.

These results arc summarized in table 1. Notice that Dgraph 2: D PAlh l

consistent with property (3) of the previous sect ion. (T he path is obtained
from the gra ph by projecting down th e time axis.) It is worth st ressing that
the formula e ex &-1/ 2 is t rue for all entries in the table; th e differing HB
dimensions ar ise from different choices of resolution "a" .

Fi nally, in this sect ion we should comment on the work of Taylor [8,9].
Taylor studied extensively the fractal nature of Brownian paths. T hese pat hs
arc a set of funct ions b :.(t )} on which a certain probability measure is defined
[8]. One of the definit ions required is that the probability of x(ltl E [<>hPI]
an d x( I, ) E [<>"P,] an d .. . and x(lm) E [<>m,Pml (in f{ = 1 dimensions) is

'" m -1/' lP
, 1!J,I' = (2,,) ' [1 111, (I, - 1,_1)] dXI dx, ...

0' 1 0'2

13m ~ m ( "' '' -''' .. 1 )2

1 d X m e-12' 1 + L:2 2( 1" _' '' _1> J
a m

Since th e potential played no role in our analysis of th e fract al dimension
of th e quantum mechanical path int egral , it is clear from t he similarity of
that analysis and thi s definition that Taylor's Brownian motion will have the
same fract al nature as our quantum mechanical path s. Indeed, Tay lor proved
t hat Brownian paths in f{ -space ( f{ ~ 2) have fractal dim ension D = 2 [8]
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and that the graph of a one-dimen sional Brownian path has D = 1.5 [9).
In addition, he obtained information regarding the measure and intrinsic for
these cases. For K = 2, the intrinsic for the path is L(p) = p210g log log(l / p),
while for J( ~ 3, the intrinsic for the path is L(p) = p2 log log(l / p). (Th e
more complicated expression for J( = 2 is due to the fact that the path is
able to cross over itself infinitely often.) He also showed that for J( = 1, the
graph has zero measure with h(p) = p3/2.

In view of the correspondence between Taylor's rigorous definitions of
Brownian motion and the concept of the path integral as introduced by
Feynman, it is comforting to note that our heuristic analysis yields answers
in agreement with his work.

5. Concl usions

We have investigated the fractal nature of the dominant paths contribut­
ing to Feynman 's path integral for the quantum oscillator in both one and
two dimensions. A naive application of Mandelbrot's formula for fractal di­
mension yields D = 1.5 in both cases, in contrast to the result of Abbott
and Wise, who arrived at the result D = 2 for quantum motion , albeit in
a different context. More worrying was the apparent contradiction with the
results of Taylor, who predicted D = 1.5 and D = 2 for graphs of one­
and two-dimensional Brownian motion respect ively. Since the quantum me­
chanical case differs only byan irrelevant potential function, we would expect
these results to be true for quantum paths. However, a clearer examination of
the connection of Mandelbrot's definition of fractal dimension shows that the
appropriate resolution must be chosen with care. For the one-dimensional os­
cillator, the resolution is indeed the time separation, a , and we have D = 1.5.
For the two-dimensional oscillator, the appropriate resolution is a1/ 2 corre­
sponding to the average step size resulting in D = 2, in agreement with that
expected from the work of Taylor.
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