
Complex Syst em s 1 (1987) 967-993

Cellu lar Aut omata Machines'

Norman Margolus
Tommaso Toffoli

MIT Labora tory for Comp uter Science,
Massachusett s Institu te of Technology, Cambridge, MA , USA

Abstract . T he advantages of an archite ct ure opt imized for cellu­
lar automata (CA) simula tions are so great that , for large-scale CA
experiments , it becomes absurd to use any ot her kind of comput er .

1. Introduction

Th e focus of the research conducted by the Inform ati on Mecha nics Grou p at
the MIT Laborat ory for Computer Science has been the study of the physical
bases of computa t ion, and t he comput ational modeling of physics-like sys­
tems. Much of th is research has involved revers ible models of computat ion
and cellular au tomat a (CA).

In 1981, t he frustra ting inefficiency of convent ional computer architec­
tures for simulating an d displaying cellula.r automata becam e a serious ob­
stacle to our experimental studies of reversible cellular automata. Even using
conventional components, it was clear that several orde rs of magni tude in per­
formance could be gained by devising hardware which would take advantage
of th e predictabil ity and locality of the updating pro cess.

T he first prototype was a sequent ia l machine which scanned a two-dimensional
array of cells, produ cing new sta tes for the cells fas t enough and in the right
order so that it could keep up with the beam of an ordina ry raste r-scan
television monitor. After a few years of experimentat ion an d refinement , ar­
rangements were made for a version of our machine, nam ely CAM-6, to be
produced comme rcially, so tha t it would be available to the general resea rch
community [11,1,12J.

Th e existence of even such small-scale CAMs (cellular automata machines)
has already had a direct impact on th e subject of CA simulat ions of fluid
mechanics. In informal st udies of gas-like models, we found one that Yves
Pomeau had previously investiga ted- th e HPP gas [51.1 Accord ing to Pomeau,

"Th is research was supported by grants from the National Science Foundation (8214312­
1ST), t he Department or Energy (DE-AC02-83ER l3082), and International Business Ma­
chines (3260).

1 Pomeau's result was brought to our att ent ion by Gerard Vichniac, t hen working with
our group.

@ 1987 Complex Systems Publicat ions, Inc.

968 Norman Margolus and Tommaso Totfoli

seeing his CA running on our machine made him rea lize wha t had been con­
ceived pr imarily as a conceptual model cou ld indeed be turned, by using
suitable hardware, into a com put ationally accessible mod el, and st imulated
his interest in finding CA rules which wou ld provide better models of fluids
[41·

In fact (as we shall see below), the advantages of an architecture opt im ized
for CA simulations a re so great tha t , for sufficiently lar ge experiments, it
becomes absurd to use any other kind of computer.

2. Truly massive co m p ut at ion

Cellular automata const it ute a genera l paradigm for massively parallel com­
putation. In CA, size and speed are decoupled-the speed of an individual
cell is not const rained by the total size of the CAM. Maximum size of a CAM
is limited not by any essential feature of the architecture, bu t by economic
con siderat ions alone. Cost goes up essentially linearly wit h the size of the
machine, which is indefinitely extendable.

These properties of CAMs arise pri ncipa lly from two factors. F irst , in
conventional computers, t he cycle t ime of the machin e is const ra ined by the
finite propaga t ion speed of light - th e universal speed limit . T he lengt h of
signal paths in the computer deter min es the minimum cycle t ime, and so
there is a conflict between speed and size. In CA, cells only communicate
with spat ially adjacent neighbors, and so the length of signal path s is inher­
ently ind ependent of the number of cells in the machi ne. Size and speed are
decoupled.

Secon d, thi s locali ty permits a mo dula r ar chitect ure: th ere are no ad­
dressing or speed difficu lt ies associated with simply ad ding on more cells. As
you ad d cells, you a lso add processors. Wh et her your module of space con­
tain s a separate processor for each cell or time-shares a few pro cessors over
many cells is j ust a tec hnological det ail. Wh at is essent ial is that adding more
cells does not increase the time needed to update the ent ire space-since you
a lways ad d associated processors at a commensura te ra te . For the foresee­
able future, th ere are no practical technological limits on the maximum size
of a simulat ion ach ievable with a fixed CAM architecture .

T he reason that CA can be realized so efficiently in hardware can ult i­
mately he t raced back to the fact that they incorporate certain fund amental
aspects of phy sical law, such as locali ty and par allelism. Thus , the structure
of these computat ions maps naturally onto phy sical imp lementations . It is,
of course, exactly thi s same property of be ing physics-like that makes CA
a natural tool for physical modeling (e.g., fluid behavior). Von Neumann­
a rchitec t ure machines emulate the way we consciously thi nk: a single proces­
sor that pays attention to one thing at a t ime. CA emulate the way nature
works: local oper ations happening everywhere at once. For certain physical
simulat ions, t his latter approach seems very attractive.

Cellular Automata Machines

3. A processor in every cell?

969

In order to maintain the adva ntages of locality and parallelism, CAMsshould
be const ructed out of modules , each representing a "chunk" of space. The op­
t imal ratio of pro cessors to cells within each mod ule is a compromise dictat ed
by factors such as

1. technological and economic const raints,

2. the relative importance of speed versus simulation size,

3. the complexity and variability of processing at each cell,

4. the importance of three-dimensional simulat ions,

5. I/ O and inter-module communications needs, and

6. a need for analysis capabi lities of a less local nature than the upd at ing
itself.

Just to give an idea of one extreme at the fine-grained end of the spectrum,
conside r a machi ne having a separate processor for each cell, and some simple
two-dimensional cellular-automaton rule built in.2 We est imate that, with
integrated-circuit technology, a machine consist ing of 1012 cells and having
an update cycle of 100 pico-seconds for the entire space will be tech nologi­
cally feasible within ten years. If the same order of magnitude of hardware
resources contemplated for this CAM (using th e same technology) were as­
sembled as a serial computer with a single processor , the machine might
require seconds rather than pico-seconds to complete a single updating of all
the cells.

There are serious technological problems which must be overcome before
three- dimensional machines of this maximally parallel kind will be feasible.
The immed iate difficulty is that our present electronic technologies are es­
sentially two-dimensional, and massive interconnection of planar arrays (or
"sheets") of cells in a thi rd dimension is difficult. In the short term , th is prob­
lem can be addressed by time-shari ng relatively few processors over rather
large groups of cells on each sheet; t ills allows interco nnect ions between sheets
to also be time-shared. The architectures of the CAMs built by our group
make use of th is idea.

A more fundamental probl em which will event ually limit the size of CAMs
is heat dissipation: heat generat ion in a t ruly three-dimensional CAM will be
proportional to the number of cells, and th us to the volume of the array,
while heat removed must all pass through the surface of this volume. Th is
and other issues concerning the ultimate physical limits of CAMs will be
addressed in section 9.

"I'his approach does not necessa rily restri ct one to a single specific applicat ion. T here
are simple universal rules (see LOGIC in reference 12) which can be used to simulate any
other two-dimensiona l rule in a local manner .

970 Norman Margolus and Tommaso Toffoli

4. An existing CAM

CAM-6 is a cellular a uto mata machine based on t he idea th at each space­
module should have few processors and many cells. In addition to dras ti call y
reducing the numb er of wires needed for interconnecting modules (even in
two dimensions) , thi s allows a great deal of flexibility in each processo r while
st ill ma intaining a.good balance between hardware resou rces devoted to pro­
cessing and those devoted to the storage of state-variables [i.e., cell states) .

Each CAM-6 mod ule contains 256K bits of cell-state information and eight
4K-bit look-up tables which are used as processors. Both cell-state me mory
and the processor s are or dinary memory chips, similar to those found in any
personal computer . T he rest of t he ma chine consists of a few doze n garden­
variety TTL chips, and one other small memory chip used for buffering cell
data as it is accessed. All of this fits on a card th at plugs into a personal com­
pute r (we used an IBM· PC, because of its ubiquity) and gives a performance,
in many interesting CA experiments, comparable to that of a CRAY·1.3

T he architecture which accomplishes this is very simp le.
Cell-state memo ry is organized as 65536 cells in a 256 x 256 array, with

four bits of state in each cell. T he cell states are map ped as pixels on a CRT
monitor. To achieve this effect , all four bits of a cell are retri eved in parallel
(with the ar ray being scanned sequentially in a left-to-right , top-to-bottom
order) . T he t iming of this scan is. ar ranged to coincide with the framing
format of a normal raster-scan color monitor-cell values are displayed as
the elect ron beam scans across the CRT. T hus , a complete display of the
space occ urs 60 t imes per second.

Such a memory-map ped display is very common in personal compute rs.
What we add (see figure 1) is t he following: As the data st rea ms out of
the memory in a cyclic fashion, we do some buffering (with a pip eline that
st re tches over a little more than two scan lines) so that all th e values in a
3 x 3 window (rather than a single cell at a time) are available simultaneously.
We send the center cell of t his window to th e color monitor, to produce the
display as discussed above. Subsets of the 36 bit s of data contained in this
window (and certain ot her relevant signals) are applied to th e address lines of
look-up tables: the resu ltin g four output bits are inser ted back in memory as
the new state of the cente r cell. In essence, the set of neighb or values is used
as an index into a table, which contains the ap propr iate responses for each
possible neighborhood case. Even when a new cell state has been computed,
the above-ment ioned buffering scheme preserves the cell's current state as
long as it is needed as a neighbor of some ot her cell st ill to be updated) so
that every 60th of a second an updating of th e ent ire space is completed
exactly as if th e t ransit ion function had been ap plied. to all cells in parallel.

3For the simulat ion of extremely simple CA rules, without any simultaneous ana lysis
or display processing, any computer equipped with rester-op hardware will be able to
perform almost as fast as C A M- 6 , since this CA M is really just a specialized easter-op
processor. Th ese computers will not be ab le to compe te as the processing becomes more
sophisticated, or as we add more modules to simulate a bigger space without any slowdown.

Cellular Automata Machines

+
256 x 256
4-b it cells

+

(

)

4K x -4
lookup table

Neighborhood selection

Pipeline buffer

971

Figure 1: As th e four planes are scanned, a. stream of four-bit cell
values flow through a.pipeline buffer. From thi s buffer , nine cell values
at a time are available for use as neighb ors. Of t hese 36 bits, up to
12 are sent to t he look-up table, which produces a new four-bi t cell
value.

972 Norman Margolus and Tommaso Totioli

Four of the eight available look-up table processors are used simu ltane­
ously within ea ch module, each taking care of updating 64K bit s of cell-state.
The other Iour auxiliary look-up tables can be used, in conjunction with a
color-m ap table and an event-counter, for on-the-fly data analysis an d for
display t ransformat ions. They can a lso be used dir ectly in cell up dating. A
vari ety of neighborhoods are ava ilable, each corresponding to a particular set
of neighbor bits and other useful signals that can be applied as inputs to the
look-up tables. These neighborhoods are achi eved by hardware-multiplexing
the appropriate signals under soft ware control of the personal-computer host .

Most of CAM-6' s power derives from this use of fast RAM tables (wh ich
can accomplish a great deal in a single operation) as processors .

Connectors are provided to allow externa l transition-function ha rdware
(such as larger look-up tables or combinational logic) to be substituted for
that provided on the CAM-6 mod ule. Such hardware only need s to compute
a function of neighborhood values supplied by CAM-6 and settle on a result
within 160 nanoseconds. The CAM~6 module takes care of applying this
function to th e neighborhood of each cell in turn and storing th e result in
th e appropriate place . If the externa l source for a new cell-value is a video
came ra (with appropria te synchronizat ion and AID convers ion), then CAM-6
can be used for real-time video processing.

The conn ectors also allow exte rnal signals to be brought into the module
as neig hbors, allowing the output of an exte rnal random number genera­
tor, or signals from ot her CAM-6 modules, to be used as arguments to the
transition function. When several mod ules are used together, they all run
in lockstep, updating corresponding cell positions simu ltaneously. Three­
dimen sional sim ulations can be achieved by hav ing each module handle a
two-dimensiona l slice, and stacking the slices by connect ing neighbor signals
between adjacent slices.

T he hardware resources and usage of CAM-6 are discussed in more detail in
the. book Cellular Automata Machines: a new environment for modeling [12] .
For illust rat ive purposes, a few of t he physical modeling exam ples discussed
in this book will be surveyed in the nex t sect ion.

5. P hys ica l modeling with CAM -6

C AM-6 (simp ly 'CAM' in thi s secti on) is a gen eral-purpose cellula r automata
machine. It is intended as a laboratory for experimentat ion, a vehicle for
commu nicat ion of resul t s, and a med ium for real -time demo nstration.

The experime nts illustrated in this section were performed with a single
CAM module, with no exte rna l hardware attached.

T ime corr elations Figure 2 shows th e result s of some t ime-correlation ex­
p er iments that made use of CAM's event coun ter [8]. In t hese simu­
lations, two copies of the same system were run simult aneously, each
using half of t he machine. Corresponding cells of th e two systems were
updated at the same moment. Each run was begun by initializing both

Cellular A utomata Machines

(aJ

973

(b)

(c)
10- 3

10 100 1000

Figure 2: Time-correlalion function vet) for (a) HPP-GAS, (b) 1M-GAS,

and (c) FHP-GAS.

systems with identical cell values, and then holdin g one of th e systems
fixed while upd ati ng the other a few t imes. The syst ems were t hen
updat ed in parallel for several thousand steps, with a constant t ime­
delay between the two versions of the same system. Velocity-velocity
autocorrelat ions were accumulated by comparing the values of corre­
sponding cells as they were being up dated an d sending the results of the
comparisons to a counter t hat was read by the host computer between
steps. In addit ion to t ime-correlations, space and space-t ime correla­
t ions could similarly be accumulated simply by int roducing a spat ial
shift between t he two systems before beginn ing to accumulate correla­
t ions. T he th ree t ime-correlation plot s refer to three different la t tice
gases , HPP [6J, TM [ll), and FHP [5J; each data point rep resents the
accu mulation of over a billion comparisons. T he whole experi ment en­
tailed accumulating about 3/4 of a tr illion comparisons, and took about
two and one-half days to run.

Self-diffu sion Figure 3 is a histogram showing the probabi lity that a par­
t icle of t he 1M- GAS la tti ce gas [1 2} started at the origin of coordinates
will be found at a posit ion (x,y) after some fixed number of steps (1024
steps in this case) ." Th e data was accumu lat ed by "marking" one of
the part icles (using a different cell value for it than for the rest , but
not changing its dyn amics) and the n using the auxiliary look-up tab les
in combinat ion with t he event counter to t rack its collisions, and hence

4This experiment was conducted by Andr ea Califano .

974 Norman Margolus and Tommaso Toffoli

Figu re 3: Histogram of P(x, y; t) -the prob ability that a particle of
TM-GAS will be found at x, y at t ime t-as determined by a long series
of simulation runs on CAM .

it s movements. For each (x, y) value, the height of th e plot ind icates
th e number of runs in which the particle ended up at that point.

Though such an experiment requires a massive amount of compu tation,
the essentia l results of each run can be saved in a condensed form (as
a st ring of collision data for a single particle) for pos t-analysis. In
this way, a single exp eriment can be used for st udying var ious kinds of
correlations.

Thermalization Figure 4 shows t he exp ansion of a clump of part icles of
TM-GAS. In this experiment , one bit of state within each cell is devoted
to indicating whet her or not th at cell contains a piece of the wall; th is
bit represents a boundary -condit ion parameter of the simulat ion, and
doesn't change with time. Other state information in each cell is used
to simulate the moving gas. Cells which don' t border on a wall follow
the TM-GAS rule (similar to the bet ter known HPP-GAS rule [5]). Near a
wall , the rule is modified so that par ticles are reflect ed. An arb itrary

Cellular A utomata Machines

\·;SM~:\; ~~...
.;. ,

<'

Figu re 4: Expansion of a TM-GAS cloud in a vacuum. Repeated colli­
sions between part icles and with container 's walls eventuaJJy lead to
t horough thermalizat ion.

975

bound ary can be simulated simply by drawing it; here we've drawn a
jug. Init ially, it is evident th at there are only four directions of t ravel
available to t he part icles, but as the gas equilibrates, this microscopic
detail becomes invisible.

R efl ect ion an d refraction Figure 5 shows exactly t he same kind of sim­
ulat ion as figure 4, but with a different initi al condit ion. Here we've
drawn a wall shaped as a concave mirror , and illust rate reflect ion of
a density enhancement which is init ially traveling to the right . For
compactness, we use here a special kind of high-density nondissipet ive
wave (a "soliton") t hat this ru le supports (on a slight ly larger scale,
such phenomena can, of course, be demo nstrated with ord inary near­
-equilibrium "acoustic" waves).

In a similar experiment , figure 6 shows the refract ion of a wave by a
lens. As before, we draw our obst acle by reserving one bit of each
cell's state as a spatial parameter denoting whet her the cell is inside
or outs ide t he lens. Particles outside the lens follow a lat tice-gas rule.
Inside the lens, this rule is modified so that particles t ravel only half as
fast as outside. (T his is accomplished simply by having the particles

976 Norman Margolus and Tommaso Tolfoli

F igure 5: A plane pulse traveling towards a. concave mirror is shown
(a) right aft er the reflectio n and (b) approaching th e focal point (e) .

F igure 6: Refra ction an d reflect ion pat tern s pro du ced by a spherical
lens.

move only during half of the ste ps.) Rules that depend on time in such
a manner are provided for in CA Ms hardware by supp lying "pseudo­
neighbor" signals that can be seen simultaneously by every cell as part
of its neighborhood , and can be changed between steps under software
control.

Tracing a flow Figure 7 illust rates an exper iment in which smoke is used
to trace the Bow of a latt ice gas. Frame (a) shows a lat ti ce gas wit h a
net drift to the right ; this is not evident if we don 't color the particles
to indicate their velocities. Frame (b) shows the diffusion of part icles
released from a single point. This source is implemen ted in the same
mann er as the mirrors and lenses discussed previously; we mark the
cells that are to be sources, and follow a different rule there. The

Cellular Automata Machin es 977

Figure 7: (a) Th e direction of drift is invisible if the fluid has uniform
density. (b) Markers ejected by a smokestack diffuse in t he fluid . (c)
On a larger-scale simulation, the st reamlines start becoming visible.

"smoke" particles released from this source are colored differently from
th e other pa rt icles; however, th e dynamics is "color-blind ," and treats
t hem just as ord ina ry gas particles. By looking only at these diffus­
ing smoke par ticles, one can immediately see their collective net dr ift .
Frame (c) shows the same phenomenon as (b), but using a space 16
times larger (1024 X 1024 rath er than 256 x 256). Since t he width of
th e diffusion pa tt ern is proportional to Ji, whereas the net distance
a particle dr ifts is proportional to t, th e dr ift becomes more and more
evident as the scale is increased .

The larger cellular automaton shown in that last frame was simulated
by a single CAM module," using a technique called scooping. Th e 1024 x
1024 array of cells resides in the host computer's memory, and C AM'S

internal 256 x 256 array is used as a. cache: this is loaded with a portion
of th e larger arr ay, upda ted for a couple of dozen steps, an d then stored
back; the pro cess is repeated on the next portion until all of the larger
ar ray has been updated. Since scoop ing entails some overhead (data
must be t ransferred between main memory and cache, and data at the
edges of the cache-where some of th e neighbors are not visible-must
be recomputed in a later scoop), the effective cell-update rate drop s
somewhat, but to no worse than about half of CAM's normal rat e. A
similar technique can be used for th ree-dimensional simulations wit h a
single CAM(T his works par ticularly well wit h part ition ing rules [7,12).)

Diffusion-limited aggregation Figure 8 shows two stages in the growth
of a dend riti c st ruct ure by a process of diffusion-limited aggregat ion
[14] . There are three coupled systems here, each using one bit of each
cell's state . The first system is a lat t ice gas with a 50 percent density

5T his expe rime nt was conducted by Tom Claney.

978 Norman Margolus and Tommaso Tolfo}j

",
" . :.".1/:.

Figure 8: Dendritic growth by diffusion-limi ted aggregation . T he
process was st arted from a one-cell seed in th e middle and with a. 10
percent density of diffusing particles.

of particles. This gas is used only as a "t hermal bat h" to drive the
diffusion of particles in a second system. The conten ts of th e cells
in this second system ar e randomly permuted in a local manner that
depends on the thermal bath. T he third system is a growing cluster
started. from a seed consist ing of a.single par ticle: wheneve r a par ticle of
the diffusing system wanders next to a. piece of the cluster, the part icle
is transferred to the cluster system, where it remains frozen in place.
Owing to thi s capture process, there will be fewer diffusing particles
near t he growing cluster th an away from it , and t he net diffusion flow
is directed toward the cluster. Most of the new arri vals get caught on
th e periphery of th e cluster, giving rise to a dendritic pattern .

Isi n g spin systems Figure 9 contains two views of a determinist ic Ising
dyn amics {2,6,9,13]: both frames correspond to a single configuration
of spins. T he one on the left shows t he spins themselves; th e one on the
right illust ra tes the use of CAM's aux iliary tables to display in rea l t ime
a funct ion of the system's state rather than the state itself- in this
case, t he bond energy. One can watch the motion of this energy (which
is a conserved qua nt ity and thus obeys a. cont inuity equation) while
the evolut ion is taking place; one can run space-time correlation exper­
iments on either magnetizat ion or energy, etc . By using a heat bath (as
in t he preceding aggregat ion model) , one can also implement canonical
Ising models. Figure 10 plots the magnetizat ion in such a model ver­
sus th e Monte Carl o acceptance probability," Techniques which allow
CAMitself to generate (in real tim e) the finely tun able random numbers
needed to imp lement the wide ran ge of acceptance probabilit ies used in
t his experiment are discussed in reference 12. The actual method used

6This experiment. was cond ucted by Charles Bennett.

Cellular Automata Machines

._:',.,,_; ; . :. : ' :~ '~:..rj~:~;':>..."/";_'

r :' . \ .:~'. . - .
:: : ; ! ::.~'" ' .._ :,~'.'

. " ~ .:. :. ~ ~,'~, ,,, .~,~:: ~~,\,: ,: : ".:,:".

.,

979

Figure 9: (a) A typical spin configuration; (b) the same configuration,
but displaying th e energy rather than the spins.

in the experiment plotted here involved using a second CAM machine
for this purpose and taking advantage of an instant-shift hardware fea­
ture that happens to be present in CAM-6; th is feature is cent ral to the
design of CAM-7.

Other phenomena Other physical phenom ena for which CA M-6 models are
provided in reference 12 include nucleation} annealing, erosion, genet ic
dr ift, fractality, and spat ial reactions analogous to the Zhabotinsky
reaction. A number of mod els which ar e interesting for the study of the
phys ics of computation are also given, including a reversible cellular­
au to maton model of com putation and some models of asynchrono us
computat ion. These exam ples were develop ed to illustr ate a var iety
of techniques for using CAM-6j they may also serve to clarify what
we mean when we call this device a general-purpose cellular automata
machine.

6 . CAM-7

If we scale CAM-6 up sixteen-thousand fold, we arrive at a machine with
hardware resources comparable to those of a lar ge mainframe computer, but
arranged in a manner suitable for extensive scientific investigat ions using
cellular automata. In thi s an d subsequent sect ions, we will describe our plan
for thi s CAM-7 machin e; thi s design is still undergoing development .

T he principal hardware specifications of CAM-7 will be:

1. 2 gigab its of cell-st ate memory (120-ns dynamic RAM)

2. 1/2 gigabit of look-up-table memory (35-n8 stat ic RAM)

3. 8192 plane-modu les (each 512 x 512) operating in parallel

980 Norman Margolu. and Tommaso Tolfoli

+lr-==::::-- - - - - - - -...,

•

.,
",'

~p..-t
, ~, .

.~ . -'~

l

-1 L..-== -.J
1/2

Figure 10: Magnetizat ion J.L in the cano nical-ensemble model versus
the Monte Carlo acceptance probability. Note the shar p transition at
the critical temperat ure Tcrit .

4. 200 billion cell-bit upd ates per second (8192 every 40 ns)

5. I/O bus 8192 bits wide, with a 40-ns synchronous word rate (all data
appears on this flywh eel bus once each step)

6. two-dimensional simu lations on a 16384 x 8192 x 16 region

7. three- dimens ional simulat ions on a 512 x 512 x 512 x 16 region

8. any 512 x 512 region can act as its own T V frame buffer

9. any 16 bit s in a 1025 x 1025 region can be used as a ne ighborhood

As few as 16 of the plane-mo dules that constitute a complete CAM-7

machine could be assembled into a 512 x 512 x 16 fract iona l mach ine capable
of performing 400 million cell-bit updat es per second. Such a machine could
be integrated into a personal computer much as CAM-6 was, at a similar
cost . As many as 100 or more complete CAM-7 machines could be connected
together to perform much larger two- or three-dimensional simulat ions; the
cons traints are really economic rather th an technological.

7. CAM-7 architecture

T his machine's speed comes from its parallelism: the machine is made out
of ordinary commodity RAM chips, driven at full memory band width, plus
some rat her simple "glue" logic which will a lmost all go into a semi-cus tom

Cellular Au tom ata Machines 981

I
I

Ie PIU1~ Old cell value.

'-

64K x 16
ta bla

I t- - I I
Figure 11: A layer of C AM-7, consisting of 16 plane-modul es. As the
planes are scanned, a stream of 16-bitce ll values are sent as addresses
to a 64K x 16 look-up table-t he 16-bit resul ts are put back into the
planes, as the new cell values .

cont roller chip associated with each plane-module. We feel tha t thi s rest ric­
t ion to inexpensive memory is importan t, since it should make it economi­
cally feasible to build several CAM- 7 machines and connect them together to
perform CA exp eriments which involve many trillions of updates per second.

7. 1 B asic structura l e le ments

The des ign really consists of two separate parts: a "data flywheel" which
sequentially runs through all the cell data once each step and look-up tables
which t ransform t he cell data as it passes th rough them.

The data flywheel is made up of 8192 plane-modules, each of which is
a 512 x 512 x 1 array of bits. T he scanning of a mod ule proceeds as for a
memory-mapped display' (just as it did for CAM-6). Each module put s out
one bit every 40 nanosecon ds an d takes in one bit at th e sa me time.

The look-up tables are each connected to 16 plane-module outputs. Every
40 nan oseconds, th ey return a set of 16 new cell values which are injected
back into the modules (see figure 11).

This select ion of module size and update rate is such that th e scanning of
th e mod ules can be locked to the framing format of a high-resolution monitor,
so as to display 512 x 512-pixel images at 60 frames/ sec with no interlacing.

982 Norman Margolus and Tommaso Toffoli

When so locked, CAM-7 will update its two gigabits of cell memory 60 times
per second. If we decouple the updating from the T V frame rate, C A M - 7

will be abl e to update this ent ire two-gigab its 100 times per second. Wh en
decoupled, we can have each plane-module scan only a fraction of its cells,
permitting many more updates per second of this smaller array. For example,
if each module scans a region that is only 64 x 64, then CAM-7 will be able
to update a space of size 2048 x 1024 x 16 about 4000 t imes per second.

7.2 Neighbor hoods

The most significant architectural difference between CAM-6 and CAM-7 lies
in the way that neighbors are assembled for simultaneous appli cation to a
look-up table.

CAM-6 was designed primarily for running CA which employ traditional
neighborhood formats , such as the "Moore" and "von Neumann" neighbor­
hoods, in which one cell is updated as a funct ion of more than one cell. Since
this machine has many more cells th an processors, cells within each modu le
are processed sequent ially. T hus, new cell values cannot simply replace old
values if th e updat ing is to result in the same state t hat a simultaneous up­
dati ng would produce-the old values must be retained as long as they may
be needed in computing the new state of some cell. Because of this, CAM-6
requires some buffering of cell values; neighborhood values sent to th e look­
up table are taken from this buffer (see figure 1). For a 3 x 3 neighborhood,
CAM-6 requires a 515-bi t long buffer (2 lines plus 3 bits).

CAM-7 takes as its primary neighborhood format par ti tioning cel1ular au­
tomata, a format wherein space is subdivided into disjoint subsets of cell bits.
Lattice gas models follow this format: Each site is updated independently
of all the ot hers, and then data is t ransferred between sites. Since each bit
ap pears as part of only one site, the new values can immedia tely replace the
old ones-no buffering such as was done in CAM-6 is needed. Th is format
has a simp ler har dware rea lization than tradit ional formats , an d allows an
enormous range of neighbor choices (as will be explained below).

Thus, a CAM-7 ste p actually consists of two parts: an updat ing of all
elements of the curre nt partition and a regrouping of data bits to form a
new partition . The elements of the partition are just the 16-bit cells, each
of which is updated by applying its value to a look-up table and storing the
16-bit resu lt back into the cell. T he par tition is changed by shuffling bits
between cells; how this is done is at the heart of CAM-7's design.

We ta ke advantage of the fact that the plane-modu le-the elementary
"chunk" of CAM-7's space-is much larger than a single cell. The data wit hin
one mod ule can be shifted relat ive to the data in a second modu le by simply
cha nging the place where we star t sca nning the data in the first mod ule.
Bits are shuffled between cells by shift ing entire bit -planes, and this is ac­
complished by writing to registers that cont rol where the next scan should
begin within each plane-module. Since no time is stolen from th e updat ing
to accomplish th ese shifts , we refer to th em as "instant shifts." In CAM-7,

Cellular Au tomata Machines 983

neighbors are gathered toget her . by instant shifts.
To avoid comp lications asso ciated with inter- module commun icat ion, con­

sider first how th ese instant shifts work in a space of size 512 x 512 x 16. Each
of the 16 modules consists of one 64K x 4 DRAM chip plus a semi-custom con­
troller chip. Given a horizontal and a vert ical offset , the controller chip will
take care of all of the details; it just has to read the nybbles of the memory
chip in an order corresponding to a version of the plane that is shifted (with
wrap around) by the given hori zontal and vert ical offsets. A four -bi t pipeline
inside the cont roller chip permits hori zonta l shifts that aren 't a multiple of
four. T hus, the 16 bit-planes can be arbitrarily shifted relative to each other
between one scan of the space an d th e next. As each cell is scanned , the 16
bits th at come out at a given instant are applied as inpu ts to a look-up table,
and the result is written back to the planes."

T he on ly point rema ining to be explained is how t he instan t-shi ft process
works when the machine is configured so that each bit -plane consists of many
plane-modul es "glued" toget her edge-to-edge. What happens is that each
module separately performs a shift as described above. Th e wraparou nd
occurs with in each modu le: cells that should have shifted out the side of one
modu le and into the opposite side of th e adjacent mod ule have instead been
reinject ed into th e opposite side of the same module. The positi ons of th ese
cells relative to the edges of a module are exactly as they should be for a t rue
shift: they are just in the wrong module. However, since all modules output
corresponding cells at t he same moment, each module can produce a tr uly
shifted out put by simply replacing its own out put with th at of a neighb oring
module when appropriate.

For example, consider CA M-? running in its 16384 x 8192 x 16 configu­
rati on. Each of the 16 bit -planes in thi s configura t ion consists of 512 plane­
modules, each of which scans an area 512 x 512. Now suppose we want to
shift one of the bit planes 50 posit ions to the left . Each of the rows within
each of the plane-mod ules is rotated (circu larly sh ifted) 50 positions to the
left by appropr iat ely cha nging the order of accessing t he cell memo ry. Each
mod ule's controller chip will produ ce as an overall output a 512 x 512 window
onto its po rt ion of the complete shifted plane in the following way: Th e first
462 cell values of each row will come from the plane-module's own rot at ed
data, while the last 50 values will be "borrowed" from the rotated data of
the module to its right.

Vert ical gluing of bit -planes is achieved in a similar fash ion. That is, the
controller chip first glues plane-modules together horizontally; the output of
this gluing process is fur ther multiplexed across vertically adjacent mod ules,
yielding the fina l ou tput. In this way, each module only needs to be con­
nected (by a single bidirecti onal line) to each of its four nearest-n eighbor

7To save address setup t ime on t he DRAM chips , the cont roller read s a four-bit nybbl e
from memory and then immediately writes a new value (comp uted from cells accessed
slightly ear lier) to th at same locat ion. This result s in a shift in th e physical locat ion of the
cells in memory, which is also compensated for by a scan-origin shift with in t he cont roller
chips.

984 Norman Margolus and Tommaso Toffoli

modules, and any shift of up to 512 positions horizontally , 512 vertically, or
any combinat ion of these can be accommodated . Thus, any 16 bits (one from
eac h plane) in a 1025 x 1025 region can be brought to gether and used as the
neigh bors to be jointl y sent to the look-up tables."

Of course, if we construct rules where the sa me tabl e-ou tput value is
sent to , say, all 16 planes, then by shift ing the planes as described above
we can implement not only the traditional neighb orhood s but also any other
neighb orhood entailing up to 16 bits chosen in a 1025 x 1025 region around
each cell. T hus, conventional (i.e., nonpar titioni ng) cellular au tomata with
very wide neighborhoods can also be simulated on CAM-7, albe it at the cost
of using planes and tables rather redundantly.

7. 3 Input a nd output

T he basic bus on CAM-7 is the fly wheel bus, cons ist ing of the final glued
outputs of the plane-modules togeth er wit h inp uts to these same modules .
T he input and output buses are each 8192 bits wide on a full CAM-7 machine:
When the machine is operating at it s maxi mum clock ra te, a new 8192-b it
output word is produced every 40 nanoseconds, and new input words can
be accepted at the same rate. Every bit of cell memory in th e machine is
ava ilab le to be examined and modified once during every step. External logic
(eve n, if desired , floating-point processor s) can be attached here. Depending
on how CA M -7 is configured, input bits can be ignored (in favor of inter nally­
gene ra ted new cell values), routed as inputs to the look-up tabl es, or sent
directly to th e planes .

Bes ides the two data lines (one for input and one for output) that it
cont ributes to the flywh eel bu s, each plane-module also has a small number
of cont rol lines. Some of these control lines are bussed in bulk to all the
modules; the others are merged together into a control bus of mo derate
width. Areas that can be accessed via the control bus include:

1. the look-up tab le (with auto increment after each read or write)

2. th e bi t-plane (wit h auto increment afte r each read or write)

3. various registers (located within the controller chip)

(a) the hor izontal-offset register

(b) the vertical-offset register

(c) the horizontal-size register

(d) the vertical-size register

(e) the table-address source select register

(f) the plane-data sou rce select register

4. various counters (located within the controller chip)

lJSuch large neighbo rhoods are , for example, particularly useful in image processing.

Cellular Automata Machines

(a) the address counter

(b) the table-correlation counter

(c) the table-output counter

985

Each plane-module is connected both to one data line and one address
line of a look-up table. During normal updating, the add ress line is fed
sequentially with the glued output of the bit-p lane, and the values appear ing
on t he data line are written sequent ially into the bit-p lane as its new contents .
T his is, however, just one possible combination of table-address and plane­
da ta sources; by writ ing to a module's "source select" regist ers, any of the
following may be sent either as an address bit to the look-up table, or as a
data bit to be written direct ly into the plane:

I. the glued output for this plane

2. the output for t he plane lying eight positions above or below thi s one

3. the output from corresponding plane in the other half of the machine

4. the flywheel-bus inpu t for thi s plane-modul e

5. one bit from the address counter

6. a constant of zero

7. the comp lement of any of the above

Notice that the table output doesn' t appea r in th is list-it can only be sent
to th e plane.

By ap propriately controlling the sources both for table addresses and for
plane data we can , for examp le, run a step in which a constant value of 0
or 1 is sent to the table address while the plane data is not affected. The
plane can even be shifted dur ing this step, since the table is not needed for
thi s. Thus, one can run steps during which one or more address bit s of the
table are host-selected constants , analogous to the "phase" bits [12] used by
CAM-5. Thi s allows one to split a look-up table into several subtables, to be
used during consecutive steps without having to download new tables. Of
course, downloading new tables isn 't a great problem as long as all the tables
are identical (or there are only a few different kinds), since all tabl es t hat are
the same can be written simultaneously."

Data is read from or written to either planes or tables by the host in a
similar man ner: A stream of bits is sent to or from the module associated
with the data . For planes, the horizontal- and vert ical-offset registers are
used not only duri ng steps, but also to control where the data-h its sent by

91f more flexibility in rewriting tab les is needed , a number of microprocessors (say
one for every 64 plane-modu les) could be added to the design. Th ey could each store a
selection of ta bles, and download them under th e command of the host . T hey could also
be useful in generating initial values for the cell states .

986 Norman Margolus and Tomunaso Toffoli

th e host to the pl an e should go . For tables, each plane-module con trols one
bit of t he address of a table, and is told by the host which bit of it s internal
address count er should be shown to it s table, to cont rol wh ere data-bi ts go .

Note that th ese internal address counters are not provi ded solely for load­
ing tables; they can also be used during cell-updat ing, clocked by the 40-05
system dock. By addressing a table with some counter bits, one can , for
ins tance, provid e spat ial parameters to CA rules (see the rotatio n algori t hm
in sect ion 7.8) or perform on-the-fly testing of tables.

7.4 Data analysis

Each plane-module contain s a number of counters that are use d for real-time
da ta analysis, error detection/correction , or both.

Table outputs are always counted (nu mber of ones in each output). An
analysis s tep can be performed by having some planes remain unchanged
(or ju st shift) while the corresponding table outputs are being cou nted. For
example, if a plane is being used to store a spatial parameter (such as an
obstacle in a fluid -flow expe riment) , the associated table output is no t need ed
for up dat ing and may be programmed for data analysis and counted. If
there aren 't enough such "free" tabl es, or if t he analysis requires a different
ne ighborhood th an the up da t ing, separate analysis st eps may be interleaved
between updating steps by rewriting tables .

CAM-7 can be op erated as two hal f-machines: Table outpu ts are con­
t inuously compared between corr esponding parts of the two halves and the
number of differences is counted by the table correlation counters. Space
an d time aut ocorrelat ions can be accumula ted by running two versio ns of
th e same system simult aneously, with a constant space or t ime shift between
them. Since both the number of differen ces between two corresponding table
ou tputs and th e number of ones output by each table separately are counted,
th e number of occurrences of each of the four possible pai rs of bin ary out­
puts can be computed. The fact that the sum of the two separate counts
plus the correlated count should be even acts as a consi stency check for de­
tecting counter err ors . If exact ly the same system is ru n in both halves of
the machine, t he correla tion counte rs detect updating errors.

Note that all counte rs are double-buffered an d can be read at any time
by the host without affecti ng a step that is in progress.

7.5 Error handling

Like CAM-6, each CAM-7 machine will const it ute a "building block" from
which one can build mu ch larger machines. For example, eight such blocks
used together will have two giga-byt es of cell-state memory an d will perform
one and one-half t rillion rather powerful cell-b it up dates every second . Wh ile
the re are no inherent architectural limits on how many CAM- 7s can be hooked
to gether, th ere is a practi cal problem which grow s as more an d more CAM

"blocks" are added , namely error handling. Because of the bu ilt -in ana ly­
sis capabi lities described in the previous sect ion, and additional hardware

Cellular Automata Machin es 987

consistency checks, it will be possible to discover and recover from hardware
errors.

Since tables are not supposed to evolve in t ime, it is relatively straight­
forward to test whether or not a table contains an error. We can usually
detect t able erro rs by performin g an analysis step during which all tables are
addressed by counter bit s. We simply count the number of ones in all table
outputs. As long as correlated pairs of tables contain t he same rule , we can
simultaneously perform a more detailed check by compar ing table outputs.
Alternatively, we can have the host perform a verify-write of all tables, in
which the old contents is read and compared with what t he host is writ ing.

Cell memory is tested by each plan e-module dur ing every step. About
22 checksum bit s, reflecting th e numb er of ones last written and their posi­
tions, are compared to corresponding checksums performed on t he data sub­
sequent ly read . Cha nging any bit of the configuration will, on the average,
chan ge about half of the checksum bits. By dividing all possible 512 x 512
configuration s evenly into more than 106 different classes, these checksums
make th e chance of an undetected plane-memory error very small.

Hard errors, caused by bad components, can be teste d for wheneve r any
er ror is det ected. If we run an occas ional analysis step duri ng which we test
tables, bad cbips sbould always be not iced quickly.

Soft errors, in which memory bits are typi cally changed , are principally
cau sed by alpha pa rticles. Modern commercial memory chips, which const i­
tu te most of CAM-7, are inherently qui te reliable: Even wit h absolutely no
provision for error correct ion, it should be possible to run thi s machine with
16384 memory chips for several days at a time without any errors. Thus, for
a single CAM-7, it may be perfectly practical in most cases to simply detect
errors and rerun an experiment if any occur . In fact , for many statistical me­
chanical experiments, such as fluid flow past obstacles, a rare error in which
a bit is dropped doesn 't matter at all, so we only need. to rewrite incorrect
tables and obstacles and watch out for hard errors.

For longer run s, or for large machin es built out of many CAM-7s, if we
want to guarantee exactly correct operation, it is proba bly most practical to
use each machine as two corre lated half-machines, both running th e same ex­
periment . Since the chance of two different plane-modul es both experiencing
a soft error during th e same step is ext raordina rily small (expected perhaps
once in 1016 steps for a single CAM-7 mach ine), we can assume t hat one out
of every corre lated pa ir of plane-modules will always be correct . Planes th at
were upd ated incorrectly are fixed by using da ta from th e correct twin, and
incorrect tables are simply rewritten. Not ice t hat to correct a plane-module,
data doesn't even have to be physically moved from one mod ule to its twin.
We can simply run the next step with the correct module providing th e input
for the tables in both halves of the machin e.

Given an error, there remains the problem of deciding which of the pai r of
correlat ed plane-modules is incorrect. For plane errors, we rely on the internal
checksums maintained by th e plane-modules to tell us which module to fix.
Ot herwise, we make use of one furth er facility provided by the hardware

988 Norman Margolus and Tommaso Toffali

in order to qu ickly and reliabl y find the error-even if it 's a t rans ient one
that didn't change the contents of a table. Whenever table comparisons
disagree, both the original contents of the cell where the error occurred and
the up dated value are latched by the controller chips. By examining this
information, the host can tell which of the planes was updated incorrectly.

7.6 T hree-d imens ional operation

When a sing le CAM~ 7 is opera.ting in its 512 x 512 x 512 X 16 configu ration, it
is) of course, th e fact that all plane-modules are updat ing the same position at
the same time that allows information from one layer to be directly available
for use by adjacent layers. In terms of plane-modules, one can think of this
configurat ion as being 512 x 512 x 8192, i.e., 8192 deep in the third dimens ion.
We prefer, however, to think of 512 "layers" each consist ing 16 consecutive
planes, since the outputs from each stack of 16 planes go to common look-up
tables.to

Each plane-modu le in this 8K stack is connected to the modul e eight
posit ions above it and to the one eight positions below it-a total of four
wires (inp ut and output above and below) time-shared between all 256K of
the cell-bits on each module. Each modu le has several choices for what it
sends as an address to it s associated look-up tab le. It can, of cou rse, sen d
its own glued output. It can also send the glued output of t he plane eight
positions above or below itself. These three choices make three-dimensional
operation straightforward.

For example, each 16-bit cell could be thought of as encoding the contents
of a 2 x 2 x 2 cube having two bits at each site. The top eight bits in the cell
(i.e., t hose belonging to the top eight planes in this 16-plane layer) would
correspon d to the to p of the cube, the other eight to the bot tom of the cube.
After upd ating the cube according to some rule, let 's say that we want to
switch to a part ition in which the corners of four adjace nt cubes become the
new cubes. To accomplish this, we will select for each look-up table inp ut
the output of the plane-module eight positions above: this is equivalent to
shift ing all of t he plane data eight positions down. Data from the bot toms
of one layer of cubes now appea r as inputs to the same tables as the tops of
the next layer . We must now shift the planes corresponding to the various
corner s of the old cubes so that th e data from four adjacent corners are shifted
together. If we've been careful about what order wit hin the cell the results of
the first step were placed, we can even use the same rule on these new blocks.
If we want different rules on the two partitions, we can of course rewrite the
tables before each step. As we alternate between these two partitions, we can
avoid a net motion of the cubes by alternately shifting the plane data up and

10 External logic connecte d to the flywheel bus inpu ts and outputs can, of course, group
these planes arbit rar ily. For example, float ing point processors might use them as multi­
hundred-bit cells, each cont aining several floating point num bers th at can be separately
shift ed to change the neighborhood . Since CAM processes each plan e-module serially, these
floating-point calculations could be pipelined-the delay bet ween starting and finishing
processing a cell could be lengthy, as long as a new cell value is completed every 40 ns.

Cellular Automata Machines 989

down while moving the blocking back. an d forth in the other two directions
as well.

J ust as we could simulate the Moore and von Neumann ne ighborhoods
in two dimensions, we can simulate nearby-neighbor interact ions in three
dimensions. For example, let 's consider a rule that calls for the center cell,
its six nearest neighbors, and the center cell in the "past" (i.e., t he value the
center cell had one step before), with two bits of state for each neighbor. We
simply get two bits from the layer above, two from below, and the rest from
the current layer (for a total of 16 bits) . Our tables should each pro duce
seven two-bit copies of t he new value for the center cell, plus one copy of
the prese nt value (which will be used as the past by t he nex t step). Four of
the cop ies of the center cell will be shifte d one position (nor th , south , eas t ,
and west). One will be visible only to the layer above, one only to the layer
below, and the last to the current layer. The look-up tables can now calculate
the updated values, and the process can be repeated . Other neighborhoods
(for instance, the twelve second-nearest neighbors, or the eight third- nearest
ne ighbors) can all be similarly implemented.

Not ice that bits com ing from above and below mask the correspond ing
bi ts from the current layer. T he bit from the current layer no lon ger appears
as an input to thi s layer's look- up table. You might worry that some bits
could beco me comp letely hidden and not avai lable as part of the neig hbo r­
hood of any table, but this is never t he case. The masked bit can sim ply be
made visible eight pos itio ns down within t he current layer, mas king another
bit which is a lready visible as par t of the neighb orhood for the next layer.

What about rules that need more than 16 bits of input? By using some of
the bit planes to store intermed iate values, rules that need more bit s of inpu t
can be synthesized as a compositio n of completely ar bit rary 16-input / 16­
output logical funct ions. Taking advantage of the strong coupling between
the two halves of each CAM-7 machine,' ! one can readily synthesize rather
large ne ighbo rhoods (up to 32 bits or more) by rule-composi tion . Note,
however, tha t such compositions can entail, in t he worst case, an exponential
slow-down as th e number of neighbors increases.

7 .7 Display

Being able to display the state of our system in real time provides impor­
tant feedback as to whether or not everything is working as expected, and
what parts of the system are doing something interesting that should be
investigated more closely.

Two-dimensional display is not much of a problem for CAM-7, since th is
machine can provide its data in the correct format for a color monitor. T his
machine can even , if desired , scan its data in the correct format for an inter­
laced display; since each cell is updated independently of all others, t he rows

11 Recall t hat any bits from the l S-bit cell in one half can be substituted as tab le add ress
sources for the corresponding bits in the other half. Machines connected via inpu ts on the
flywheel bus are similarly strongly coupled.

990 Norman Margolus and Tommaso Toffoli

can be sca nned in whatever order you choose.
For a complete 16384 x 8192 display, we could cover an enormous wall

with 512 color moni tors (more if several CAMs are connected) , each of which
woul d show a 512 X 512 patch using 64K different color s. Of course, it might
be more practical to use only one moni tor (or just a few), and shift the data
to move the window around. Using interlaced displays and a one-lin e buffer,
1024 x 1024 or even 2048 x 2048 regions could be viewed on a single mon itor.

Since all of th e neighbors that would be used for a cell update are available
simultaneously, it is a simple matter to display a function of the neighbo r­
hood rather than the neighborhood itself. For example, in a fluid-mechan ics
experiment you might want to show only the smo ke parti cles that trace the
flow. Going a step further, part of the machine's resources could he devoted
spec ifically to const ruct ing the image to he displayed . For exa mple, one ha lf
of the machine could do th e experiment while the other half could monitor
the first half, accumulat ing t ime-ave rage data for the display.

CAM-7 realizes a th ree-dimensional system as a stack of two-dimensional
layers, each of which can be viewed exactly as discussed above . In its 512 x
512 x 512 x 16 configuration, it would tak e 512 color monitors to see all layers
at once; on the other hand, a single monitor would be enough to see any part
of th e cube, by shift ing the data appropriately (now in three dimensions).
Outputs from group s of layers could be combined (e.g., summed , oa'ed, et c.)
an d shown in a similar manner (st ill without any ext ern al frame buffer). You
could even display a sum down through the ent ire machine-a sort of x-ray.

Suppose we would like to see slices through the cube perpendicular to the
plane of our two-dimensional slices. This, and any other 90-degree rotation
of the cube about its x, y, or z axis is easily accomplished by CAM using
a simp le split-and-shift algorithm. '? Because of the instant shift s availa ble
along the bit -planes, rotations about one of th e axes can be accomplished in
a fraction of a second; rotations about th e ot her two axes would take severa l
seconds .

Such rota tions would he par ticularly useful in conjunct ion with a display
that prov ides a more natural format for CAMs three-dimensiona l out put.

7.8 A true three-dimensional d isp lay

A true three-dimensional display (imagine a t rans lucent cube han ging in
mid-air and observable from within a wide ang le) is achievable in a rela tively
st ra ightforward manner . To illustrate th e considerations involved, we will
describ e one particular technique.

Let us first construct a one-bit output for each of CAM-7'g 512 layers; in
t his way, we obtain th e equivalent of 512 TV-signal sources, all broadcas ting

12To rotate a squar e image, you can first split it into quarters, then shin the four
quarters hor izontally or verti cally until t hey have each been shifted to a posit ion 90 degrees
clockwise of where they started. Each quarter is similar ly rotated , and the n each eighth,
etc., unti l you reach th e level of a single cell. Cells don't look any different when rotated,
so you' re done.

Cellular Automata Machin es 991

in parallel. We would like to make up a. cube out of these 512 TV frames,
by literally stacking them in a third dimension like a deck of cards; as it
tu rns out , it will be expedient to view the resulti ng "deck" from t he top edge
ra th er than from the front side.

Now, const ruct an array of 512 X 512 light emitting diodes; each row of
LEDs is driven by t he outputs of a S12-bit, ser ial-in, parallel-out shift register
with lat ched out puts (t he equ ivalent of 32 74F673 chips). In t urn , th e shift
registers are fed with the above TV sources, and their ou tputs latched at the
end of every scan line. Thus, the collection of 512 lines produced in parallel
by CAM-7's 512 laye rs will have been captured as a. two-dimensional LED
picture; th is picture, which lies orth ogonally to t he "cards of t he deck," will
last abou t 30 I's before being replaced by the next picture, correspo nding to
th e next scan line.

Every t ime a. new LED pictu re is read y, we want to display it somewhat
below the previous one, so that starting from the top edge of the deck for the
first line of t he TV frame we will end up at the bot tom edge wit h the frame 's
last line. T his sweeping movement of the LED ar ray is easily achieved by
optical mea ns-in a way similar to that dem onstra ted with success a t BB N
[10]. That is, t he array will be viewed reflected on a thin-membrane mirror
st retched over a loud speaker. The speaker itself will be dr iven wit h a 60­
Hz sawtooth wave, in sync with CAM-7's internal scan ; t he result ing slight
changes in curvature of the mirror will make the LED array 's image sweep
through a sequence of focal planes.!"

Finally, to avoid filling the t hree-dimensional display with too much
data , some select ive staining techniques may be appropriate, much as in
microscopy. For instance, surfaces can be made visible by simulat ing "light"
within th e system: this would consist of particl es that travel invisibly in a
given direct ion and light up when they cross a surface (defined by an appro­
pr iate local condit ion).

8. Applications

In addi tion to stat ist ical mechanical applications that are becoming known
(fluid dyna mics, Ising spin systems , optics, seismic waves, etc .], CA M~7 should
be valua ble for a number of less obvious ap plications.

For example, t he st ruct ure of CAM~7 seems ideal for certain typ es of image
processing; in par ticular , for certain "ret ina-like" tasks where t he information
contained in detailed two-dimensional images arr iving in rap id succession is
analyzed and preprocessed in real t ime by algorithms that are in the main
local and unifor m, in order to supply a more "brain-like" post-processor with
a much smaller amo unt of pre-d igested data.

13Note that in t he BBN set up, t he performance of t he syst em is limited by the available
data ra te (since the images to be opt ically multiplexed. are generated by drawing vectors
on a CRT) rat her t.han by the optical arr angement . CAM-7, on t.he other hand , has a
real-t ime dab rate of 120 gigabits per second , which is more than sufficient to take full
advantage of th is ar rangeme nt .

992 Norman Margolus and Tommaso Toffoli

Each layer could run a different rule, each involving-if desired-rather
wide ly scattered neighbors. Using the three-dimensional connections, with
camera input going to the first layer, we could do some consecut ive steps of
image processing in a pipe lined manner : t he output of one layer sup plying t he
inp ut for the next .14 By cus tom wire-wrapping the flywh eel-bus outputs an d
inp uts, a much more complicated pipeline could be achieved. For example,
th e ou tput of one layer could become th e input to several other layers, which
could then lead to other layers; there could be further splits and merges,
data following a shorte r path could be t ime-correla ted with data following a
longer path, and 50 on .

CAM-7 could be used for digital logic simula t ions in two or three dimen­
sions. Since bit- planes can be mad e to shift by large amou nts between steps,
signal speed s would not necessarily be limited to one cell per step. CAM~7
could also be used as a tes tbed for ideas about using cellular automata VLSI
chips as "soft circuitry. " For example, given a chip that runs a simple two­
dimens ional rul e such as LOG IC [12], one could download a pattern of wires
and gates to a chip , and have it simulate the circuit fast enough to actually
be used in placed of the target circui t it self.

In general , thi s machine should be useful in a range of simula t ion and
modeling tasks involving syste ms which have an appropriate local st ructure.

9. Conclusions

Although CAM-7, if huilt , will he hy far the fastest computer in the world (for
the range of applications for which it is appropriate) , it is clearly not pushing
the limits of what can be done by cellular au tomata machines. What are the
ultimate limits?

Not hing can simu late a physical system more efficiently than that system
itself. Eve ry degree of freedom is fully ut ilized when a system simula tes it ­
self. T he rea son we simulate a physical syst em is not one of efficiency; t he
simulator is better than the or iginal syst em in some other way. It may be
easier to st udy in detail , or less dangerous, or more versatile, or more acces­
sible, or any number of oth er things. As we st rive to make bigger and fas ter
cellular automata machines, we will ultimately reach a point where it is no
longer possible to cont inue to guarantee exact ope rat ion (for example, there
is the surface- to-volume problem al luded to in sect ion 3). For a large number
of phy sical simul ation tas ks, this may not be important; the simulator may
st ill be very valuable any way. Ultimately, we reach the real m of the uni ver­
sa l quantum simulator (see reference 4), which only tries to rep roduce t he
stat ist ics of the resul ts ob tained from the original system. Even this might
be somewhat loosely considered to be a cellula r automata machine, since it
will have a finit e sta te at each site and only local int eractions. T hus, t he
question of th e ult imate limits of cellular automata mac hines depends upon

14.Since each layer can have a different ru le stored in its look-up ta ble, CAM-7 as a whole
is a true multiple-program, multiple-data machine.

Cellular A utomata Madlines 993

where you choose to draw the line-it may well be the same as the question
of the ult imate limits of physical simulation.

References

[1] Andrea Califano, Norman Margolus, and 'Iommaso Toffoli, CAM-6 User's
Gnkte: Kenneth Porter , CAM-6 Hardware Manual, Systems Concepts, 55
Francisco St., San Francisco 94133 (1987).

[2] Michael Creutz , "Deterministic Ising Dynamics," Annals of Physics, 167
(1986) 62-76.

[3] Richard Feynma n, "Simulating Physics with Computers," Int. J. Tbeor,
Phys., 21 (1982) 467-488.

[4] Uriel Frisch, Brosl Hasslacher, and Yves Pomeau , "Lattice-Gas Automata
for the Navier-Stokes Equation ," Phys. Rev. Lett., 56 (1986) 1505-1508.

[5] J. Har dy, O. de Pazz is, and Yves Pomeau, "Molecular Dynamics of a Clas­
sical Lattice Gas : Transport Properties and Time Correlation Functions,"
Phys . Rev., A13 (1976) 1949-1960.

[6] Hans Herrmann, "Fast Algorithm for the Simulation of Ising Models," Saclay
preprint 86·060 (1986).

[7] Norman Margolus, "Physics-like Models of Computation," Physica, IOD
(1984) 81-95.

[8] Norman Margolus , Tommaso Toffoli , and Gerard Vichniac, "Cellular­
Aut omata Supercomputers for Fluid Dynamics Modeling," Phys. Rev. Lett.,
56 (1986) 1694-1696.

[9] Yves Pomeau, "Invariant in Cellular Automata," J. Phys. A17 (1984) L415­
L418.

[10] Lawrence Sher and C. D. Barry, "The Use of an Oscillating Mirror for 3­
Dimensional Display," in New Methodologies in the Study of Protein Con­
figurat ion, T . T. Wu, ed . (Van Nostrand, 1985) Chapter 6.

[11] Tommaso Toffoli, "CAM : A High-performance Cellular-automaton Ma­
chine," Physica, lOD (1984) 195-204.

[12] Tommaso Toffoli and Norman Margolus, Cellular Automata Machines~A

New Environment for Modeling, (MIT Press, 1987).

[13] Gerard Vlchniac, "Simulating Physics with Cellular Automata," Physica,
lOD (1984) 96-115.

[14) T homas Witten and Leonard Sander, Phys. Rev. Lett., 47 (1981) 1400.

