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Abstract . Based on t he Boltzmann Machine concept, we derive a
lear ning algorith m in which time-consuming stochastic measurements
of correlations a re replaced by solutions to dete rminist ic mean field
theory equ ations. T he method is applied to t he XOR (exclusive-or ),
encoder, and line sym metry problems with substantial success. We
observe speedup facto rs ranging from 10 to 30 for these ap plicat ions
and a significantly bet ter learning perform an ce in general.

1. Motivation and results

1.1 Background

Neural Network models are present ly subject to intense stud ies [1,2,7,10].
Most attent ion is being paid to pattern complet ion pro blems . Network arc hi­
tectures and learning algorit hms are here the dominat ing themes . Common
ingredients of all models a re a set of bina ry valued neu rons S, = ±1 which are
interconnected with synaptic strengths Tij, where T ij rep resents the st rength
of the connection between the outp ut of the i th neuron and the inp ut of the
phneuron and T i j = O. In ty pical app licat ions, a subset of the neurons are
designated as inputs and the remainder are used to indicate the outpu t.

By clampi ng t he neurons to certain patterns, 5, = Sf' , the synapt ic
st re ngths adapt according to different learning algorit hms . For patterns with
first-order internal constraints, one has the Hebb ru le [4], whe re for each pa t­
tern a the synapses are mo dified according to

sr; ()( (S,Sj) (1.1)

where 0 denotes a time average.
In the case in which one has higher-order cons traints, as in parity pat ­

terns, the situation is more complicated . Ex tra, so-called hidden units are
then needed to capture or to build an internal represent a t ion of the pat­
tern . In this case, equa t ion (1.1) is not ade quate; for the different patterns,
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the hidden uni ts have no par ticular values. For this reason , more elaborate
learning algorithms have been develop ed. Most popular and powerful are the
Back-propagation Scheme [10) and the Bolt zm ann Mac1Jjne (BM) [IJ. T he
latter determines Tjj for a given set of patterns by a global sea rch over a
large solut ion space. With its sim ula ted annealing [8] relaxation techn ique,
BM is particularly well suited for avoiding local minima. T his feature, on
the other hand, makes BM time consuming; Dot only does the stochast ic
annealing a lgor ithm involve meas urements at many successive temperatures,
but th e meas urements themselves require many sweeps. Developments or
approximat ions that would speed up this algorithm are in demand.

1.2 Objectives

In this work , we define and apply a mean field theory (MFT) approximat ion
to the statistical mechan ics system th at is defined hy the BM algori thm. T he
nond eterministi c nature of the latter is t hen rep laced by a set of determinist ic
equat ions . At each tempera ture, the solut ions of these equat ions represent
the average values of corres ponding quanti ties computed from exte nsive (and
expensive) sampling in the HM. It is obvious that if this approximat ion turns
ou t to be a good one, substant ia l CPU time savings are possible. Also, t hese
mean field theory equations are inherentl y parallel. T hus, simulations can
take immed iate and full advantage of a pa rallel process or.

1.3 Resul ts

We develop an d app ly t he MFT approxima t ion for t he Boltzmann Machine.
This approximat ion is only st rict ly valid in th e limit of infinite numb ers of
degrees of freedom. T he systemat ic errors that occur when applying it to
finite system sizes can he controlled and essent ially canceled out in our ap­
plications. We find , when applying th e method to th e XOR [2], encoder [I],
and line symmetry [2] problems, th a t we gain a factor 10-30 in comput ing
t ime with respect to the original Boltzmann Machine. Th is means t hat for
these problems , the learning t imes are of the same order of magnitude as in
t he Back-propagati on approach . In cont rast to the latter , it also allows for
a more general network architecture and it naturally parallelizes. Furt her­
more, it in general gives rise to a higher learn ing quality than the Bolt zmann
Machine. This feat ure arises because the lat ter requires an unrealistically
large number of samples for a relia ble performance.

This paper is organ ized as follows. In sect ion 2, we review the basics of the
Boltzmann Mach ine. A derivat ion and evaluat ion of t he mean field theory
approximat ion can be found in sect ion 3, and its applicat ions to the problems
mentioned above are covered in sect ion 4. Finally, sect ion 5 contains a very
brief summary and outloo k.

2. T he Bolt zmann M ac hine revisited

T he Boltzmann Machine is based on the Hopfield energy funct ion [6J
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E(5) = - 2" L T;j5;5j + L 1;5;

i,j= 1 ;
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(2.1)

(2.2)

where the Ii ar e the neu ron thresho lds." T he las t term in equation (2.1) can
be eliminated by introducing an extra neuron SOl which is permanently in a
+ 1 state wit h TOi = TiO = -Ii, The energy then takes th e simpler form

_ 1 N

E(5) = -2"L T;j5,sj.
1,) = 0

In a Hopfie ld network, learni ng takes place with equ a tio n (1.1) , which
cor responds to differentiating equation (2 .2) wit h respect to Ti j . With a

given set of Ti j an d a particular start ing configuration 5 3, the system relaxes
to a local energy minima with thestep funct ion updating rule

{
+ 1 if LT;j5j > 0

Sj = J

-1 ot herwise
(2.3)

(2.4)

which follows from differentiating equat ion (2.2) with respect to Sj along
wit h the fact that Tij = Tj i and Til = O.

As mentioned in the int rod uction, equat ion (1.1) is not appropria te when
hidd en units are incl uded, since thei r values for different patterns are un­
known. In the Boltzmann Mach ine, t he strategy is to determine the hidden
uni t values for a given set of patterns by looking for a global min imum to

... 1 N+h

E(5) = - 2"L T;j5;5j
1,J=0

where h is the number of hidden un its. The simulated annealing technique
[8] is used to avoid local minima.

T he maj or steps in the BM are the following:

1. Clamping Phase. The input and ou tput un it s are clamped to the
cor responding values of the pattern to be lea rned , and for a sequence
of decreasing temperatures Tn' Tn-I,"" To, the network of equation
(2.4) is allowed to relax according to th e Boltzmann distribution

P(5) ex e - E(S)/ T (2.5)

where P(S) denotes the probability that the state § will occur given
th e tempera ture T. Typically, the in it ia l state §s of the network is
chosen at random. At each temperature , the network relaxes for an
amount of time'! determined by an annealing schedule. At T = To,
statistics are collected for the correla t ions

"Thro ughout t his paper, the notation S = (Sl,"" Si . . . . ,SN) is used to describe a
state of the network .

2We define tim e in terms of sweeps of the net work. A sweep consists of allowing each
undamped unit to upda te its value once.
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(2.6)

T he relaxa tion at each tempera ture is performed by up dating und amped
units accord ing to the heatbath algorithm [I]

(2.7)

2. Free-running phase. The same procedure as in ste p I, hut this t ime
only the input unit s a re clamped. Again, correlations

(2.8)

are measu red at T = To.

3. Updating. After each pattern has been processed th rough steps 1 and
2, the weights are updated accord ing to

(2.9)

where TJ is a learni ng parameter.

Steps 1, 2, and 3 are th en repeated unti l no more changes in Ti j take place.
If the updati ng performed by equation (2.7) in steps 1 an d 2 is instead

performed with the step function upd a ting rule in equat ion (3 ), th e system
is likely to get caught in a. local minima, which could give rise to erroneous
learning. With the ann ealing prescription on the other hand, the global
min imum is more likely to be reached.

Before moving on to th e mean field theory t rea tment of the annealing
process in th e Boltzmann Machine} we will make two important comments
and clar ifications on the learning process described abo ve.

Annealing Schedule . The efficiency of the hilJ.climbing property of equa­
t ions (2.5, 2.7) depends not only on the temperatures T used, but it
is rather the ratios E(S)/T th at set t he fluctuation scales [i.e. the
likelihood of uphill moves). In th e Boltzmann Machin e} the same an­
nealing schedule is normally used for the entire learn ing process. T his
rigidity does not fully exploit the virtue of the algorithm. Th e reason
for th is is that the energy cha nges as learning takes place} since the
Ti/ s in equat ion (2.4) are changing." Hence, the annealing schedule
Tn} Tn_I}.. . ,To should be adjusted in a adaptive manner duri ng the
learning phase . It tu rns out that in our applicat ions, the effects from
such a fine-tuning are negligible.

3Typically, Ti; 's are initialized to small random values. T hus, as learn ing takes place,
the Ti;'s grow in magni tude.
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Correlations. Our descrip tion of th e BM learni ng algorithm above differs
from the original [1] and subsequent works [2] on one subtle but im­
portant point. The learning is accomp lished by measuring correlations
Pij (see equat ion (2.6)) ra ther than cooccurences Pij. In the latter case ,
one only assigns posit ive increments to P ij when either (a) both of the
units i and j are on at the same time [1], or (b) both are identi cal
[2]. By expanding th ese cooccur rence measurement s to correlations ,
one also captures negat ive increment s, i.e., one assign s negative corr e­
lations in sit ua tions where two units are ant icorrela ted . (Note tha t the
correlatio ns Pij an d P~j are not prob ab ilities since they range from - 1
to + 1). T his generalizat ion im proves the lea rning proper ti es of the al­
gorithm, as ind icated in reference [2]. The correla tion measure has th e
effect of doubling th e value of D.Tij th at would be prod uced by equation
(2 .9) using th e coocc ure nce measure instead of the correla t ions, as in
reference [2].4 T his effect ively doubles the learning rate fJ.

3. T he m ean field t heory equat ions

3 .1 Derivatio ns

The stat ist ica l weight (di scret e proba bility) for a state in a particular con­
figuration 8 = (31 , . . . ,3i , . .. , 3 N) at a temperature T is given by the Boltz­
m ann dist ribution (see equation (2 .5)) . From equation (2 .5), one computes

the average of a state dependent function F(S) by

(3.1)

where Z is t he so-called partition function

(3.2)

and the summat ions L run over all poss ible neuron configurations .
S

It is clear t hat configurat ions with sma ll values for E{8) will dominate.
The standard procedure to compute (F(S) ) in equat ion (3.1) is with Monte­
Ca rlo sampling techniques . Is there any way of est imating (F(S)) along these
lines wit hout performing Mon te-Carlo simula t ions? It is certainly not fruitful
to search for mini ma of E(8) since th en the T -dependen ce disap pears and
we are back to a local minima search problem. Inst ead , let us manipulate
the summat ions in equa t ions (3.1, 3.2).

A sum over 3 = ± l can he replaced by an integra l over continuous
varia bles U and V as follows:

"No te that Pij = Pij - qij where qij is a measur e or t he an ticorrelated st ates and
qij = 1 - Pi j' T hen, Pij - P~j = 2(Pij - P;j)'
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:L I(S) = :L r dVI (V )6(S - V).
S= ± l S=±t - 00

Using the a-function representat ion

6(x) = ~i: dye"'
21l"z -ioo

where the integral over y runs along the imaginary axis, one obtains

(3.3)

(3.4)

:L I (S)
S= ± t

= ~:L j = dV j'= dU I (V )eU(S- V)
2'1"; S=±l -cco - ioo

= ~ j = dV j'= dU I(V)e-UV+log(~h U).
7rt -00 - ioo

(3.5)

(3.6)

:L ... :L ... :L e - E(S)/ T

SI=±l Si=±l SN=±l

= cIIL:d1l; l:su, e-E'(V .iJ.T)
,

Generalizing to our case of N neuron variables Sj and letting / (8) =
exp( - E(S)/T ), one obtai ns

Z = :Le - E(S)/ T =
I:

where c is a normalization constant and the effecti ve energy is given by

E'(V, 0,T ) = E(V )/T + :L [U,1I; - log(cosh U,)]. (3.7)

(3.9)

(3.8)

.!:. aE(V) U. - 0T av.. + , - .
•

1I;-tanhU,= 0

The saddlepoints of Z are determined by the simulta.neous stationarity
of E'(V ,O,T) in both of the mean field variables U, and 11; :

aE'(V,0, T)
au,

aE'( V,O,T)
a1l;

(3.10)

Since E' is real for real Vi and \Ii , the solutions to these equations are in
general real.

For the neural network of equation (2.4) one gets from these equations

11; = tanh (~T'jV;/T)
where the neuron variables S, have been replaced through equation (3.9) by
the mean field variables Vi. Thus, the non-zero temperature behavior of the
network in equat ion (2.4) with the step function updating rule of equation
(3) is emulated by a sigmoid updating rule (see figure 1). An importan t
property of the effect ive energy funct ion E'(V,0,T) is that it has a smoother
landscape than E( S) due to the extra terms. Hence, the probabil ity of gett ing
stuck in a local minima decreases.

Algorithms based on equation (3.10) are, of course, still deterministic.
Equ at ion (3.10) can be solved iteratively:
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Figure 1: Sigmoid gain functions of equation (3.10) for different tem­
peratu res T . The step function updating ru le of equa tion (3) corre­
sponds to T -+ O.

W 'W= tanh ( itTi; V;0ld IT) . (3.11)

(3.12)

One can use either local or global time steps, asynchronous or synchronous
updat ing respecti vely. In most ap plications, the asyn chrono us met hod seems
to be advantageous .

Under app ropr ia te exist ence and stability condit ions (see e.g . [5], chapter
9), an equat ion of t he form f{ x) =a can be solved by numerical solut ion of

dx
dt = f {x ).

Solving equation (3.9) in this way for the neural network of equat ion (2.4),
substit ut ing for Vj [rom equat ion (3.8), an d making a change of var iables
U, -+ Ui/T , one gets

su.- ' = -U·+"' ~..tanh {UIT)dt 1 ~1] .,

J

(3.13)

which a re iden tical to the RC equations for a electr ical circuit of intercon­
nected amplifiers and capac itors with capacitances C and t ime constants T

set to one, and interconnection conductances Tjj • Simi lar equat ions were
used in reference [7] to provide a neural network solut ion to the t rave ling
sa lesman problem.
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An alternate and more simplified derivation of equation (3. 10) based on
probabilist ic concepts can be found in the appendix. The derivation above,
however, has the nice fea ture of illuminating the fact that th e stochastic hill­
climbing property of non- zero tempera.t ure Monte Carlo can he cast into a
determinist ic procedure in a smoother energy landscape ; rather than climbing
stee p hills, one takes them away. That this technique is a mean field theory
a pproxim at ion is clear from equat ions (A.S, A.lO).

So far , we have computed V;=(8,). What we really need for the BM
algorithm of equations (2.6-2.9) are the correlations ~j=(SiSj). Again, t hese
can be obtained by formal manipula t ions of the partit ion function a long the
the same lines as above or with t he probabilist ic ap proach descr ibed in the
appendix. One get s

(3.14)

T his set of equations can also be solved by the same iterat ive technique as
used for ~ in equation (3.11). One now has a syste m of N X N rath er tha n
N equations. This fact , together with the experience that larger systems of
equat ions in general tend to converge slower, has motivated us to make one
further approximation in ou r application studies. We approximate Vi; with
th e factorizat ion:

Vi; = ViVi (3.15)

3. 2 Validity of the approximation

How good an approximation is the mean field theory express ion of equa tion
(6) together with the factorization assumption of equat ion (3.15) for our
applications? T he MFT derivation basically involves a replacement of a
discrete sum with a cont inuous integral. T hus, the approximation should be
exact for N -» 00 where N is the number of degrees of freedom. Let us
invest igate how good the approxima t ion is when comput ing p~; in equation
(2.8) for the XOR problem. T he XOR (exclusive-or) problem is the one of
computing parity out of two binary digits. Thus, the pat tern s of the input­
out put mapping ares

00 0

01 1

10 1
11 0 (3.16)

where the first two columns are the input uni ts and the third column is the
output unit. As is well known , this problem requires the presence of hidden
units (see figure 2) [10).

"T hroughout this paper , we use ± 1 in the calculat ions, rath er than the 0,1 represen­
tat ion of patterns.
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Output unit

hidden units

Input units

Figure 2: Neural network for the XOR problem with one layer of
hidden uni ts.

In the Cree phase of th e Boltzmann Mach ine, the input units ar e clamped.
W hen comput ing pi; I two different situa t ions are encountered; one eithe r
compu tes (S;Sj) or (S;)S;, depe nd ing on wheth er S, is clamped or not . We
have com pared (S;) with 11; and {S;Sj} with 1I;j = 1I;V; respect ively for the
free-ru nning case with random choice of Ti j . In figure 3, we show th e average
values for th e output uni t (SOUl) as a function of the number of sweeps used
for measurements at the final an nealing temperature T = To. Also shown
is t he mean field theory prediction , which is based on the same annealing
schedule as for the Bolt zmann Machine but wit h on ly one iteration for each
temperature including T = To- Thus, N.w eep = 1 for th e MFT val ue. For
fur ther details on annealing sched ules, architectures, and Tii values , we refer
to th e figure capt ion.

T wo concl usions stand out from this figure. One is that the mean field
theory is a very good approximation even for relati vely small sys tems (in
this easel 5 dynamical uni ts). T he second point regards the behav ior of the
Boltzmann Mac hine as a function of Ns wee p . One expects subs tant ial fluctu ­
ations in measured quan ti ties ar ound exp ected values for small or moderate
N,weep, bu t with decreasing errors. T hat th e errors ar e decreasing is evident
from figur e 3. However , the approach to asy mptot ia has systematic features
rather than being random. The reason for this is th at it t akes a large num­
ber of sweeps to therma lize at T = To. From the figure, we est imate th at
0 (100-1000) sweeps seems appropriate if one wants a performan ce cc mpat­
ible with th e mean field theory approximat ion. In figur e 4, we depi ct the
sa me result for the hidden unit Sf! . T he sa me conclusion can be drawn for
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Convergenc e 01 8M W I SIatlstlcs
2- 4-1 XOR with Alllldom Welghls

1.0 <Sou l>

0. 5

10 100 1000 10000

tunber 01 Sweeps

Figure 3: {Sout } and Vout from the BM and MFT respectively as
functions of N swc ep- A one-layer network with four hidden units was
used as in [2] . Random values in the range [-2.5, 2.5J were used
for Tij • T he annealing schedule used was T := 50, 49, . .. , 1 with 10
sweepslT for BM and 1 sweep/T for MFT. N sweep refers time at the
final temp eratu re.
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Figure 4: (sf!) and V(l from the BM and MFT respectively as func­
ti ons of Nsweew For details on architecture , annealing sched ule , and
Tij values, see figure 3.

the correlation (s i'Sou' ) (see figure 5).
All averages and cor relations show the same features as in the examples

above. In figure 6, we summarize our findings by showing the average devia­
tion ~ between th e Boltzmann Machine statist ics and t he mean field theory
results,

L'. = ~ L: Ip;j(BM) - p;j(MFTJI
.>,

(3.17)

agai n as a function of Nsweep" From th is figure, it is clear that even for a
large number of sweeps there is small hut systematic deviat ion between the
Boltzmann Machine and the mean field theory. It is interesting to study how
thi s discrepancy var ies with th e number of degrees of freedom (in our case,
the number of hidden uni ts, nH)' In figure 7, we show th e average of ~ for
100 different random Ti j , (~), as a funct ion of the number of hidden units .
It is clear that th e discrepancy decreases wit h nH . As discu ssed above , this
phenomenon is expected.

In summary, we find the mean field theory approximation to be extremely
good even for a relat ively small number of degrees of freedom . As expected ,
the approximation improves with the number of degrees of freedom. Further­
more, using the Boltzmann Mach ine wit hout allowing for ample thermaliza­
tio n might provide erroneous resu lts.

Being convinced abou t the efficiency of the mean field approxima tion, we
now move on to learni ng applications.
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Coovergence 01 eM ColTeia llon Stabiles
2-04 -1 XOR wilh Random WetgltJ
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- 0. 5

'0 ' 00 10 00 10000

t.\ntler 0 1 SWe8plll

Figure 5: {sf' Bout} and vtvout from th e BM and MFT respec tively
as functions of Nsweep o For details on architecture, an nealing schedule ,
and Tij values, see figure 3.

CorwflfOOOCll 01 L4ean Carelallon Oillerence
2-4-1 XOR with Random Welltlll
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• • •o '-~_ _ ~_~ ~~ ~ _

' 0 ' 00 1000 10000

tbnber 01 SWeepli

Figure 6: Do as defined in equa tion (3 .17) as a function of NstKeep • For
details on architecture, annealing sched ule, and T i j values, see figure
3.
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, 6 • 10 "

Figure 7: (Il) (Il defined in equat ion (3.17» as a funct ion of the
num ber of hidden unit s n H . Ann eali ng schedules are as in figure 3.
For the Boltzmann Machine Nsweep ;;;: 1000 was used . The sta.tist ics
are based on 100 different rand om sets of Tij .

4. Performance studies of the mean fie ld theory a lgo r it hm

We have investi gated the performance of t he MFT algorithm in three different
applications: the XOR [2], encoder [11 , and line symmetry [21 problems.
These problems, while small, exhi bit various typ es of higher-order const raints
that require the use of hidden units. The result s of th e MFT calculat ions are
compar ed with the corresponding resu lt s from th e BM simulations.

4.1 Annealing sched ules and learning rates

Boltzmann M a chin e (BM). For all the ap plications described below, ex­
cept as noted, the following annealing schedule and learning rate were
used:

N.=,poT 1030, 2025, 4020, 8015, 8010, 805, 1601,1 600.5

~ = 2 (4.1)

For the final temperature, T = 0.5 , al116 sweeps were used for gather­
ing correlation statist ics. This schedu le, which is identical to the one
used in [2] , appears to provide good results for all three applications.
Any attempts to reduce the annealing t ime leads to degradation of
lear ning performance, and improving the performance with a longer
anneal ing schedu le results in longer learn ing times.
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Mean fie ld theory (MFT) . A br ief explora t ion of tbe iterative techniques
of equation (3.11) produced good results with the following parameter
choices :

N~weepoT = 1030 ,1 025, 1020,1015,1010,1 05,101,1 80.5

ry = 1 (4.2)

Not ice that t his an nealing schedule is almost a factor 8 fast er than the
Boltzmann Machine sched ule.

For both the BM and MFT algorithms, except as noted below, th e Tij
are ini tiali zed with random values in th e range [-1], +7]] . Let us move on to
the different applications in more detail.

4 .2 T he XOR problem

This problem consists of the four pat terns in equation (16), which exhaust the
combinatorial poss ibilit ies. For both the BM and MFT algor ithms, we con­
firm previous resu lts (see reference [2]) that an architecture with at least four
hidden units seems to be needed for a good performance. We use four hidden
uni ts with limited connectivity in order to facilitate comparisons with [2J ; no
active connections between two hidd en units and between input and output
units (see figure 2). However, it should be st ressed that in cont ras t to feedfor­
ward algori thms like Back-propagation [10), the BM and MFT algori thms are
fully capable of dealing with fully connected networks. Performance st udies
of different degrees of connect ivities will be published elsewhere (9].

As a criteria for learn ing performance, one normally uses the percentage
of pat tern s t hat are completed (i.e. correct output prod uced for a given
input) during training (see e.g . reference (2l) . Thi s meas ure is inferior, a t
least for sma ll problems, as it does not ind icate what port ion of the inpu t
space is being learn ed. T herefore, for the XOR and the encoder problems,
the entire inp ut space is tested for proper comp let ion. T hus, the entire input
space is presented during each learning cycle.

In figure.S, we show t he percentage of completed input sets as a function
of the number of learning cycles performed. (An input set consists of a
collection of pat terns that are presented during a single learning cycle. In
the case of the XOR prob lem, an inpu t set consists of th e ent ire inpu t space.)
Each da.ta point represents the percentage of the previous 25 learning cycles
(100 pattern s) in which the network correctly comp let ed the ent ire input
set . In all of the figures in this sect ion, the curves presente d are obtained
by averaging the stat ist ics from 100 different experiments. T he significant
feature of figure 8 is that MFT demonstrates a higher quality of learn ing
th an HM. This does not appear to be simply a matter of MFT learn ing
faster. For the XOR, as well as the other experiments in thi s sect ion, the
quali ty of learning exhibi ted by MFT seems to be asymptot ically bet ter tha n
BM. This has been at tributed to erro rs in th e estimates of (SiSj) by the BM
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Figure 8: Percentage of completed inpu t sets for the XOR problem
as a. function of lear ning cycles for the BM and MFT algorithms. For
further details, see section 4.2.

algorithm d ue to the large number of sweeps at To that ar e requ ired to obtain
acc urate estimates (see section 3.2).

T he curves shown in figure 8 do not take into acco unt the difference
in annealing schedules between MF T and BM . To get a better idea of the
comput ing pe rformance improvement offered by MFT, we show in figure 9
the percen tage of completed inp ut sets as a function of th e number of sweeps
performed." If we consider BM to (nearly) reach its fina l performance va lue at
approximately 5 x 104 sweeps while MFT does so at approxim ately 0.4 x 104 ,

we can consider the MFT algorithm to achieve a fact or of 10 to 15 percent
improvement in execut ion t ime. Based on these curves, t his appears to be a
conservat ive claim.

A final evaluat ion of MFT perform an ce is based on th e notio n of an ex­
periment having complet ely learned th e input space. Such a notion requires
definition of a learning criteria . We consider the input space to be completely
learned if the input set is correctly complete d for 75 successive cycles (300
pat terns). In figure 10, we show the percent age of exp eriments that com­
pletely lea rn the input space as a funct ion of the number of sweeps. From

" Each sweep in both MIT and BM consists of updating each unclamp ed unit once
during bot.h the clamped and free-running phases . We consider an MIT sweep to be
equivalent to a BM sweep as both involve t he same number of updates. However , in
practice , a 8M sweep takes longer t.han an MFT sweep; both require evaluation of a similar
function , but 8M requ ires in add ition a rand om number generation (for the update) and
collect ion of statisti cs (est imation of Pi; and p~;) .
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Figure 10: Percentage of XOR experiments t hat completely learned
the input spa ce as a function of Ns wee p . For det ails of t he learning
criteria, see sect ion 4.2.
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(4.3)

these curves we see that MIT completely learns the XOR inpu t space both
faster and with a higher success rate than HM. Based on the resul ts of the
enco der problem (see figures 11 through 14), we expect that if th e XOR
experiments had been fu n for a longer number of learning cycles, the per­
centage completely learned by BM would approach the percentage of input
sets completed by BM shown in figure 9.

4. 3 The encoder problem
•

Th e encoder problem (see reference [1]) consists of the inpu t-ou tput mapping

1000 1000

0100 0100

0010 0010

0001 0001

In its most difficult form (4-2-4), there are only two hidd en units which
must opt imally enco de t he fou r patterns. Because there is no redundancy in
the bidden layer, it is necessary to provide active connect ions between t he
units in th e bidden layer. T his allows the hidden units to "compete" for
par ticular codes dur ing learning. Connect ions are also provided between the
uni ts in the ou tput layer. T his allows lateral inhibit ion to develop so th at
the desired output unit can inhibit the other out put units from being on at
th e same t ime. In addit ion} the Ti j are initia lized to zero for BM and to
very small random values ([- ry ,+ry] x 10- 3 ) for MFT .' Finally, we found it
necessary to redu ce th e learning rat es for both BM an d MFT to fJ = 1 and
fJ = 0.5 respectively in order to achieve good results . This has the effect of
lowering the E(S)jT rat io (see sect ion 2), thereby int rod ucing more therm al
noise into the learning algorit hm. T his helps to resolve conflict s between
encodings among th e hidden unit s.

In figure 11} we show the percentage of completed input sets as a funct ion
of sweeps performed for the 4-2-4 encoder. We also show} in figure 12} the
percentage of experiments that complete ly learn the inpu t-ou tpu t encoding as
a function of sweeps. T he final data points for these curves corres pond to 500
learning cycles. Notice that for BM, th e percentage complete ly learned shown
in figure 12 asymptotically approches the percentage of input sets comp leted
shown in figure 11. Both BM and MIT have trouble learning this problem}
but tbe MIT learning quali ty as measured by percentage completely learned
is nearly a factor of 3 better than BM.

71f the Iij are not init ially zero for problems with interconnected hidden units, t here
is an initi al bias towards a certai n internal representat ion of the encoding. Very often this
leads t.o conflicts between hidden units that prevents learn ing from occur ing. On the other
hand, the Tij are init ially set. to non-zero values in problems were the h idden units are
not interconnected (e.g. XOR , line symmetery) to take advantage of random bias. T his
improves the probability of achieving a well-dist rib uted internal represent at ion among the
hidden units. Th e fact th at t he 11j are initially non-aero for MFT is a consequence of
equation (3.10); all zero Iij yields a solut ion of all zero \1;, while in BM there is enough
noise to prevent this from being a problem.
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Figur e 11: Percentage of inpu t sets completed as a function of N.w~p
for t he 4-2-4 encoder.

We have also investigated the encoder problem with three hidden units
(4-3-4). This configuration provides some redundancy in the hidden layer and
we expec t better results. Figures 13 and 14 show the percentage of input sets
completed an d percentage of experiments th at completely learned the input
space for the 4-3-4 encoder with 500 learning cycles. Again, the percentage
complete ly learned by BM shown in figure 14 asymptot ically approaches the
percentage of inp ut sets comp leted by BM shown in figure 13. T his seems
to indicate tha t once BM begins to complete input sets , it cont inues to do
so in a uniform manner such that the complete learning crite ria is event ually
met. Thi s will not ap pear to be true or 8M for the line symmetry pro blem in
the next sect ion. For the 4-3-4 encoder J MIT easily achieves nearly perfect
learning quality, providing a 2.5 factor or improvement over 8M learning
quality.

4.4 The line symmetry problem

Thi s is th e problem or detect ing symmetry among an even numb er of binary
units [2]. We have invest igated the MFT performa nce for a problem con­
sist ing of six input uni ts, six hidden units (no connections between hidd en
uni ts) , and one ou tput unit to ind icat e presence or absence of symmetry. T he
sym metrical input pat terns tha t are to be learned [i.e. produce an ou tput or
1) consist of the following 8 pat terns out of the 64 possible pattern s:
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This problem differs from the previous problems in two ways:

Low signal-to-noise ratio (SNR) . The network is required to iden­
t ify 8 out of the 64 different patterns it is presented with, as opposed
to 2 out of 4 for th e XOR (t he encoder is more like a completion prob­
lem than a classification problem). T hus, there are 8 signal pat terns
compared to 56 noise pat tern s. Wi th a low SNR, learning to properly
iden t ify the symmet ric patterns is difficul t , because it is much eas ier
for the network to identify the noise. For th is problem, if the network
identifies all pa tterns as asymmetric, it will be right at least 87.5%
of the time. To remove this difficulty, the input space is adjusted so
that symmetric pat tern s are presented as often as asymmetric ones.
This is done by select ing a symmetric pattern with a 43% probability,
ot herwise select any pat tern at random."

8When we select any pattern at random with 57% probability, 12.5% (8 of 64) will be
symmetric. Th us, P (symmetric) ::; (0.57 x 0.125) + 0.43 ::; 0.5.
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Large pattern space (gen eralized learning ). We use this prob lem
to explore the situa t ion in which the size of the input space approaches
a point at which it becomes intractable to present the ent ire input space
for each learning cycle. Thus, we wan t to ex plore t he the problem of
generalized learning. Here we wish to learn the entire input space by
training on a small random subset of the space during each learn ing
cycle.

We have investigated generalized learning for the line symmetry problem
by choosing ten input pat terns at random from the distribution describ ed
above to be presented at each lea rn ing cycle. An inpu t set consists of these
ten ran dom patterns, and these are checked for completion at each learning
cycle prior to updat ing the T i j . 9 . In figure 15, we show the percentage of
input sets completed as a funct ion of sweeps corres pond ing to 500 learn ing
cycles . In cont rast to corresponding cur ves [or the XOR and encoder prob­
lems (see figures 9, 11, 13)) we notice that learning in t he line symmetry
problem appears to be noisy. T his is a t t ributed, at leas t in part , to a cert a in
amount of unlearning occuring d ue to t raining on small subset s of the in­
put space. Again , MIT provides significant improvement in learning quality
and pe rformance. In figure 16, we show t he percentage of experiments that
perform complete lea rning (300 successive pat tern s compl eted) as a function
of the number of sweeps. MIT appea rs to be better suited for genera lized
learning as nearly 90 percent of the exp eriments learn compl etely whereas
less than 20 percent of th e experiments learn completely with BM for 500
learning cycles.

Notice that in contrast to t he encode r problems, the per centage of exper­
iments completely learn ed by BM shown in figure 16 does not appear to be
approaching the percentage of inpu t sets completed by BM shown in figu re
15. We conclude that , due to the noisiness of generalized learning, BM for
the line symmetry pro blem does not exhibit the uniform approach to com­
plete learning that was exhibited by BM in the encoder pro blem s. On the
oth er hand , MFT performance does not appear to degrade significantly when
dealing with generalized learn ing.

5. Summary and outlook

"Ne have developed , evaluated, and implemented a mean field theor y learning
algori thm. It is ex teremely simple to use. Equ ati on (3.10) is solved for
a sequence of temperatures with appropriat e uni ts clamped. From th ese
solut ions, Pij and pij are computed from equat ion (3.15). The rest of the

9While this may look like genera lizatio n in the broadest sense, in that we may be
testi ng a pattern t hat has not been t rained on yet , event ually all patterns will be used for
t ra ining. Thus, we cannot say that the network has genera lized to pat terns it has never
seen before. We can say th at there is generalization in learning, in that t he learning done
by ten particular pat terns is not so specific as to cause the next ten pa tterns to undo
previous learni ng. T his would be the case if there was not any exploitab le regularity in
the input space.



1016 Carsten Peterson and James R. Anderson

Compafboo of t.FT vs 8M
6-6-1 U1e Synmelfy

J2

"FT

'"
282420128

t""''' ·~''''''''''''·

.r r ~" ""-"" \ './

r·-·V··~·

.r-..-,. .. /
r,

- ,

"
_..... / ..

100

i 80

I
" ' 0
~

!
,; '0
&

i 20
~

0

0

Figure 15: Percentage of input sets consist ing of 10 random patterns
completed as a. function of Nn ree p for the line symmetry problem.

Coqlarlson 01 t.FT vs BM
6-6-1 Line Syfl1'lIolry

100

1'0

~

i' ' 0

i
& '0

I 20~

0

0 8 12 16 20 24 28

"FT

'"

J2

Sweepe (xlO')

Figure 16: Percentage of line symmetry experiments that performed
complete generalized learning of the input space (see sect ion 4.4) as
a function of Nsweep '



A Mean Field Theory Learning Algorithm 1017

algorithm follows from the Boltzmann Machine updat ing rule of equation
(2.9). The algorithm is inherently parallel.

Testing the algorithm on the XOR, encoder and line symmetry problems
gives very encouraging results. Not only are speed up factors in the range
10-30 observed as compared to the Boltzmann Machine, but the quality
of the learning is significantly improved. Exploratory investigations [9J on
scal ing up the probl ems to larger sizes tentatively indicate that the promising
featu res survive.

The next step is to investigate what the generalization properties are of
this algorithm and to apply it to realistic problems.

Appendix A.

Here we present an alternate derivation of the mean field theory equations
following closely the Markov approach of reference [3J.

Th e Boltzmann distr ibut ion of equation (2 .5) is valid for equilibrium con­
figurations. Let us define a time-dependent distribution F(Si, t) that also
holds for non-equilibrium situations. In a Markov process, it obeys the fol­
lowing master equa tion:

dF(Si , I)
=dt

- L:Wi(Si -> - Si,t)F(Si,l)
i

+L:Wit<S, -> s.; I)F( - Si, I)

(A.l)

where Wi(±Si -> 'fSi, I) is the transition probability.
At equilibrium, d/ dIF(Si,l ) = 0 and F(Si,l ) = P( Si), so one obtains

from equa tion (A.l ):

Wi(Si -> -Si, t)P(Si) = Wit - B, -> Si, t)P(-S;) (A.2)

Subst ituting the Boltzmann distribut ion (see equation (2.5)) for P( S;), one
gets from equation (A.2):

Wi(Si -> -Si, t)
Wit-s, -> s., t)

exp( -Si Lj TijSj/T)
exp(Si L j TijSj/T)

(A.3)

Thus, the transi tion probability can be rewritten as:

Wi(Si->-Si ,t) = 2~ ( I-tanh (Si~TijSj/T))

= ;r ( 1 - Si tanh (~TijSj/T)) (A.4)

where r is a proportionality constant and the second line follows from the
facl th at Si = ±1 and that tanh(x) is odd in x . The average of Si is defined
by
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(A.5)

where

Z = 'L P(Si,t)
s

(A.6)

Noting that Z = 1 and ignoring the proportionality constant T I we compute
dl dt(Si} from equations (A.1) , (A.4) , and (A.5):

d(Si} " S d P(Si, t)
dt £...' dts

'L s, [- 'LW;{S; --> -S;, t )P(S;,t )
§ i

+~W;{-S; --> S;, t)P(-S;, t)]

- [{S,} - tanh (~T'; (S; ) IT)] . (A.7)

T he last equality follows from the fact that only the j = i term con­
tributes to the summation in the seco nd line and we have made the mean
field approximation

(tanh (~T';S;IT)) = tanh (~Ti; (S; } IT) .

Similarly, for (SiS;) one get s:

(A.S)

deS,S;}
dt

= " ssdP(S" t )
LJ I J dt
S

= 'LSiS; [- 'L W. (S. --> -s.,t)P(s.,t)
§ •

+~W.( -S. --> S., t)P( -S., I)]
= - [2(S'S;} - tanh (~ Ti.{S,S.) IT)

- tanh (~T;'(SjS') IT) ] . (A.9)

At equilibrium, equations (7) and (9) are identi cal to equations (3.10)
and (3.14) with t he identificat ions

V; = (Si) ,

V;; = {S,S;}.

(A.10)

(A.ll)
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