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Abstract. Based on the Boltzmann Machine concept, we derive a
learning algorithm in which time-consuming stochastic measurements
of correlations are replaced by solutions to deterministic mean field
theory equations. The method is applied to the XOR (exclusive-or),
encoder, and line symmetry problems with substantial success. We
observe speedup factors ranging from 10 to 30 for these applications
and a significantly better learning performance in general.

1. Motivation and results
1.1 Background

Neural Network models are presently subject to intense studies [1,2,7,10].
Most attention is being paid to pattern completion problems. Network archi-
tectures and learning algorithms are here the dominating themes. Common
ingredients of all models are a set of binary valued neurons 5; = +1 which are
interconnected with synaptic strengths 17;;, where 7}; represents the strength
of the connection between the output of the :*® neuron and the input of the
7' neuron and Tj; = 0. In typical applications, a subset of the neurons are
designated as inputs and the remainder are used to indicate the output.

By clamping the neurons to certain patterns, 5; = S¢, the synaptic
strengths adapt according to different learning algorithms. For patterns with
first-order internal constraints, one has the Hebb rule [4], where for each pat-

tern o« the synapses are modified according to
AT,'J; o (Sfo) (1‘1)

where () denotes a time average.

In the case in which one has higher-order constraints, as in parity pat-
terns, the situation is more complicated. Extra, so-called hidden units are
then needed to capture or to build an internal representation of the pat-
tern. In this case, equation (1.1) is not adequate; for the different patterns,
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the hidden units have no particular values. For this reason, more elaborate
learning algorithms have been developed. Most popular and powerful are the
Back-propagation Scheme [10] and the Boltzmann Machine (BM) [1]. The
latter determines Tj; for a given set of patterns by a global search over a
large solution space. With its simulated annealing [8] relaxation technique,
BM is particularly well suited for avoiding local minima. This feature, on
the other hand, makes BM time consuming; not only does the stochastic
annealing algorithm involve measurements at many successive temperatures,
but the measurements themselves require many sweeps. Developments or
approximations that would speed up this algorithm are in demand.

1.2 Objectives

In this work, we define and apply a mean field theory (MFT) approximation
to the statistical mechanics system that is defined by the BM algorithm. The
nondeterministic nature of the latter is then replaced by a set of deterministic
equations. At each temperature, the solutions of these equations represent
the average values of corresponding quantities computed from extensive (and
expensive) sampling in the BM. It is obvious that if this approximation turns
out to be a good one, substantial CPU time savings are possible. Also, these
mean field theory equations are inherently parallel. Thus, simulations can
take immediate and full advantage of a parallel processor.

1.3 Results

We develop and apply the MFT approximation for the Boltzmann Machine.
This approximation is only strictly valid in the limit of infinite numbers of
degrees of freedom. The systematic errors that occur when applying it to
finite system sizes can be controlled and essentially canceled out in our ap-
plications. We find, when applying the method to the XOR [2], encoder [1],
and line symmetry [2] problems, that we gain a factor 10-30 in computing
time with respect to the original Boltzmann Machine. This means that for
these problems, the learning times are of the same order of magnitude as in
the Back-propagation approach. In contrast to the latter, it also allows for
a more general network architecture and it naturally parallelizes. Further-
more, it in general gives rise to a higher learning quality than the Boltzmann
Machine. This feature arises because the latter requires an unrealistically
large number of samples for a reliable performance.

This paper is organized as follows. In section 2, we review the basics of the
Boltzmann Machine. A derivation and evaluation of the mean field theory
approximation can be found in section 3, and its applications to the problems
mentioned above are covered in section 4. Finally, section 5 contains a very
brief summary and outlook.

2. The Boltzmann Machine revisited

The Boltzmann Machine is based on the Hopfield energy function [6]
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E(5) = E T:;8:5; +215 (2.1)
£,3=1
where the I; are the neuron thresholds.! The last term in equation (2.1) can
be eliminated by introducing an extra neuron Sy, which is permanently in a
+1 state with Ty; = Tjg = —I;. The energy then takes the simpler form

E(5) = —5 Z T3 5:5;. (2.2)
=0
In a Hopfield network, learning takes place with equation (1.1), which
corresponds to differentiating equation (2.2) with respect to Tj;. With a
given set of T;; and a particular starting configuration 5°. the system relaxes
to a local energy minima with the step function updating rule

+1 if y TS >0
- { ; o (2.3)
—1 otherwise

which follows from differentiating equation (2.2) with respect to S; along
with the fact that Ti; = T and T3 = 0.

As mentioned in the introduction, equation (1.1) is not appropriate when
hidden units are included, since their values for different patterns are un-
known. In the Boltzmann Machine, the strategy is to determine the hidden
unit values for a given set of patterns by looking for a global minimum to

2 % N+h
E(§) = —5 X T4S:5; (24)
1,j=0
where h is the number of hidden units. The simulated annealing technique
[8] is used to avoid local minima.
The major steps in the BM are the following:

1. Clamping Phase. The input and output units are clamped to the
corresponding values of the pattern to be learned, and for a sequence
of decreasing temperatures T,,,T,_1,...,To, the network of equation
(2.4) is allowed to relax according to the Boltzmann distribution

P(5) e~ EEIT (2.5)

where P(S) denotes the probability that the state § will occur given
the temperature T. Typically, the initial state 5% of the network is
chosen at random. At each temperature, the network relaxes for an
amount of time® determined by an annealing schedule. At T = T,
statistics are collected for the correlations

!Throughout this paper, the notation §= (S1,...45:,...,8n) is used to describe a
state of the network.

2We define time in terms of sweeps of the network. A sweep consists of allowing each
unclamped unit to update its value once.
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Pij = (S.SJ) (26)

The relaxation at each temperature is performed by updating unclamped
units according to the heatbath algorithm [1]

P(Si—1) =

Free-running phase. The same procedure as in step 1, but this time
only the input units are clamped. Again, correlations

pi; = (5iS;) (2.8)

are measured at T' = Tj,.

. Updating. After each pattern has been processed through steps 1 and

2, the weights are updated according to
ATy = n(pi; — i) (2.9)

where 7 is a learning parameter.

Steps 1, 2, and 3 are then repeated until no more changes in T}; take place.

If the updating performed by equation (2.7) in steps 1 and 2 is instead

performed with the step function updating rule in equation (3), the system
is likely to get caught in a local minima, which could give rise to erroneous
learning. With the annealing prescription on the other hand, the global
minimum is more likely to be reached.

Before moving on to the mean field theory freatment of the annealing

process in the Boltzmann Machine, we will make two important comments
and clarifications on the learning process described above.

Annealing Schedule. The efficiency of the hill-climbing property of equa-

tions (2.5, 2.7) depends not only on the temperatures T used, but it
is rather the ratios E(S)/T that set the fluctuation scales (i.e. the
likelihood of uphill moves). In the Boltzmann Machine, the same an-
nealing schedule is normally used for the entire learning process. This
rigidity does not fully exploit the virtue of the algorithm. The reason
for this is that the energy changes as learning takes place, since the
Ti;’s in equation (2.4) are changing.® Hence, the annealing schedule
TwsTn-i,...,To should be adjusted in a adaptive manner during the
learning phase. It turns out that in our applications, the effects from
such a fine-tuning are negligible.

3Typically, Ti;’s are initialized to small random values. Thus, as learning takes place,
the Ti;’s grow in magnitude.
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Correlations. Our description of the BM learning algorithm above differs
from the original [1] and subsequent works [2] on one subtle but im-
portant point. The learning is accomplished by measuring correlations
pij (see equation (2.6)) rather than cooccurences p;;. In the latter case,
one only assigns positive increments to p;; when either (a) both of the
units ¢ and j are on at the same time [1], or (b) both are identical
[2]. By expanding these cooccurrence measurements to correlations,
one also captures negative increments, i.e., one assigns negative corre-
lations in situations where two units are anticorrelated. (Note that the
correlations p;; and p}; are not probabilities since they range from —1
to +1). This generalization improves the learning properties of the al-
gorithm, as indicated in reference [2]. The correlation measure has the
effect of doubling the value of AT;; that would be produced by equation
(2.9) using the cooccurence measure instead of the correlations, as in
reference [2].* This effectively doubles the learning rate 5.

3. The mean field theory equations

3.1 Derivations

The statistical weight (discrete probability) for a state in a particular con-
figuration 5= (81,...,5:...,5n) at a temperature T' is given by the Boltz-
mann distribution (see equation (2.5)). From equation (2.5), one computes
the average of a state dependent function F (S") by

(F(§) = 7 S F) T (3.1)

where Z is the so-called partition function

Z =Y e BOIT (3.2)
g

and the summations z run over all possible neuron configurations.
g

It is clear that configurations with small values for E(S) will dominate.
The standard procedure to compute (F(5)) in equation (3.1) is with Monte-
Carlo sampling techniques. Is there any way of estimating (F (§ )} along these
lines without performing Monte-Carlo simulations? It is certainly not fruitful
to search for minima of E(S’) since then the T-dependence disappears and
we are back to a local minima search problem. Instead, let us manipulate
the summations in equations (3.1, 3.2).

A sum over S = =1 can be replaced by an integral over continuous
variables U/ and V' as follows:

4Note that p;; = pij — qij where ¢;; is a measure of the anticorrelated states and
@ij = 1 —pij. Then, pij — pl; = 2(pi; — plj)-
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> 1= % [ avimss-v). (3:3)

S=1 S=%1
Using the é-function representation

1 ico
EEPE. Y
8(z = j; dye (3.4)

{00

where the integral over y runs along the imaginary axis, one obtains

S A6 = 5= X [Cav [T av jm)ere

S=+1 27§54
= L -—-UV-l-log(mshU)
==[a f dU f(V)e (3.5)

Generalizing to our case of N neuron variables S; and letting f(5) =
exp(—E(S)/T), one obtains

Z=Z e-E(§)/T - E . Z Z e—E(§)/T
3 S1=%+1 Si=%1 SN=ﬂ:1

= cH f v [ dU; e B @OT) (3.6)

=100
where ¢ is a normalization constant and the effective energy is given by

E'(V,U,T) = E(V)/T + Z [U:V; — log(cosh U;)]. (3.7)

The saddlepoints of Z are determined by the simultaneous stationarity
of £’ (V U, T) in both of the mean field variables U; and Vi:

dEV,U,T) -
= V; —tanh U; =0 (3.8)
OE'(V,U,T) _10E(WV) . _

I =7 v+ U; = 0. (3.9)

Since E' is real for real U; and V;, the solutions to these equations are in
general real.
For the neural network of equation (2.4) one gets from these equations

V; = tanh (Z T‘-,-V,-/T) (3.10)

where the neuron variables S; have been replaced through equation (3.9) by
the mean field variables V;. Thus, the non-zero temperature behavior of the
network in equation (2.4) with the step function updating rule of equation
(3) is emulated by a sigmoid updating rule (see figure 1). An important
property of the effective energy function E'(V, U, T) is that it has a smoother
landscape than £ (§ ) due to the extra terms. Hence, the probability of getting
stuck in a local minima decreases.

Algorithms based on equation (3.10) are, of course, still deterministic.
Equation (3.10) can be solved iteratively:
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Sigmold Gain vs Temp
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Figure 1: Sigmoid gain functions of equation (3.10) for different tem-
peratures 7. The step function updating rule of equation (3) corre-

sponds to T" — 0.

V"% = tanh (E J}jV;’“/T) ' (3.11)
J

One can use either local or global time steps, asynchronous or synchronous
updating respectively. In most applications, the asynchronous method seems

to be advantageous.
Under appropriate existence and stability conditions (see e.g. [5], chapter
9), an equation of the form f(z) = 0 can be solved by numerical solution of
dx
T (z). (3.12)
Solving equation (3.9) in this way for the neural network of equation (2.4),
substituting for V; from equation (3.8), and making a change of variables

U; — U;/T, one gets

dU: _ Ui+ YTy tanh(U;/T) (3.13)
i

dt
which are identical to the RC equations for a electrical circuit of intercon-
nected amplifiers and capacitors with capacitances C' and time constants 7
set to one, and interconnection conductances Tj;. Similar equations were
used in reference [7] to provide a neural network solution to the traveling

salesman problem.



1002 Carsten Peterson and James R. Anderson

An alternate and more simplified derivation of equation (3.10) based on
probabilistic concepts can be found in the appendix. The derivation above,
however, has the nice feature of illuminating the fact that the stochastic hill-
climbing property of non-zero temperature Monte Carlo can be cast into a
deterministic procedure in a smoother energy landscape; rather than climbing
steep hills, one takes them away. That this technique is a mean field theory
approximation is clear from equations (A.8, A.10).

So far, we have computed V;=(S;). What we really need for the BM
algorithm of equations (2.6-2.9) are the correlations V;;=(S5;S5;). Again, these
can be obtained by formal manipulations of the partition function along the
the same lines as above or with the probabilistic approach described in the
appendix. One gets

. % [ta.nh (Zk: Tjkmk/T) e (; ToVin /T)J . (3.14)

This set of equations can also be solved by the same iterative technique as
used for V; in equation (3.11). One now has a system of N x N rather than
N equations. This fact, together with the experience that larger systems of
equations in general tend to converge slower, has motivated us to make one
further approximation in our application studies. We approximate V;; with
the factorization:

Vi =ViV; (3.15)

3.2 Validity of the approximation

How good an approximation is the mean field theory expression of equation
(6) together with the factorization assumption of equation (3.15) for our
applications? The MFT derivation basically involves a replacement of a
discrete sum with a continuous integral. Thus, the approximation should be
exact for N — oo where N is the number of degrees of freedom. Let us
investigate how good the approximation is when computing pi; in equation
(2.8) for the XOR problem. The XOR (exclusive-or) problem is the one of
computing parity out of two binary digits. Thus, the patterns of the input-
output mapping are®

00 0
01 1
10 1
1 0 (3.16)

where the first two columns are the input units and the third column is the
output unit. As is well known, this problem requires the presence of hidden
units (see figure 2) [10].

SThroughout this paper, we use 41 in the calculations, rather than the 0,1 represen-
tation of patterns.
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Output unit

hidden units

input units

Figure 2: Neural network for the XOR problem with one layer of
hidden units.

In the free phase of the Boltzmann Machine, the input units are clamped.
When computing p!;, two different situations are encountered; one either
computes (S5;5;) or (S5;)S;, depending on whether S; is clamped or not. We
have compared (S;) with V; and (5,5;) with Vi; = V;V; respectively for the
free-running case with random choice of T;;. In figure 3, we show the average
values for the output unit {S,,;) as a function of the number of sweeps used
for measurements at the final annealing temperature " = T,. Also shown
is the mean field theory prediction, which is based on the same annealing
schedule as for the Boltzmann Machine but with only one iteration for each
temperature including T' = T5. Thus, Nyyep = 1 for the MFT value. For
further details on annealing schedules, architectures, and T}; values, we refer
to the figure caption.

Two conclusions stand out from this figure. One is that the mean field
theory is a very good approximation even for relatively small systems (in
this case, 5 dynamical units). The second point regards the behavior of the
Boltzmann Machine as a function of Nyyeep. One expects substantial fluctu-
ations in measured quantities around expected values for small or moderate
Nyweeps but with decreasing errors. That the errors are decreasing is evident
from figure 3. However, the approach to asymptotia has systematic features
rather than being random. The reason for this is that it takes a large num-
ber of sweeps to thermalize at T = Tp. From the figure, we estimate that
0O(100-1000) sweeps seems appropriate if one wants a performance compat-
ible with the mean field theory approximation. In figure 4, we depict the
same result for the hidden unit S. The same conclusion can be drawn for
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Convergence of BM Unil Stalislics
2-4-1 XOR with Random Weighls
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Figure 3: (S,u:) and V, from the BM and MFT respectively as
functions of Nsyeep- A one-layer network with four hidden units was
used as in [2]. Random values in the range [—2.5,2.5] were used
for T;;. The annealing schedule used was T = 50,49,...,1 with 10
sweeps/T for BM and 1 sweep/T for MFT. Nyyeep refers time at the
final temperature.
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Convergence of BM Unit Slalistics
2-4-1 XOR with Random Welghls
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Figure 4: (57) and V{¥ from the BM and MFT respectively as func-
tions of Ngweep. For details on architecture, annealing schedule, and
T:; values, see figure 3.

the correlation (Sf'Sou) (see figure 5).

All averages and correlations show the same features as in the examples
above. In figure 6, we summarize our findings by showing the average devia-
tion A between the Boltzmann Machine statistics and the mean field theory
results,

1

=ﬁz

t>]

pi(BM) - pl;(MFT)| (3.17)

again as a function of Nyyeep. From this figure, it is clear that even for a
large number of sweeps there is small but systematic deviation between the
Boltzmann Machine and the mean field theory. It is interesting to study how
this discrepancy varies with the number of degrees of freedom (in our case,
the number of hidden units, ng). In figure 7, we show the average of A for
100 different random T;, (A), as a function of the number of hidden units.
It is clear that the discrepancy decreases with ny. As discussed above, this
phenomenon is expected.

In summary, we find the mean field theory approximation to be extremely
good even for a relatively small number of degrees of freedom. As expected,
the approximation improves with the number of degrees of freedom. Further-
more, using the Boltzmann Machine without allowing for ample thermaliza-
tion might provide erroneous results.

Being convinced about the efficiency of the mean field approximation, we
now move on to learning applications.
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Convergence ol BM Correlalion Slalislics
2-4-1 XOR with Random Weighls
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Figure 5: (5§ S,us) and Vi#V,,; from the BM and MFT respectively
as functions of Nyyeep. For details on architecture, annealing schedule,
and T;; values, see figure 3.

Convergence of Mean Correlalion Dilference
2-4-1 XOR wilth Random Weights
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Figure 6: A as defined in equation (3.17) as a function of Nyyeep. For
details on architecture, annealing schedule, and T;; values, see figure
3.
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Average Maan Cormrelalion Difference al Nsweep=1000
vs Number of Hidden Unils
2-4-1 XOR with Random Welghls
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Figure 7: (A) (A defined in equation (3.17)) as a function of the
number of hidden units ny. Annealing schedules are as in figure 3.
For the Boltzmann Machine Ngyeep = 1000 was used. The statistics
are based on 100 different random sets of Tj;.

4. Performance studies of the mean field theory algorithm

We have investigated the performance of the MFT algorithm in three different
applications: the XOR [2], encoder [1], and line symmetry [2] problems.
These problems, while small, exhibit various types of higher-order constraints
that require the use of hidden units. The results of the MFT calculations are
compared with the corresponding results from the BM simulations.

4.1 Annealing schedules and learning rates

Boltzmann Machine (BM). For all the applications described below, ex-
cept as noted, the following annealing schedule and learning rate were
used:

Noweep@T = 1a30,2e25,4a@20,8a15,8al0,8a5, 16al, 1620.5
§j =2 (4.1)

For the final temperature, T = 0.5, all 16 sweeps were used for gather-
ing correlation statistics. This schedule, which is identical to the one
used in [2], appears to provide good results for all three applications.
Any attempts to reduce the annealing time leads to degradation of
learning performance, and improving the performance with a longer
annealing schedule results in longer learning times.
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Mean field theory (MFT). A brief exploration of the iterative techniques
of equation (3.11) produced good results with the following parameter
choices:

Noweep@T = 1a30,1e25,1e20, 1el5,1el0,1e5, 161, 180.5
n =1 (4.2)

Notice that this annealing schedule is almost a factor 8 faster than the
Boltzmann Machine schedule.

For both the BM and MFT algorithms, except as noted below, the T};
are initialized with random values in the range [—7, +7]. Let us move on to
the different applications in more detail.

4.2 The XOR problem

This problem consists of the four patterns in equation (16), which exhaust the
combinatorial possibilities. For both the BM and MFT algorithms, we con-
firm previous results (see reference [2]) that an architecture with at least four
hidden units seems to be needed for a good performance. We use four hidden
units with limited connectivity in order to facilitate comparisons with [2]; no
active connections between two hidden units and between input and output
units (see figure 2). However, it should be stressed that in contrast to feedfor-
ward algorithms like Back-propagation [10], the BM and MFT algorithms are
fully capable of dealing with fully connected networks. Performance studies
of different degrees of connectivities will be published elsewhere [9].

As a criteria for learning performance, one normally uses the percentage
of patterns that are completed (i.e. correct output produced for a given
input) during training (see e.g. reference [2]). This measure is inferior, at
least for small problems, as it does not indicate what portion of the input
space is being learned. Therefore, for the XOR and the encoder problems,
the entire input space is tested for proper completion. Thus, the entire input
space is presented during each learning cycle.

In figure 8, we show the percentage of completed input sets as a function
of the number of learning cycles performed. (An input set consists of a
collection of patterns that are presented during a single learning cycle. In
the case of the XOR problem, an input set consists of the entire input space.)
Each data point represents the percentage of the previous 25 learning cycles
(100 patterns) in which the network correctly completed the entire input
set. In all of the figures in this section, the curves presented are obtained
by averaging the statistics from 100 different experiments. The significant
feature of figure 8 is that MFT demonstrates a higher quality of learning
than BM. This does not appear to be simply a matter of MFT learning
faster. For the XOR, as well as the other experiments in this section, the
quality of learning exhibited by MFT seems to be asymptotically better than
BM. This has been attributed to errors in the estimates of (S;5;) by the BM
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Figure 8: Percentage of completed input sets for the XOR problem
as a function of learning cycles for the BM and MFT algorithms. For
further details, see section 4.2.

algorithm due to the large number of sweeps at T} that are required to obtain
accurate estimates (see section 3.2).

The curves shown in figure 8 do not take into account the difference
in annealing schedules between MFT and BM. To get a better idea of the
computing performance improvement offered by MFT, we show in figure 9
the percentage of completed input sets as a function of the number of sweeps
performed.® If we consider BM to (nearly) reach its final performance value at
approximately 5 x 10* sweeps while MF'T does so at approximately 0.4 x 10%,
we can consider the MFT algorithm to achieve a factor of 10 to 15 percent
improvement in execution time. Based on these curves, this appears to be a
conservative claim.

A final evaluation of MFT performance is based on the notion of an ex-
periment having completely learned the input space. Such a notion requires
definition of a learning criteria. We consider the input space to be completely
learned if the input set is correctly completed for 75 successive cycles (300
patterns). In figure 10, we show the percentage of experiments that com-
pletely learn the input space as a function of the number of sweeps. From

SEach sweep in both MFT and BM consists of updating each unclamped unit once
during both the clamped and free-running phases. We consider an MFT sweep to be
equivalent to a BM sweep as both involve the same number of updates. However, in
practice, a BM sweep takes longer than an MFT sweep; both require evaluation of a similar
function, but BM requires in addition a random number generation (for the update) and
collection of statistics (estimation of p;; and pi;).
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Figure 9: Percentage of completed input sets for the XOR problem as
a function of Ngyeep. The data is the same as in figure 8.
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Figure 10: Percentage of XOR experiments that completely learned
the input space as a function of Nsweep- For details of the learning

criteria, see section 4.2.
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these curves we see that MFT completely learns the XOR input space both
faster and with a higher success rate than BM. Based on the results of the
encoder problem (see figures 11 through 14), we expect that if the XOR
experiments had been run for a longer number of learning cycles, the per-
centage completely learned by BM would approach the percentage of input
sets completed by BM shown in figure 9.

4.3 The encoder problem

)
The encoder problem (see reference [1]) consists of the input-output mapping

1000 1000
0100 0100
0010 0010
0001 0001 (4.3)

In its most difficult form (4-2-4), there are only two hidden units which
must optimally encode the four patterns. Because there is no redundancy in
the hidden layer, it is necessary to provide active connections between the
units in the hidden layer. This allows the hidden units to “compete” for
particular codes during learning. Connections are also provided between the
units in the output layer. This allows lateral inhibition to develop so that
the desired output unit can inhibit the other output units from being on at
the same time. In addition, the T}; are initialized to zero for BM and to
very small random values ([—7,+7] x 10~?) for MFT.” Finally, we found it
necessary to reduce the learning rates for both BM and MFT to n = 1 and
n = 0.5 respectively in order to achieve good results. This has the effect of
lowering the E(S)/T ratio (see section 2), thereby introducing more thermal
noise into the learning algorithm. This helps to resolve conflicts between
encodings among the hidden units.

In figure 11, we show the percentage of completed input sets as a function
of sweeps performed for the 4-2-4 encoder. We also show, in figure 12, the
percentage of experiments that completely learn the input-output encoding as
a function of sweeps. The final data points for these curves correspond to 500
learning cycles. Notice that for BM, the percentage completely learned shown
in figure 12 asymptotically approches the percentage of input sets completed
shown in figure 11. Both BM and MFT have trouble learning this problem,
but the MFT learning quality as measured by percentage completely learned
is nearly a factor of 3 better than BM.

7If the T; are not initially zero for problems with interconnected hidden units, there
is an initial bias towards a certain internal representation of the encoding. Very often this
leads to conflicts between hidden units that prevents learning from occuring. On the other
hand, the T;; are initially set to non-zero values in problems were the hidden units are
not interconnected (e.g. XOR, line symmetery) to take advantage of random bias. This
improves the probability of achieving a well-distributed internal representation among the
hidden units. The fact that the Tj; are initially non-zero for MFT is a consequence of
equation (3.10); all zero Tj; yields a solution of all zero V;, while in BM there is enough
noise to prevent this from being a problem.
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Figure 11: Percentage of input sets completed as a function of Nsweep
for the 4-2-4 encoder.

We have also investigated the encoder problem with three hidden units
(4-3-4). This configuration provides some redundancy in the hidden layer and
we expect better results. Figures 13 and 14 show the percentage of input sets
completed and percentage of experiments that completely learned the input
space for the 4-3-4 encoder with 500 learning cycles. Again, the percentage
completely learned by BM shown in figure 14 asymptotically approaches the
percentage of input sets completed by BM shown in figure 13. This seems
to indicate that once BM begins to complete input sets, it continues to do
so in a uniform manner such that the complete learning criteria is eventually
met. This will not appear to be true of BM for the line symmetry problem in
the next section. For the 4-3-4 encoder, MFT easily achieves nearly perfect
learning quality, providing a 2.5 factor of improvement over BM learning
quality.

4.4 The line symmetry problem

This is the problem of detecting symmetry among an even number of binary
units [2]. We have investigated the MFT performance for a problem con-
sisting of six input units, six hidden units (no connections between hidden
units), and one output unit to indicate presence or absence of symmetry. The
symmetrical input patterns that are to be learned (i.e. produce an output of
1) consist of the following 8 patterns out of the 64 possible patterns:
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This problem differs from the previous problems in two ways:

Low signal-to-noise ratio (SNR). The network is required to iden-
tify 8 out of the 64 different patterns it is presented with, as opposed
to 2 out of 4 for the XOR (the encoder is more like a completion prob-
lem than a classification problem). Thus, there are 8 signal patterns
compared to 56 noise patterns. With a low SNR, learning to properly
identify the symmetric patterns is difficult, because it is much easier
for the network to identify the noise. For this problem, if the network
identifies all patterns as asymmetric, it will be right at least 87.5%
of the time. To remove this difficulty, the input space is adjusted so
that symmetric patterns are presented as often as asymmetric ones.
This is done by selecting a symmetric pattern with a 43% probability,
otherwise select any pattern at random.®

SWhen we select any pattern at random with 57% probability, 12.5% (8 of 64) will be
symmetric. Thus, P (symmetric) = (0.57 x 0.125) + 0.43 = 0.5.
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Large pattern space (generalized learning). We use this problem
to explore the situation in which the size of the input space approaches
a point at which it becomes intractable to present the entire input space
for each learning cycle. Thus, we want to explore the the problem of
generalized learning. Here we wish to learn the entire input space by
training on a small random subset of the space during each learning
cycle.

We have investigated generalized learning for the line symmetry problem
by choosing ten input patterns at random from the distribution described
above to be presented at each learning cycle. An input set consists of these
ten random patterns, and these are checked for completion at each learning
cycle prior to updating the T3;.%. In figure 15, we show the percentage of
input sets completed as a function of sweeps corresponding to 500 learning
cycles. In contrast to corresponding curves for the XOR and encoder prob-
lems (see figures 9, 11, 13), we notice that learning in the line symmetry
problem appears to be noisy. This is attributed, at least in part, to a certain
amount of unlearning occuring due to training on small subsets of the in-
put space. Again, MFT provides significant improvement in learning quality
and performance. In figure 16, we show the percentage of experiments that
perform complete learning (300 successive patterns completed) as a function
of the number of sweeps. MFT appears to be better suited for generalized
learning as nearly 90 percent of the experiments learn completely whereas
less than 20 percent of the experiments learn completely with BM for 500
learning cycles.

Notice that in contrast to the encoder problems, the percentage of exper-
iments completely learned by BM shown in figure 16 does not appear to be
approaching the percentage of input sets completed by BM shown in figure
15. We conclude that, due to the noisiness of generalized learning, BM for
the line symmetry problem does not exhibit the uniform approach to com-
plete learning that was exhibited by BM in the encoder problems. On the
other hand, MFT performance does not appear to degrade significantly when
dealing with generalized learning.

5. Summary and outlook

We have developed, evaluated, and implemented a mean field theory learning
algorithm. It is exteremely simple to use. Equation (3.10) is solved for
a sequence of temperatures with appropriate units clamped. From these
solutions, p;; and p;; are computed from equation (3.15). The rest of the

9While this may look like generalization in the broadest sense, in that we may be
testing a pattern that has not been trained on yet, eventually all patterns will be used for
training. Thus, we cannot say that the network has generalized to patterns it has never
seen before. We can say that there is generalization in learning, in that the learning done
by ten particular patterns is not so specific as to cause the next ten patterns to undo
previous learning. This would be the case if there was not any exploitable regularity in
the input space.
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Figure 15: Percentage of input sets consisting of 10 random patterns
completed as a function of Ngyeep for the line symmetry problem.
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Figure 16: Percentage of line symmetry experiments that performed
complete generalized learning of the input space (see section 4.4) as
a function of Ngyeep.
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algorithm follows from the Boltzmann Machine updating rule of equation
(2.9). The algorithm is inherently parallel.

Testing the algorithm on the XOR, encoder and line symmetry problems
gives very encouraging results. Not only are speedup factors in the range
10-30 observed as compared to the Boltzmann Machine, but the quality
of the learning is significantly improved. Exploratory investigations [9] on
scaling up the problems to larger sizes tentatively indicate that the promising
features survive.

The next step is to investigate what the generalization properties are of
this algorithm and to apply it to realistic problems.

Appendix A.

Here we present an alternate derivation of the mean field theory equations
following closely the Markov approach of reference [3].
The Boltzmann distribution of equation (2.5) is valid for equilibrium con-

figurations. Let us define a time-dependent distribution P(S;,t) that also
holds for non-equilibrium situations. In a Markov process, it obeys the fol-
lowing master equation:

dp(‘ft'i,t) - ZW.(S, — _Si,t)P(Si,t) (Al)
+ L Wi(=Si — Si, 1) P(=5,,1)

where Wi(+5; — F5;,1) is the transition probability.
At equilibrium, d/dtP(S;,t) = 0 and P(S;,t) = P(S;), so one obtains
from equation (A.1):
Wi(S; = —Si, 1) P(S:) = Wi(—5; — Si, 1) P(—55) (A.2)

Substituting the Boltzmann distribution (see equation (2.5)) for P(S;), one
gets from equation (A.2):
W;(S,- — —S.',t) = exp(—.S',- Ej T,_,SJ/T)
Wi(—S: — Si,t) — exp(S: T;T3;55/T)

(A.3)

Thus, the transition probability can be rewritten as:

Wi(S; — —S;,t) = 21_'1' (1 — tanh (S;Zﬂjsj/T))
i

Il

21—1_ (1 — S;tanh (;T;_;Sj/T)) (A.4)

where 7 is a proportionality constant and the second line follows from the
fact that S; = &1 and that tanh(z) is odd in z. The average of 5; is defined
by
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(S:) =1/Z 3 S:P(Sit) (A.5)
3

where

7= P51 (A0
g

Noting that Z = 1 and ignoring the proportionality constant T, we compute
d/dt(S;) from equations (A.1), (A.4), and (A.5):

d(S;) dP( S., t)
a T X a
= Y5 |- S Wi(S; — —S;,1)P(5;,t)
I j
+ ZWJ-(—S}' — S,-,t)P(—S,—,t)]
= [( ) — tanh (ZT., /T)] (A7)

The last equality follows from the fact that only the j = i term con-
tributes to the summation in the second line and we have made the mean
field approximation

<ta.llh (ZT;ij/T)) = tanh (ET.,(S,)/T) . (A.8)

Similarly, for (S;S;) one gets:

d(S,SJ) _ dP S,,t)
a ESS

3.5:S; [_ 3" WSk — =Sk, t)P(Sk,1)
g k

- E Wk(‘—-sk — Sk, t)ﬁ(—-Sk, t)]
k

s [2(5,-5,-) — tanh (zkj CP,-,,(S‘-S,;)/T)
—tanh (; Ti(S;Sk) /T)] , (A.9)

At equilibrium, equations (7) and (9) are identical to equations (3.10)
and (3.14) with the identifications
V= (), (A.10)

Vi = (SiS))- (A11)
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