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A bstract . Graph transformations tha.t ma.y be reduced to the form
x(l +l) = x(I)+vu(Ax(I)), with x(I),x(I+1 ) E Rn

, u convex function
and A symmet ric mat rix, are studied. In par t icular , a reduction to t he
class is exhibited for some graph t ransformations recentl y introduced
by Odlyzko and Randall. Fur ther result s on periods, quasi-periods,
and pre-periods are presented. A class of multi-threshold t ransforma
tions is introduced.

1. Int roduction

We invest igate transformat ions of the form

x(1 + 1) = x( l) + f (Ax(I )), x(l) E Rn (1.1)

where A is a. symmetric matri x of size n x n , and f is the grad ient (or a
subgradient) of a convex function u on R", sat isfying u(-x ) = u(x) for all
x E Rn.

Given an init ial x(O) ERn, the sequence { x(t)} ~o received by successive
iterat ions of (1.1) is called the trajectory of x(O). We prove

T heorem 1.1. Let A be a. symmetric matrix and f = '\7u be the gradient
of a. convex and even function u. If a trajectory {x (t )}~o is periodic, then
the period is either one or two .

The pap er is motivated by the recent paper (4) on the graph trans forma
tions of the following type. Let G be a graph, and let an initial value be
assigned to each vertex. T he values of vert ices are simultaneously updated
such that the value of a vertex is moved by one in the direct ion of the aver
age of the values of the neighboring vert ices. A special ru le is applied when
equality holds.

We discuss possible applicat ions of theorem 1.1 to these transformations
in section 2. Theorem 1.1 provides us with a large range of possibilities
to define ot her "reasonable" gra ph transformations by specifying the convex
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function u and its subgradient f. In par ti cular , we introd uce a class of mul ti 
th reshold transformat ions.

An important tool for the study of transformations (1.1) is an "energy
functi on"

E(t ) = -x(t - I )Ax (t) , (1.2)

basically introduced in III. It has been shown that 6E(t) E(t + I ) 
E(t) :5 0 for th e tran sformations st udied in [41. In sect ion 3, we show th at
b.E(t ) = 0 may happen for at most two consecutive iterations before the
period is reached . T his fact immediately bounds the number of steps before
a transformation reaches its pe riod . Transformations with b.E(t) :5 0 for al l
t, t he positi ve t ransformations, were studied in [2]. We show by an example
that the multi-threshold t ransformat ions defined in section 2 are not positive.
A different method is used to bo und the number of itera t ions before they
enter their periods.

T he up per bound on pre-per iods given in sect ion 3 is of size O(M2 ) where
M is the maximum over jXi(O) ], the initi al values of vert ices. Bounds of size
O(M ) for the transformations from [4J were obtained in [3J by developing a
new technique.

Clea rly, a trajectory cannot be periodic unless it is bounded. On the ot her
han d , if it is bounded and has int eger values, it must have some period. In
sect ion 4, we show that a t ra ject ory retains cer tain periodic p roperties even
if th e ass ump t ion abo ut integr ality is dropped and xCi ) may attain infinitely
many dist inct values . We prove in theorem 4.1 that a bounded t ra jectory
always has a qu as i-period of length one or two; i.e. ,

lim IIx(t + 2) - x( t)1I = o.
1-00

(1.3)

Clearly, t heorem 4.1 generalizes theorem 1.1. However , we will prove th e
latter separate ly since its proo f is substant ially simpler.

The paper uses the technique developed in [5- 9J for the t ran sfor mations
of ty pe

x( t + I) = f (Ax(t)). (1.4)

T he main idea is th at the behavior of some cellular automata may be best
understood when its st ate at t ime t is encoded by a vector x(t ) E R", th e
structure of the unde rly ing network by a matrix A, and the way of forming
a new state from t he influen ces of neighbors by a gradient (or a subgradient )
fun ction f of some convex funct ion u .

We conclude the introductio n with some definit ions and notations th at
will be used in th e paper. Rll and zndeno te the n-d imens iona l Euclidean
space and its latt ice of int eger points respectively. Let {x(t)}~o be a sequ ence
of points of Rn. We say th a.t some p > 0 is th e period of the sequence, if

x( t + p) = x(t) for a ll t sufficiently lar ge, (1.5)
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and (1.5) does not hold for any smaller p'. T he sequence is in tegral if x(t) E
Z " for all t , and it is bounded if there is some M such that IIx(t)1I :5 M
for all t where 11 .11is some norm . We set IIAII = L;J I 0;; I for a matrix
A = (0;;) . Mappings u an d f are said to be even and odd, if u(x) = u( -x)
and f( - x) = - f(x ) for all x, respecti vely.

Let u be a convex function on Rn. A vector € is called a subgradjent of
u at x if

u(y) - u(x) 2': (y - x)~ for all y E Rn . (1.6)

{
less }

t than x;(t) .grea er

If the subgradient €at x is unique, then it is the gtedieni. If u is convex and
differentiable, then the gradient 'Vu(x) is the vector of partial derivatives in
x. We should mention that the gradient 'Vu defines a mapping Rn ---+ R",
For other notions and results of convex analysis, see reference [10] .

We will often work with the "cyclic" sums like
,
I: (x(t) - x(t - 1))f(x(t )) + (x(o) - x(b))f(x(o)).

f=ll+ l

In order to abbreviate this lengthy notation} we will write
,
I: (x(t) - xlt - Illf(x(t ))
t= ll

instead of the above expression} where the square brackets indicate that the
term inside should be replaced by its equivalent modulo b - a + 1 within the
interval [a ,bl.

The notations Ax and xy mean, respectively} the multiplication of a ma
trix A by a vector x and the inner product of x and y .

2. Perio ds of graph transformations

In their recent pap er 141, Odly zko and Ran dall investigat ed th e following
transformations on the vertices of an undirected graph. Let G be a graph
with vertices i = 1, . .. , n . Some initial integer value Xi(O) is assigned to each
vertex i , and the values attached to the vertices are simultaneo usly updated
by the following rule

(t 1) _ { x;(t ) - 1 } if the average vaJue of
x, + - x;(t) + 1 th e neighbors of i is

(2.1)

In case x;(t) equals th e average, one of the following rules (2.2 ), (2.3), or
(2.4) is ap plied.

x;(t + 1) = x;(t ),

Xi(t+ 1) = Xi(t) + 1,

(2.2)

(2.3)
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x .(t + 1) = { x;(t) if x;(t ) = x;(t) for each neighbor j of i, (2.4)
I Xi(t) + 1 otherwise.

(2.5)

Odlyzko and Randall proved

Theorem 2.1. ([4]) For any graph G and any assignment x;(O) of initial
in teger values to the vertices, the trans formation defined by (2.1) and one of
(2.2), (2.3), or (2.4) has a period of leng th at most two.

An argument from [4J shows that the trajectory {x(t)}~o is bounded.
It relies on the observation that max, Xi(t) does not increase and mini Xi(t)
does not decrease as t varies . Since the trajectory is bounded and integral, it
must have some period. We show that the period is at most two by applying
t heorem 1.1.

Corollary 2.2. Theorem 2.1 holds for the trans formation given by (2.1) and
(2.2).

P roof. Let G be a grap h on n verti ces and x (t) = (Xl(t) , .. . , x . (t )) be the
vector of the values of vertices at time t . Let A = (ajj) be the n X n matrix
with the entries

{

I if i # i and ij is an edge of G,
aij = -d j if i = j where dj is the degree of vertex i ,

o otherwi se.

Let 9 be the real function of one variable defined by

(x) _ { (1 +x') j2 for 1 x 1$1 ,
g - I x 1 otherwise. (2.6)

Clearly, 9 is convex, differentiable, and even. The derivative g' of 9 satisfies
g'(x) = - 1 for x $ - 1, g'( x) = 1 for x 2': 1, and g'(O) = O. Let us define the
function u( x ), for x E R', by u(xt> .. . ,x.) = Eg(x;) . It follows from the
properties of 9 that u sat isfies the assumptions of theorem 1.1. Now, it is easy
to see that the considered t ransformation satisfies x( t+l) = x(t)+'Vu(Ax(t)) .
Hence, {x (t )} has a period of at most two by theorem 1.I. •

Corollary 2.3. Th eorem 2.1 holds for the transformati on given by (2.1) and
(2.3).

P roof. We may assume that all the values x ;(O), and hence also all x;(t ),
are nonnegative, since augmenting all of them by some positive constant does
not change the behavior of the transformation. Let A be the ma tr ix (2.5).
We augment each entry a ii from -di to -d j +c where e > 0 is small enough
(0 < e < (n max; X; (O))- l is sufficient). T hen E{x j(t ) I i is neighbor of
i} < d;x ;(t ) implies that the left-hand side is also smaller than (d; - c )x;(t ).
We also redefine g(x) in the previous proof so t bat g(x) =1 x 1for all x wit h
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I x I> 6 > 0 where 6 is sufficiently small. Then the gradient '\7u has only ±I
components at all points Ax(t ) that may occur during the iterations.•

The bound of two for the length of the period of the transformation given
by (2.1) and (2.4) cannot be obtained directly from theo rem 1.1. Odlyzko
and Randall [4) proved t hat if the period is not one, then Xi(t) i' Xi(t + I)
for all i and for all large t' s. In this case, the rule (2.4) coincides witb (2.3)
and the result follows.

Let u be a convex function. Let y(I) , ... ,y(k) E R", k ~ 2, be arbitrary
points, and ~(I) , .. . ,~(k) be subgradients of u in these points. It easily
follows from (1.6) tha t

k

D Wl - ~[i - I ])y(i ) ~ O.
i= 1

(2.7)

This property of subgradients is called cyclical monotonicity (see [10]). We
need a stronger property of gradients that was formulated in [8].

Lemma 2.4. (f8]) If ~(I ), ... , ~(k) are gradients and (2.7) holds with equal
ity, then W) = . . . = ~(k) .

Lemma 2.5. Let f : Rn -+ Rn be an odd mapping. Then the expression

k

Df(y(t)) + f (y[t - IJ))y(t)
t=1

may be written as

k

D f( z(t)) - f (z[t - I]))z(t)
t= 1

for k even where z(t) = (_I)'- ly(t) , or

I 2k
2Df(z(t)) - f (z[t - I]))z(t )

f= l

for k odd where z(t ), t = I , . . . , k, is above and z(t + k) = - z(t ).

(2.8)

(2.9)

(2.1O)

Proof. We use f( -y)(-y) = f(y)y· For k even, we write (2.8) as (J (y(I )) 
f( - y(k )))y(l) + (J( - y(2)) - J(y(I)))( -y(2) ) + ...+ f( -y(k)) - f(y(k 
1)))(-y(k)) .

For k odd, we may write it as one half of (J(y(I)) - f( -y(k)))y(l )
+ ... + (J( y(k)) - f( - y(k - I)))y(k) +(J(-y( I))- f(y(k)))( -y( I))+ ...
+(J( - y(k)) - f( y(k - I )))(- y(k)). •

P ro of of theorem 1. 1. Assume the trajectory is periodic with some period
k ~ 2, and let the vectors x(I), .. . ,x(k) form the period. Set
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k

E = L ) x[t - IJ - x[t + I))Ax(t).
1=1

We have

E=O

Svatopluk Poljak

(2.11)

(2.12)

as A is symmetric. For notational convenience, we denote the gradient '\7u
by f, and set

y(t) = Ax(t) t = I , ... , k.

By (1.1) we have

x( t + I) - x(t - I ) = f (y(t )) + f(y (t -I )),

and (2.11) is equivalent to

- E = D f (y(t ) + f(y[t - I]))y(t).

(2.13)

(2.14)

(2.15)

As u is even, its gradient f is odd , and lerruna2.5 can be applied . Assume k is
odd. (T he case with k even is simila r.) Then (2.15) turns into Z:~=l(f(Z(t))

f( z[t -I]))z(t) = 0 by (2.12) . Using lemma 2.4, we get f( z(t )) = f(z[t -1)) ,
and hence f(y( t )) = - f (y[t - I)) for all t = I , . . . , k. T hus, x(t+l) = x(t -I)
for all t in the period. •

We will reformulate theorem 1.1 in a seemingly stronger (but equivalent )
form that is more convenient for appl icat ions.

Let u be a convex function not necessarily differentiable . We say that a
mapping f :RR--+ RR is an acy clic subgradient if I (x) is a subgradient of u
at x for every x E Rn, and if Z:~= I(f(X( t)) - f(x[t - I]))x(t) = 0 for some
x(I) , .. . ,x(k) , k 2: 2, then f (x(I )) = f( x(2 )) = ... = f (x (k )).

T heorem 2.6 . Let A be a sy mmetric matrix, f be an acyclic subgradient ,
and f be odd. Theo the trajectory (x (t)} ;,:;o given by (1.1) has bound oi
two [or the length o[ period of arbitrary x(O) provided that the trajectory is
bounded.

The proof of theorem 2.6 is quite analogous to the proof of theorem 1.1.
Theorem 2.6 is more convenient for applications as the convex funct ion u,

whose acyc lic subgradient the mapping f is, may be given by a simpler for
mula. For example, we can take u(x" .. . , xn ) = z: Ix;! instead of (2.6) in t he
proof of corollary 2.2. It might seem that wha t we gained by a simpler defini
tion of u we would lose by proving that f is an acycl ic subgradient. HoweverI

the property of "begin acyclic" is not much restrict ive . For examp le, we may
use

Lem ma 2.7 . ((5]) If f (x ) E ref in t o(x) for each x, where o(x ) is the set of
all subgradien.ts of u in X J then f is acyclic.



Transformations on Graphs and Convexity 1027

The cond ition of lemma 2.7 is not necessary , and also many ext rema l
choices of subgradients are acyc lic (see [5]). In fact , theorems 1.1 and 2.6
are equivalent, as for every acyclic subgradient f defined on a finit e subset
S c Rn there is a differentiable convex funct ion u such that f (x ) is the
gradient of u(x) for each x E S (see [6]).

Based on theorem 2.6, one can der ive a lot of other concrete t ran sforma
tion s when taking into account various convex functions and t heir subgradi
ents. Some cons t ructions of "reasonable" subgradient have been presented
in [6J . Here we will formulate only one such example that general izes the
transformation given by (2.1) and (2.2), in the sense th at th e increment of
Xi(t ) need not be only 0, ± 1 but depends on t he gap between Xi(t) and t he
average value of the neighbors of i .

Corollary 2.8 . Let G be a graph with n vertices. Assume that each vertex
i is equipped with an odd non decreasing integer valued functio n Ii : R -+ Z
satisfying IIb)1 :0; flxl/dil where di is the degree of i. Let x,(O ) he some
initial values of the vertices, and let the values be simult aneously upda ted
hy

n

Xi(t + 1) = x,(t) + J;(Laij x;( t))
;=1

where A = (aj;) is the matrix (2.5) . Th en th e period of the transformation
is eith er one or two.

P roof. The t rajectory {x (t)} is integral and bounded. Each fun ction I i is th e
subg radient function of t he convex fun ction U j = f Ii· T hen u(YI,· .. ,Yn) =
L:U'(Yi) is convex and I(Y,,· · . ,Yn ) = (11 (Yl)," . ,fn(Yn)) is its subgradient
functio n.•

We will call the t ransformat ions defined in corollary 2.8 multi-threshold,
as a counterpart to th e mult i-t hresho ld transform at ions of type (1.4) which
were studied by Goles and Olivos.

3. Pre-periods

In this sect ion, we st udy the behavior of the t ra nsformat ions from sect ion
2 before they reach the period. We present two results. We give an upp er
bound on the number q of iterations before a multi-threshold t ransformat ion
reaches its period. We call q th e pre-period of the t ransformat ion.

Theorem 3.1. The pre-period of a. multi -threshold transforma.tion on a.
graph G is at most

24M'e+ 2 (3.1)

where e is the number of edges of G and M = max, IXi(O)I.
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We also st udy the change 6E(t) = E(t + 1) - E(t) in the energy func
tion during iterations. While 6E(t ) may be arbitrary for a multi-threshold
t ransformation, it is 6E(t) :0; 0 for the t ransformation given by (2.1) and
(2.2). The latter bas been shown in [4J together with an example that 6E(t)
may be zero for t not in the period. (It is easy for t in the period .) We prove
that it cannot happen in more than two subsequent iterations.

Theorem 3.2. Let ( x (t )} be the trajectory of the transforma tion given hy
(2.1) and (2.2). If 6E(t) = 6E(t + l) = 6E(t +2) = 0 then x( t) = x( t+2) .

We need the following lemmas 3.3 and 3.4 for the proof of theorem 3.1.

Lemma 3.3. ([9]) Let 9 : Z -+ Z be nondecreasing. Th en

k 1
Dg(z(t)) - g( z(t - l)))z(t) ~. - I{t Ig( z(t)) '" g(z(t - 1)), t = 1, .. . , kll
(=1 2

for every k ~ 2 and z(l), .. . , z( k) = z( O) E Z.

Combining lemmas 3.3 and 2.5, we get

Lemma 3.4. Let 9 : Z -+ Z be an odd nondecreasing mapping. Then

k

Dg(y(t)) + g(y( t - l)))y(t) ~
1=1

1
2"1(t Ig(y(t )) '" -g(y(t - 1)), t = 1, ... , k1I

for every k ~ 2 and y(l) , ... , y(k) = y(O) E Z.

Proof of theorem 3.1. Consider the initial segment (X (t )} 1~1 of the t ra
jectory before the period. Let y(t ) = Ax(t) and set c; = l{t IJ;(y;( t)) '"
- Ji(Yi(t - 1)), t = 2, . .. , ql I. Since [or every t = 1, ... , q there is some i such
that J;(Yi(t)) '" - J;(y;(t - 1)) , we have

n

I> ~ q - 1.
.=1

We est imate

by lemma 3.4 and (3.2) .
On the ot her hand , we have

(3.2)

(3.3)
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v = l:L ,(f( y(t)) + J(y(t - I )))y(t) + (f(y(q)) - J(y(O)))y(l)
= x(q+ I )Ax(q) - x(O) Ax( l) + (f(y(q)) - J(y(O )))y(l )
= x(q+ I)A x(q) - x(I )Ax(l ) + J (Ax( q))Ax(l ) ~ 3M ' IIAII.
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Comparing it with the lower bound (3.3) on V , and using IIAII = 4e, we get
(3.1). •

P roof of t heorem 3.2. For every t , define the set Z(t) = {i I A;x(t ) = O}
where Ai is the i th row of the matrix A. We claim that

c
Z( t - I) # Z( t) (3.4)

provided 6E(t) = 0 and t -I is not in the period. Set 6x(t) = x(t +I ) -x(t)
and 6 x;(t ) = x;(t +I )-x;(t) . We have 0 = 6E(t) = (6 x(t) +6x(t- I ) y(t ),
and hence

(6 x;(t ) +6x;(t - I»)y;(t ) = 0 for each i. (3.5)

For a contradiction, assume there is some i E Z( t - 1)\ Z (t ). Then 6 x;(t 
I ) = 0 (since i E Z(t - I » , and 6Xi(t) # 0 # Yi(t ) (since i rf- Z(t)) , which
cont radicts (3.5) . From (3.5) we also have

6 x;(t) = - 6 Xi( t - I ) for each y;(t) # o. (3.6)

Since t- I is not in the period, there is some i for which 6Xi( t) # 6x;(t- I),
and hence y;(t) = 0 by (3.5). It follows that 6 x;(t) = 0 while 6 x;(t - l) # O.
Hence, i E Z(t)\Z(t - I ), which proves the claim.

Define sets S+(t) and S-(t) by

S+(t ) = {i I A;x(t) = 0 and A;x(t - I) > O} ,
S-(t) = {i I A;x(t ) = 0 and A;x(t -I) < O}.

Clearly,

Z(t)\Z(t - I) = S+(t) U S-(t) . (3.7)

Clearly, it is sufficient to prove the theorem only for t = 1. For a contradic
tion , assume that 6 E( I) = 6E(2) = 6E(3) = 0 and x(l) # x(3).

If some i E S+(2), then A;x(2) = 0, A;x(l) > 0 by the definition of
S+(2), and A;x(O) < 0 by (3.6). Hence

0 < A;(x(2) - x(O)) = L:{a;j I j E S+(l )} - L:{a;j I j E S - (I)} (3.8)

for i E S+(2). Analogously, for i E S-(2), we have

0 < L:{a;j I j E S-(1)} - L:{a;j I j E S+( I)} . (3.9)

The union S+(2)U S-(2) is nonemp ty due to (3.4) and (3.7) . Summ ing up
(3.8) and (3 .9) over all i E S+(2) U S-(2), we get
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L)a,; I; E S+(2), j E S+(I )) +L{a,; I ; E S-(2),j E S-(1 ))

> L {a,; I ; E S+(2),j E S- (1 )) + L{a,; I; E S- (2), j E S +(I )) .

(3.10)

(3.11)

(3.12)

Now, consider an ; E S +(I ). As S+(I ) C Z(3) by (3.4), we have

A,x(l ) = A,x(3) = 0 for ; E S+(1).

By (3.5) and (3.6), th e compon ents of x(3) - x( l) are

{

0 if j ~ Z(2) or j E Z(1),
x;(3) - x;(I ) = I if j E S+(2),

- I If J E S- (2).

Hence (3.11) and (3.12) yield

A,(x(3) - x( I)) = L {a,; I j E S+(2)) - L {a,; I j E S-(2)) = 0.(3.13)

Summing up (3.13) over all ; E S+(I) , we get

L {a,; I j E S+(2),; E S+(I))- L {a,; I j E S-(2),; E S+(1)) = 0.(3.14)

For S- (1) we have analogously

L {a,; I j E S- (2), ; E S- (1)) - L {a,; I j E S+(2),; E S- (1)) = 0.(3.15)

But (3.14) and (3.15) contrad ict (3.10), wbich concludes the proof. •

C or ollary 3.5. Let G be a graph with at least two edges. Then the pre
period of the transformation given by (2.1) and (2.2) is a t most 60M e where
e is the number of edges of G and M = max, I x,(O) I.

Proof. Goles and Odlyzko have shown in the proof of theorem 2 of [3J t ha t
IE(t)1 ::; 8M e for t? 2M + 1. (T heir result is for the t ransformation given
by (2.4) but holds also for (2.2).) Theo rem 3.2 and E(t + I ) S E(t ) gives
the bound. •

Unfortunately, theorem 3.2 does not hold when (2.2) is replaced by ei
ther (2.3) or (2.4) . Consider the pa th of lengt h n with the initial values
(2, 1,0, 1, 0, I , ...). Then f',.E(t) = On - 2 times in sequence in t he pre
period.

We close the sect ion with an example showing that ~E(t) .:S. 0 need not
hold for a multi-threshold transformation.

Exampl e. Consider the transformation given by

I
x,(t + I) =x,( t) +g(- x,(t ) +d: L a,;x;(t)),
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where
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g(x) =Ufor x > l ,
for 0 < x :S 1,
for x = 0,

and g(x) = -g(-x ) for x < o.

Assume G = K 3 is the complete graph on 3 vertices, and the init ial values
are x (O ) = (2, 3,5) . Then x (l) = (4,4, 3) and x( 2) = (3,3,4). We have
l>E( I) = (x(O) - x (2))Ax(l ) = 3.•

4. Quasi-periods

In this section, we study the transformation (1.1) when the mapping f may
attain infinitely many dist inct values. The trajectory { x ( t )}~o need not be
periodic even if it is bounded. HoweverJ the trajectory st ill retains certain
periodic properties.

We say that a sequence {x (t )}~o of vectors from Rn has the quasi-period
p > 0 if

lim II x (t + p) - x( t) 11 = 0,
1_00

and (4.1) does not hold for any 0 < p' < p.

(4.1)

Theore m 4.1. Let A be a symmetric matrix of size n X n, u. be a convex
diiierent iebie iun ction that is even, and x(O) ERn. If the trajectory {x ( t )}~o

is bounded, then it has a quasi-period of ei ther one or two.

We need the following two lemmas from [6].

Le m ma 4.2. ({6J) Let { z(t)} ~o be a bounded sequence in R", and I: Rn ->

Rn be the gradient of a convex function u . Assume that (or every e > 0 there
exis ts an infinite set S of integers such that

.-1

o :S 2: I(z(t)) (z(t ) - z it - 1]) <c
t=r

[or every r , S E 5, r < s - 1. Then lim,_ oo II / (z (t)) - I (z(t - 1))11 = O.

(4.2)

Lemma 4. 3. ({6J) Let { X (t )}~l be a bounded sequen ce in R", Th en for
every fJ > 0 there is an infinite set S of integers satisfying

and

II x (r - j) - x (s - il ll :S 6 [or every r , s E 5 , j = 0,1 ,

T - S = 0 mod2 for every T , S E S.

(4.3)

(4.4)
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Proof o f theorem 4. 1. Let {x ( t )}~o be a trajectory of the transformat ion,
an d let M be such th at Ilx(t)11 :S M for all t. T he function f = VU is
continuous as u is differentiable [10]. Hence

'Ie > 0300 > O'lllxll , IIx'll :S M, IIx - x'il < 00 : IIf(Ax) - f(Ax' )1I < e.

(4.5)

Set 0 = 00(2MIIAII) - I. By lemma 4.3, there is an infini te set S of integers
such th at (4.3) and (4.4) hold . We have

. - 1
0 = L;(x lt + IJ- xlt - I])Ax(t) =

t=T

.-1

L;(f (y(t» + f (y(t -I)))y(t ) + (x(r - I) - x(s -I» y(r )+

(x(r) - x(s» y(s - I).

Using (4.3), we get

. - 1
1Df(y(t» + f (y(t - l)))y(t)1 < 00.

t=r

Using f(y ) = - f( - y) and (4.4), we may write

.-1

Df(y(t» + f (y(t - I)))y(t ) =
t= r

. - 1
Df(z(t» - f (z(t - I))) z( t) =
!=r

(4.6)

. - 1

L; f (z(t»)(z(t ) - zit + I]) + (f(z(s - I)) - f(z(r -I)))z(r) (4.7)
t=r

where

z(t ) = { y(t) if t is even,
- y(t) if t is odd.

We have IIf(z(s- I ))-f(z(r -I ))1I = II -f(y(s - I)+f(y(r - I))II < e by
(4.5) and hence

. - 1

IL;f(z(t ))(z(t ) - zit +1])1< 00 +eM IlAIl
t= r

by (4.6) and (4.7). App lying lemma 4.2 to {z(t )) , we get IIf (z(t» - f(z(t 
1» 11 ---> 0; hence, IIf(y(t»)+f (y(t-I ))II ---> 0, and finally Ilx(t+I )-x(t - I) 1I --->
oas t ---> 00 . •
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