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Abstract. The problem of testing whether a given cellular automaton
rule has an inverse was stated by Toffoli and Margolus. This problem
is equivalent to the invertibility of the given CA-rule (injectivity of the
global function it defines). It is decidable for one-dimensional cellular
automata and open for higher dimensions. We show some related
results and give automata-theoretic proofs of some known results.

1. Introduction

Recently, cellular automata (CA) have been intensively studied as models of
complex natural systems containing large numbers of simple identical com-
ponents with local interactions [13,14]. In these applications, an important
property of a CA is reversibility (invertibility). A cellular automaton is given
by its local rule (CA-rule) that specifies a deterministic global function on
the configurations of the system. If this function is injective (the system is
backward-deterministic), then the rule is called invertible; moreover, if there
is a CA-rule that makes the system to go backwards, then it is called the
inverse rule with respect to the original, or direct, rule. For more discussion,
see reference [13, chapter 14]; specifically, it is noted there that for locally
interacting systems having a finite amount of information per site, such as
cellular automata, reversibility is equivalent to the second law of thermody-
namics.

The injectivity of the global function defined by a cellular automaton was
studied in [1,9,11] using the terminology “tessellations with local transfor-
mations” rather than cellular automata. In particular, Amoroso and Patt [1]
have shown that given a one-dimensional CA-rule, it is decidable whether it
is invertible (i.e., whether the global function is injective), and Richardson
[11] has shown that a CA-rule is invertible iff it has an inverse. This result
holds for any n-dimensional CA. We will give an alternative automata theo-
retic proofs of these results for one-dimensional CA and show some related
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results. The above results give a solution for one-dimensional CA of a prob-
lem stated by Toffoli and Margolus. We quote from [13, p. 146]: “The theory
of invertible cellular automata has many open problems [12]; in particular,
no general decision procedure is known for determining whether a given rule
has an inverse (and this question may well be undecidable).” Since a CA-rule
has an inverse iff it is invertible, this problem is equivalent to the testing of
invertibility (injectiveness of the global function). This is decidable for one-
dimensional CA and open for two-dimensional. Our results will be limited
to one-dimensional (linear) CA only. A linear CA consists of biinfinite string
of identical cells. The next state of each cell is determined by the current
state of the cells in its neighborhood which consists of the cell itself and r of
its neighbors at each side, for some r > 0. It is clear that our results can be
generalized for different types of neighborhood.

Our arguments rely on the fact that the function defined by CA on biin-
finite configurations is continuous in the space S? endowed by the product
topology [3,4]. We will also use the fact that CA-functions can be defined by
our ww-sequential machines which are a generalization of sequential machines
[5] to biinfinite words or a special case of ww-finite transducers considered in
[4]. We will use some well-known results on finite transducers [6,2] and their
extensions to ww-sequential machines.

2. Preliminaries

Let Z be set of integers. A cellular automaton (CA) is an infinite array,
indexed by Z, of cells. Each cell is identified by its location I € Z.

At any time, each cell has a state, which belongs to a finite set 5. The
dynamic behavior of the CA is determined by a rule that describes the state
of each cell at time f 4+ 1 as a function of the states of the cell itself, the r
neighboring cells on its left, and the r neighboring cells on its right at time
t. The rule is invariant with respect to translations (shifts) of Z.

Formally, a cellular automaton is a triple A = (S, r, f), where S is a finite
set of states, r specifies the size of the neighborhood, and f : S — S is
the local function called the CA-rule.

A configuration ¢ of the CA is a function ¢ : Z — S, which assigns a state

S to each cell of the CA. The set of configurations is denoted §%. The local
function f is extended to the global function

G;:5% + 5%
of the set of configurations into itself. By definition, for ¢;,c; € SZ,

Gylar) = e

if and only if

c(d) = fla(i—r),aq(i —r+1),...,a(i + 1))
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forall i € Z.

The function ; describes the dynamic behavior of the CA: the CA moves
from the configuration ¢ at time ¢ to the configuration G(c) at time ¢ + L.
The state of cell 7 at time ¢ + 1 depends only on the states of the cells in the
neighborhood (i —r, i —7r+1,...,i4+r) at time £. Notice that besides being
locally defined, the global function Gy is total and translation-invariant.

We call a mapping h : §Z — 57 a CA-function if there is a CA-rule f
such that h = Gy.

Example 1. Let A = (5,2, f) be a CA, where § = {0,1}, and

1 oy taegtastaogtas=4;
a1, 22,35, 24, 25) = 0 otherwise.

If ¢ is a configuration consisting of all 1’s and ¢ is a configuration of all (s,

then Gy(c)=¢. B
Frequently, a state ¢ with the property

f((}aé;aaq'):&

is distinguished and called the quiescent state. In CA, there may be more
than one state with the above property, but at most, one of them is dis-
tinguished as the quiescent state. The configuration with all cells in the
quiescent state is called the quiescent configuration, denoted by Q.

The configuration space 5% is a product of infinitely many finite sets S.
When S is endowed with the discrete topology, the product topology on S%
is compact by Tychonoff’s theorem [7, theorem 5.13]. A subbasis of open
sets for the product topology consists of all sets of the form

{ceSz\c(i}=a}, (2.1)

where ¢ € Z and a € S. A subset of S is open if and only if it is a union
of finite intersections of sets of the form (2.1). It is easy to show that for
every CA-rule, the global [unction G is continuous from S to S%. (Thus,
the pair (S%,Gy) is a classical dynamical system, in the sense of [3]).

We assume that the reader is familiar with finite automata and regular
sets (see [6]); finite transducer is a nondeterministic finite automaton (possi-
bly with e-moves) that produces an output string at each step; for a formal
definition, see [2]. Their generalizations to biinfinite words (ww-words) are
called ww-finite automata, ww-regular sets, ww-finite transducers. They were
studied in [10] and [4].

A biinfinite word ¢ is a mapping Z — 5, where Z is the set of all integers
and S is a finite alphabet. The symbol ¢(j), j € Z, denotes the 7™ letter of
c.

The infinite repetition of the word w to the right is denoted by w®, the
infinite repetition to the left is denoted by “w. So, for example, “abc” denotes
an infinite number of a’s followed by one b and an infinite number of ¢’s. More
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precisely, “abe” is the (shift invariant) class of biinfinite words ay : Z — S,
for all k € Z, where

ap(j) = aforj <k,
ap(k) = b, and
ap(j) = clorj>k.

Configurations of a CA A = (S,r, f) can be viewed as biinfinite words
over alphabet §. Alternatively, they can be viewed as equivalence classes of
biinfinite words that are shift equivalent. Since Gy is always shift invariant,
we may view (7 as function over these equivalence classes.

Let § € S be the quiescent state. The biinfinite words in ¥§S*¢¥ are
called pseudofinite; that is, a configuration (word) is pseudofinite if it has
only finitely many nonquiescent states.

Now, we introduce the notion of a (nondeterministic) ww-sequential ma-
chine which defines a mapping on biinfinite words. It is a nondeterministic
ww-finite automaton [4,10] that consumes exactly one input symbol and pro-
duces exactly one output symbol at each step of the computation.

Formally, an ww-sequential machine M is a six-tuple (@, &, A, o, F,, Fr)
where

(i)
(i)
)

(iii) A is the output alphabet,

@ is the finite set of states,
b3

1s the input alphabet,

(iv) a: @ x & — 29%4 is the transition function,
(v) Fr € Q is the set of left (accepting) states, and
(vi) Fir C @ is the set of right (accepting) states.

A biinfinite word v is an output on biinfinite input v under ww-sequential
machine M if there is a biinfinite sequence of states in )

cerG-2,4-1,90, 91,92, - -
such that for all j € Z.

(i) (gi41,0(4)) € alg;,u(s)), and
(ii) there exist m,n € Z,m < j < n, such that ¢, € F, and ¢, € Fg.

The input-output relation defined by ww-sequential machine M is denoted
by R*(M). Now, we state the quite obvious relation between CA, ww-
sequential machines and finite transducers that will be useful later.

Lemma 1. For each CA-rule f : S**' — §, we can construct an ww-
sequential machine M such that
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(i) (M) = Gy.
Moreover, if § € S (the quiescent symbol), then we can construct ww-
sequential machine M (the restriction of M to pseudofinite words) and
finite transducer M such that

(i) R=(M) = G;N(*§S*§ x “5¥)
(iii) ?‘(}]%) = {(u,v)|(“§ug”, “4v§*) € R*“(M) and u,v € (S—{q})S*(
q 3

Proof. Parts (i) and (ii) are obvious; part (iii) is a routine exercise on finite
transducers.

[¥5]

3. Invertible cellular automata

A CA-rule f: §**! — S is invertible if the global function G is injective,
that is, if for a, 8 € S% Gs(a) = G4(/3) implies a = . If there is a CA-rule
g : S**!' — § for some s > 0 such that the composition of G; and G is the
identity mapping on SZ we call g an inverse rule of CA-rule f and say that
[ has an inverse. Actually, we will show that every invertible CA-rule has
an inverse, which certainly is not obvious.

The following easy observation is in [13].

Lemma 2. Given two CA-rules f : §*+! — S and g: §**' = S5, r,s >0,
we can test whether g is an inverse of f.

The above result, clearly holds even if g and f are defined by single-valued
ww-sequential machines.

Since there are only finitely many possible CA-rules with fixed set of states
and fixed r (the size of neighborhood), it immediately follows by lemma 2
that it is decidable whether a given CA-rule has an inverse with the same
neighborhood (same 7). Later (theorem 2), we will show that we can also
decide whether there exists an inverse with arbitrary size of neighborhood.

Now, we show that two variants of the invertibility problem for CA are

decidable.

Theorem 1. Given a CA-rule f, it is decidable whether Gy Is injective on
pseudofinite configurations.

Proof. By lemma 1, we can construct ww-sequential machine M such that
R““(M) = G; and finite transducer M such that R(M) is the restriction of
Gy to pseudofinite strings with the “blanks” omitted.

Using well-known results on finite transducers, see [2] or [6], we can con-
struct finite transducer N such that R(N) = R(M)~! and test whether N
is single-valued. Clearly, Gy is invertible on pseudofinite strings iff NV is
single-valued. B

Using a combinatorial argument, it was shown in [1] that, given a CA-
rule f, it is decidable whether f is invertible (whether Gy is injective). We
give an alternative automata theoretic proof of this result. First, we need a
lemma which is of interest on its own.
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Lemma 3. Let f : S** — S be a CA-rule. The global function G is
injective iff it is injective on the periodic configurations (ww-strings over S).

Proof. Assume f is not invertible (G is not injective); that is, there are
two distinet ww-strings «, 3 such that

Gyla) = G4(B) =7

In the following, we consider ww-strings as mappings Z — S, not as equiva-
lence classes of these mappings with respect to shifting. We need to fix the
mutual position of a, § and their image. Since @, # are biinfinite, we can find
their substrings of length 2r (for any fixed r) that repeat in the same posi-
tions, and since they are distinct, we can choose such repetition that the sub-
strings between them are distinct. Formally, we can find 5,1 € Z, s4+2r <1t
such that

a(s+i)=a(t+1), B(s+i) = At +1)

fori=0,...,2r —1 and a(j) # B(j) forsome j, s+2r < j <t —1.

Now, we transform a and f into distinct periodic ww-strings on which G;
agrees. Consider the following finite strings ui,us,v1,v2, 2,y and w, (see
figure 1). Note that x # y because a(j) £ B(j).

up = afs)...afs+r—1) = at)...a(t+r—1)
uz = a(s+r)...als+2r—1) = a(t+r)...a(t+2r-1)

vy = fs)...B8s+r—1) = B(t)...8t+r—1)
vz = B(s+r)...B(s+2r—1) = Blt+r)...0(t+2r=1)
z = als+2r)...a(t-1)

Y Bls+2r)...8(t—1)
w = Y(s+r)...qt+r-1)

vy V2

} I 1

: 4 z ]u]_!uzl |U1|u:| y . }
\ ] / \ ; /

Figure 1: Two distinct substrings with the same image,

Now, we define the periodic ww-strings
T = “(u21y)* and o = “(voyvy)¥,
or, more precisely,
T(s+r+i+k(t—s)=als+r+i) and

o(s+r+it+k(t—3s)=0(s+r+1)
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fori=0,...,t—s—1and k€ Z.

Clearly, G(7) = “w* = G4(z). Since 7 # o, we have shown that G; is
not injective on periodic configurations. B

A combinatorial proof of the following result was given in [1].

Theorem 2. Given a CA-rule f : S**' — §, it is decidable whether f is
invertible (G is injective).

Proof. By lemma 3, it is sufficient to test the injectivity of G; on the periodic
configurations. We will do this by constructing a finite transducer that will
simulate G'; on one period of any periodic configuration.

Let p C S5* x 5* be defined by
p=A{(u,v) € 5" x §* | u| = Jo],Gs(*u*) = “v"}.

More precisely, we are requiring that u and v are in the “same position”, i.e.
that

u= “u’(s)... “u’(s+ k) and
v= Yv¥(s)... “v¥(s+ k)

for some s € Z and k > 0.

A finite transducer T; defining p can be constructed as follows. Tirst,
Ty guesses the last r symbols in its input u, then reads u and simulates G.
It remembers the first » symbols in order to be able to compute the last »
oufputs. It guesses that the last r inpufs are coming, and if they match its
original guess, then T goes into a final state.

By interchanging inputs and outputs of 7', we obtain a finite transducer
Ty defining p~'. Clearly, Gy is injective on periodic configurations iff 7} is
single-valued. The latter is decidable [2]. B

Remark. A more detailed analysis of the proof of lemma 3 allows to
strengthen lemma 3 and theorem 2. From the number of states in S and
the size of the neighborhood r, we can compute bound B such that the func-
tion Gy is injective iff it is injective on periodic configurations with period
at most B. This gives the possibility of an alternate proof of (strengthened)
theorem 2 by bounding the size of the neighborhood of a possible inverse
rule. The latter is particularly interesting in view of potential cryptographic
applications.

Lemma 4. Given a (nondeterministic) ww-sequential machine M, it is de-
cidable whether M defines a CA-function, that is whether there is a CA-rule
f: S¥' — § for some r > 0 such that R**(M) = G;. Moreover, if
R*“(M) is a CA-function, then we can effectively find the smallest integer
ro and CA-rule fy such that fy : S*+' — § and R**(M) = Gy,.

Proof. Define the set Ry C (S x §)* consisting of all strings of pairs
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(ala a2m+l)(a21 a?m) “ee (ara ar+2)(ar+l ) ar+l)

such that the output symbol that M produces after reading the symbol @41
in the biinfinite word ... @1as3...a2m41 ... is not uniquely determined. See
figure 2 for substring a;, @z, as, a4, as yielding b or ¢, b # ¢, after reading as.
This substring will be folded into the string (a;,as)(az, a4)(as, asz) in Rpy.

By constructing a nondeterministic finite automaton that simulates M
forward on the odd components of the quadruples and backwards on the
even components (starting from an arbitrary state), we show that the set
Ry is (effectively) regular, and therefore, we can test whether Ry is finite
[6]. Clearly, R**(M) is a CA-function iff Ry is finite.

Finally, if Ras is finite, then let 2rq+1 be the length of the longest string
in Ry. Clearly, ry is the smallest integer such that fy : §?°*! — S and
Gy = R=~(M).

a, a; az a4 Aas a; a9 as a4 as

b - - - - ¢

Figure 2: If b # ¢, then there is no CA-rule with r = 2.

In reference [11], the following result was shown for arbitrary n-dimensional
CA as a corollary of properties of nondeterministic local transformations. We
give a direct proof for one-dimensional CA. Qur proof can be extended to
n-dimensions for arbitrary n > 1.

Theorem 3. A CA-rule f : §¥*! — § has an inverse if and only if it is
invertible.

Proof. 1. Obviously, if f has an inverse, then it is invertible. 2. We extend
function f to subconfigurations of length at least 2r + 1 in the obvious way.
For all m > 1, let

f((l]ag as a2,+m) = f(a, . (12r+1)f(ag . a-_z.,-+2) el f(am g, Ggr+m).

Now, assume that f is invertible but does not have an inverse. That means
that for all s > 0 there exist u,, vs, w,, 25,y, € S5, |w,| = s,
and a,, b, € S, a, # b, such that

f("sasv:) = f(.’l:_,b_,y,) =w, (31)

(see figure 3).
We define a partial ordering < on S* by:

z <y iff y = uzv for some u,v € §*, |[u| = |v|
and we extend < to S* x S* by:

(u,v) < (z,y) fu <z and v < y.
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Partial ordering < defines an infinite rooted tree of finite degree on pairs
(wsasvs, wsbsy,); thus, by Konig infinity lemma [8, p. 381], there exists an
infinite strictly increasing sequence of integers 1,14,123, ... such that

(i, @iy iy 5 Ty by Yy ) < (”izﬂiz Vigy Tig iy Yin ) < -
The limits «, 3, with a # 3, clearly exist in the product topology on 57
o= lim u;,ai,0i,, B= lm 2,05, -

Since f(u,a;,v:,) = f(2:,bi0:,) = w;, for alln > 1, by continuity of function
Gy we have Gy(a) = G4(8), a contradiction with the invertibility of f. B

Theorem 4. Given a CA-rule f : S+t — 8, it is decidable whether f has
an inverse, that is, whether there is a CA-rule g : §**' — S, for some s > 0
such that Gy o Gy is the identity on S?. If it exists, then g with the minimal
s (size of the neighborhood) can be constructed.

AV VAV

Figure 3: Two distinct substrings with the same image.

Proof. By theorem 2, f has an inverse iff it is invertible. The invertibility
of a CA-function is decidable by theorem 2. If f has an inverse, we can, by
lemma 4, find the inverse rule ¢ : $%*! — § with the minimal s > 0. B

An alternative proof is as follows. By lemma 1, we can construct an ww-
sequential machine M such that R*“(M) = G;. By interchanging inputs-and
outputs of M we obtain ww-sequential machine IV, such that R**(N) = G}l.
By lemma 4, we can test whether NV defines a CA-function, that is, whether
there exists an inverse g of f. B

Remark. Let f: S+ — S be a CA-rule with the quiescent state §. Tt
follows easily by our previous considerations that f has an inverse (on S%)
iff f has an inverse on pseudofinite configurations.
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