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A b stract. T he problem of tes t ing whet her a given cellular automaton
ru le has an inve rse was stated by Toffoli and Mar golus . This probl em
is equivalent to the invert ibility of the given CA-rule [inject.ivity of th e
global funct ion it defines). II is deci da ble for one-dimension al cellular
automata and ope n for higher d imensions . We show some related
resu lts and give automata-theore t ic proofs of some known results.

1. Introduc t ion

Recent ly, cellular automata (CA) have been intensively studied as models of
complex natur a l systems containing large numbers of simp le iden t ical com­
ponent s wit h local interact ions [13,14]. In these app lication s, an important
proper ty of a CA is reversibility (invertibility ). A cellular automaton is given
by its local ru le (CA-rule) that specifies a determinist ic global function on
the configurat ions of the system. If this funct ion is injective (t he system is
backward-determinist ic}, then the rule is called inverti ble; moreover , if there
is a CA-rule that makes the system to go backwards, then it is called t he
inverse rule with respect to the original, or direct , rule. For more discussion,
see reference [13, chapter 14J; specifically, it is noted there that for locally
interadi ng syste ms having a finite amount of informat ion per site, such as
cellular automata, reversibility is equivalent to the second law of thermody­
narru cs.

Th e injectivi ty of t he global function defined by a cellular au tomaton was
st udied in [1 ,9,11] using the terminology "tessellat ions with local transfor­
mations" rather than cellular automata. In particular, Amoroso and Patt (1]
have shown that given a one-dimensional CA-rule, it is decidable wheth er it
is invertible [i.e., wheth er the global funct ion is injective), and Richardson
[11] has shown that a CA-rule is inverti ble iff it has an inverse. T his result
holds for any n-dimensional CA. We will give an alte rnative automata theo­
ret ic proo fs of these result s for one-dimensional CA and show some related
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results. The above resul ts give a solut ion for one-dimensional CA of a prob­
lem stated by Toffoli and Margolus. We quote from [13, p. 146): "T he theory
of invert ible cellular automata has many open problems [12]i in part icular ,
no general decision procedure is known for dete rmining whether a given rule
has an inverse {and this questio n may well be undecidable)." Since a CA-rule
has an inverse iff it is invert ible, th is problem is equ ivalent to the tes t ing of
invet tibil ity [inject iveness of the global function). T his is decidable for one­
dimensional CA and open for two-dimensional. Our resul ts will be limited
to one-dimensional (linear) CA only. A linear CA consists of biinfinite st ring
of identical cells. T he next state of each cell is determined by the cur rent
state of t he cells in its neighborhood which consists of the cell itself and r of
its neighbors at each side , for some r ~ O. It is clear that our results can be
general ized for different types of neighbor hood.

Our arguments rely on the fact t hat the funct ion defined by CA on biin­
finite configurat ions is cont inuous in the space 5z endowed by the prod uct
to pology [3,4J. We will also use the fact tha t CA-funct ions can be defined by
our ww-sequent ia l machines which are a general ization of sequent ial machines
15} to biinfinite words or a spec ial case of ww-finite tr ansducers considered in
[4). 'We will use some well-known results on finite t ransd ucers [6,2) and their
extensions to ww-sequent ial machines.

2. P relim in ar ies

Let Z be set of integers. A cellular au toma ton (CA) is an infinite array,
indexed by Z, of cehs. Each cell is identified by its location I E Z.

At any t ime, each cell has a sta te, which belongs to a finite set S. T he
dynamic behavior of the CA is determined by a rule that descr ibes th e state
of each cell at tim e t +1 as a funct ion of the states of th e cell itself, the 7'

neighboring cells on its left , and the 7' neighboring cells on its right at t ime
t . T he rule is invariant wit h respect to t ransla t ions (shifts) of Z .

Formally, a cellular automaton is a t rip le A = (5, t -, f ). where S is a finite
set of states, r specifies the size of the neighborhood, and f : 5 2 r+1

-. S is
the local function called the CA-rule.

A con figuration c of the CA is a funct ion c : Z -. 5, which assigns a sta te
S to each cell of the CA. T he set of configurat ions is denoted SZ Th e local
funct ion f is extended to the global function

of t he set of configura t ions into itself. By defini t ion, for Cl , C2 E s-,

if and only if
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for all i E Z .
The function G I describes t he dynamic behavior of th e CA : t he CA moves

from the configuratio n c at t ime t to th e configurat ion GI (c) at t ime t + 1.
The stat e of cell i at time t +1 dep ends only on the st ates of t he cells in the
neighborhood (i - T, i - r + 1, . . . , i +10

) at t ime t. Notice th at besid es bein g
locally defin ed, the global function Gf is to tal and t ranslat ion-inva riant.

VYe call a mapping h : SZ ----+ SZ a CA-Iunction if t here is a CA-rule f
such that h = GJ .

Examp le 1. Let A = (S , 2, J) be a CA , where S = {O , I}, and

f(X" X"X3, X4 ,X5) = { ~ if Xl + X2 + X3 + X " + Xs = 4;
otherwise.

If c is a configuration consisting of all 1's a nd c' is a con figure.non of all O's,
then GJ(c) = c' . •

Frequ en tly, a st ate ij with the property

f(q ,q, .. . ,q) = q

is distinguished and call ed the quiescen t state. In CA , t here may be more
than one state wit h the above proper ty, but at most, one of them is dis­
tinguished as the qui escen t state. T he configuration with all cells in t he
qu iescent sta te is ca lled the quiescent con figurat ion, denoted by Q.

The config uration space SZ is a product of infinitely many finite sets S.
When S is endowed with t he discrete topology, the produ ct topology on S Z
is compact by Tychonoff's theorem [7, t heorem 5.13]. A subbas is of op en
sets for t he prod uct topology consist s of all sets of the form

{ c E SZ Ic( i ) = a } , (2.1)

where i E Z and a E S. A subset of SZ is open if and onl y if it is a union
of finite intersect ions of sets of th e form (2 .1) . It is easy to show t ha t {or
every CA -rule, th e global fun ction G I is cont inuous from SZ to SZ. (Thus,
the pair (S z ,GJ) is a classical dynamical system, in th e sense of [3]).

\ ,ye assume that t he reader is familiar with finit e automata and regul ar
set s (see [6]); finite transducer is a nondeterminist ic finite au tomaton (possi­
bly wit h e-moves ) t ha t pro duces an out put string at eac h ste p ; for a formal
defin it ion, see [2]. Their gene ralizations to bi infini te words (ww-words) are
called ww-fini te automata, ww-regular sets, ww-finite transducers. They were
st udied in [1 01 and [4J.

A bi infinite wor d c is a mapping Z ----+ S, where Z is the set of all integers
and S is a finite alphabet . The symbol c(j ), j E Z , denotes the ph let ter of
c.

The infini te repetition of t he word w to the right is denoted by w W
, the

infinite repetition to the left is denoted by W w . So, for exam ple, wabcw denotes
an infinit e number of a's followed by one b and an infinite num ber of c's . More
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precisely, wabcw is the (shift invariant) class of biinfini te words a k : Z ---t 5 ,
for all k E Z, where

O'k(j )
ak(k)
ak(j )

a for j < k;

b, and

c for j > k.

Configurations of a CA A = (5, r , f) can be viewed as biinfinite word s
over alphabet S . Alternatively, they can be viewed as equivalence classes of
biinfinite words th a t are shift equ ivalent. Since Gf is always shift inva riant ,
we may view GJ as funct ion over these equi valenc e classes.

Let if. E S be the quiescent stat e . T he biinfini te word s in wijS*qW a re
called pseudofinite; that is, a configurat ion (word) is pseudofini te if it has
only finitely many nonquiescen t states.

Now I we introd lice the notion of a (nondeterminist ic) ww-sequential ma­
chine which defines a mapping on biinfinite words. It is a nondeterminist ic
ww-finit e automaton [4,10] tha t consumes exactly one input symbol and pro­
du ces exa ctl y one ou tput symbol at each step of the computat ion .

Formal ly, an ww-sequential machine M is a six-t uple (Q, E, .6., Q, FL , FR )

where

(i) Q is th e fini te set of st ates,

(ii) I; is t he input alph ab et,

(iii) /:; is the ou tput alphabet ,

(iv) a : Q x E ---+ 2Qx
.6. is the t ransit ion function,

(v) Ft. c;:; Q is th e set of left (accepting) st at es, and

(vi) FR c;:; Q is the set of righ t (accepting) states.

A biinfinite word V is an output on biinfinite input u under ww-sequential
machine M if there is a biinfinite sequence of states in Q

such that for all j E Z.

(i) (qj+I,v(j) ) E O'(qj,u (j )), and

(ii) t her e exist m , n EZ, m :s: j :s: n, such that qm E FL and qn E FR.

The input-out put relation defined by cec-sequen tial machine M is deno ted
by RWW(M). Now, we state the quite obvious relation between CA , ww­

sequential ma chines and finite t ransducers tha t will be useful la ter.

Lemma 1. For each CA-rule f : s2r+l --t 5 , we can construct an WW~

sequential machine M such that
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(i) R"'"'(M) = GJ.
Moreover, if qE S (the quiescent sym bol), then we can const ruct ww ­

sequent ial machine M (t llC restriction of A1 to pseudofinite words) an d
finite tran sdu cer M such that

(ii) R"W(il ) = GJn(wqS' ij'" x WSW)

(iii) R(M ) = { (u,v)l(wquqw, WqvqW) E R"'"'(M ) and u,v E (S-{q ))S'(S­
{<i}».

Proof. Parts (i) an d (ii) are obvious; pa rt (ii i) is a rou t ine exercise on fin ite
transdu cers.•

3. Invert ib le cellu lar a ut om at a

A CA-rule f : S2r+l -+ S is in verti ble if the globa l funct ion GJ is inject ive,
that is, if for a, fJ E SZ GJ(a) = GJ(fJ ) imp lies a = fJ . If there is a CA-rule
g: 5 2"+ 1 ---+ S for some s ~ 0 such that the composit ion of GJ and Gg is the
ident ity mapping on S Z we call 9 an inverse rule of CA-rule f and say that
J has an in verse. Actu ally, we will show that every inver tible CA-rule has
an inverse} which certainly is not obviou s.

The following easy observation is in [1 3].

Lemma 2. Given two CA- rules J : 5 2r H -+ 5 and 9 : S2lJH -+ 5, r ,3 2:: 0,
we can test whether 9 is an inverse of f.

T he above resul t , clearly holds even if 9 an d J are defined by single-valued
ww-sequent ial machines.

Since there are only finitely ma ny possible CA-rules with fixed set of st ates
and fixed r (t he size of neighborho od), it immed iately follows by lemm a 2
t hat it is decidab le whether a given CA-n llc has an inverse with th e same
neighbo rhood (same f'). Later (t heorem 2) , we will show th at we can also
decide wheth er there exists an inverse with ar bit ra ry size of neighbo rhood.

Now, we show that two var iants of the inver ti bility problem for CA are
decida ble.

'I' heor-em L. Given a CA-rule [ , it is decidable wheth er G f is injecti ve on
pseudo fill it e configurat ions.

Proof. By lemm a I, we can construct ww-sequential machine M such t hat
R"W(M ) = GJ and finite transd ucer NI such that R(M ) is the restri ction of
Gf to pseudofinite st rings with the "blanks" omitted .

Using well-known results on finite t ran sd ucers, see [2] or [6], we can con­
st ru ct finite tran sducer N such that R(N ) = R(NJ)- I an d test whether N
is single-valued . Clea rly, GJ is invertible on pseudofinite st rings iff N is
single-valued . •

Using a combinatorial argument, it was shown in [1J that , given a CA­
ru le I , it is decidable whether I is invert ible (whether Gf is inject ive). Vve
give an alternat ive automata th eoretic proof of thi s result. Fir st , we need a
lemma which is of interest on its own.
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Lemma 3 . [Jet f : S2r+l ---+ S be a CA-ruJe. The global function Gf is
injective jff it is injecti ve Oil the periodic configuratio ns (ww -strings over S ).

Pro o f. Assume f is not invertible (GJ is not inject ive); that is, there are
two dist inct ""'w-s trings Q, fJ such that

In the following, we consider ww-strings as mappings Z -+ S, not as equiva­
lence classes of these mappings with respect to shifting. We need to fix the
mutual position of Ct. , /3 and their image. Since 0 , /3 are biinfinitc, we can find
their substrings of length 2r (for any fixed r) that repeat in the same posi­
tions, and since they are distinct , we can choose such repetition that the sub­
strings between them are dist inct. Formally, we can find s , t E Z, S +2r < t I

such that

0'(8+ i) = 0'(t + i) , 19(8 + i) = p( t + i)

for i = 0, ... ,2r - 1 and a(j) i' P(j ) for some i , 8 + 2r S j S t - l.
Now, we t ra nsform a and f3 into distinct period ic wee-st rings on which Gf

agrees. Consider the following finite strings U I , Uz, VI, 'U2 , X, Y and w , (see
fi gure 1). Note that x i' y because a(j ) i' P(j) .

U I = a(8) .. .a(8+r- 1) = 0'(t ) . .. 0'(t + ,. - 1)
u, = a(8+'·) . . . a(8+ 2r - 1) = a(t+r) . . . a( t+2r- l)
V I = p(8) .. . p(8 +r - 1) = p(t) .. . p(t +r -1)
V , = 19(8 + '·) · · ·19(8 + 2,. - 1) = p( t+r) . .. p(I+ 2"- I )
x = 0'(8 + 21·) ... 0'(1- 1)
y = p(s + 21·) .. . p(t - 1)

10 = , (8 + r) ... 'l"(t + r: - 1)

z

w

Vjl I y

w

Figure I: Two dist inct substrings with the same image .

Now, we define the periodic ww-strings

or1 more precisely,

r (8 +r+i+k(t- 8))=a(8+r+ i) and

u(8+ r + i + k(t - 8» = 19(8 + r + i)
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for i = 0, ... , t - s - 1 and k E Z .
Clearly, Gj(r) = WWW = Gj (a). Since T i= a, we have shown t hat Gf is

not injecti ve on periodic configura t ions.•
A combinatorial proof of the following result was given in {I].

T heorem 2. Given a CA-rule f : S2r+I -+ S, it is decidable whether J is
invertible (G, is injective) .

Proof. By lemma 3, it is sufficient to tes t the injecti vity of Gj on the period ic
configurations. vVe will do t his by const ruct ing a finite transducer that will
simulate Gj on one period of any periodic configuration.

Let p ~ 5* X S* be defined by

More precisely, we are requir ing that u and v are in th e "same position" , i.e.
that

u = WUW(s) WUW(s +k) and

v = WVW(s) WVW(s + k)

for some s E Z and k ~ O.
A finite transducer T1 defining p can he const ructe d as follows. Fir st ,

T1 guesses the last r symbols in its input ti , then read s u and simulates GJ.

It remembers the first r symbo ls in order to be ab le to com pute t he last r
outp ut s. It guesses that the last r inp uts are corning, and if they match its
or iginal guess, then T1 goes into a final state.

By interchanging inputs and out puts of TIl we obtain a fi nite t ransducer
T2 defining p -I. Clearly, GJ is injective on periodic configurat ions iff T2 is
single-valued. The lat ter is decidable [21.•

Remark. A more detailed analysis of the pro of of lemm a 3 allows to
st rengthen lemma 3 and theorem 2. From th e numb er of states in Sand
the size of the neighborhood 1' , we can compute bound B such th at the func­
t ion Gf is injective iff it is injective on periodic configurations with period
at most B. Th is gives th e possibility of an alternate proof of (st rengthened)
th eorem 2 by boundin g the size of t he neighborhood of a possible inverse
rule. Th e latter is particularly interest ing in view of potential cryptographic
appli cati ons.

Lem m a 4. Given a (nondeterministic) ww.sequential machine M , it is de­
cidable whether 111 defines a CA-function, that is whether there is a CA-rule
J ; 5,,+1 .... 5 [or some r ~ 0 sucb tbat R-(M) = G,. Moreover, i[
Jr'1W(l\1) is a CA. function, then we can effecti vely find the smallest integer
ro and CA-nl1e Jo sucb that [o ; 5",+1 .... 5 and R-(M) = G".

Proof. Define the set RAt ~ (5 x 5 )* consisting of all st rings of pairs
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such that t he outpu t symbol that A1 produces after reading t he symbol a m +l
in th e biiufini te word ... ata2 .. . a2m+l ... is not uniquely determined. See
figure 2 for subs t ring a t , az, aJ, a4, as yield ing b or c, b i: c, after readi ng a3_
This subst ring will be folded into th e st ring (a"as )(a"a.,)(a3,a3) in R,t .

By const ructing a nondeterminist ic finite aut oma ton that simulates NI
forward on th e odd components of th e quadruples and backwards on the
even compon ents (star ting from an arbit rary state), we show that t he set
RM is (effect ively) regular , and th erefore, we can test whether R.lJ,1 is finite
[61 . Clearly, R""'(M) is a CA-function iff RM is finite.

Finally, if RAt is finit e, then let 2ro + 1 be the length of the longest st ring
in R."t. Clearly, ro is the smallest integer such th at fa : S2ro+l --l Sand
C/, = R""'(M ). •

Figure 2: If b f= c, then there is no CA-rule with r = 2.

In reference [l l] , the following result was shown for arbit ra ry n-dimensional
CA as a corollary of propert ies of nondeterminist ic local t ransformat ions. \Ve
give a direct proof for one-dimensional CA. Our proof can be extended to
n- dimensions for arbitrary n ~ 1.

Theorem 3. A CA-ru le J : S2r +t --l S has a.n in verse if and only jf it is
invertible.

P roof. 1. Obviously, if f has an inverse, then it is invertible. 2. We extend
function J to subconfigurations of length at least 2r + 1 in the obvious way.
For all m ~ 1, let

J(a,a, .. .a',+m) = J(a, . . .a,,+.JJ(a, ... a"H) '" J(a m · · · a,,+m)'

Now, assume that J is inver t ible but does not have an inverse. That means
that for all s ~ 0 there exist u . , Us, W s , X .s, Y .s E S*, Iw..1= s,
and as, b, E 5, a.. f- b, such that

J(u ,a,v,) = J(x, b,y,) = w, (3.1)

(see figure 3).
\Ve define a partial ord ering -< on 5* by:

x -< Y iff y = uxu for some u, v E S*, luI Iv l

and we extend -< to S* x S* by:

(tL ,v) -« x, y) if u -c e and v -<Yo
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Partial order ing -< defines an infini te rooted t ree of finite deg ree on pairs
(usasvs, xs bsYs)j thus, by Kon ig infinity lemma [8, p. 381], there exis ts an
infinite strictly increasing sequence of integers i ll i2l i3, . . . such that

T he limits a,{3, wit h 0: I:- {3, clea rly exist in the product topology on SZ

a = lim Ui" ainVin, {3 = lim XinbinYin .
n -c-oc n -c-cc

Since f(uinainvin) = J(Xinb inYin) = Win for all n ~ 1, by continuity offunct ion
Gj we have Gj(a) = Gj{/3), a contradiction with the invertibility of f .•

Theorem 4 . Gi ven a CA-rule J : S2r+l --t S, it is decidable whether f has
an inverse, that is, whether there is a CA~rule 9 : S2s+1 --t S, for some s ;::: 0
such thet GJ 0 Gg is the identi ty on s» , If it exists, then 9 with the mi nima.1
s (size of the neigh borhood) can be constructed.

Figure 3: Two distinct substrings with the same image.

Pro of. By theorem 2, J has an inverse iff it is inver ti ble. Th e inver t ibility
of a CA-funct ion is decida ble by theorem 2. If f has an inverse, we can, by
lemma 4, find the inverse rule 9 ; 82s+1

--t S wit h the minimal s ~ o.•
An alternative proof is as follows. By lemma 1, we can construct an ww­

sequential machine M such th a t /-t""" (M ) = G/ . By interchanging inputs-and
outp uts of M we obta in ceo-seque ntial machine N, such that RWW(N) = Gf

l
.

By lemma 4, we can test whether N defines a CA-function , that is, whether
there exists an inverse 9 of f . •

Remark. Let f ; S 2r+1 -; S be a CA-rule with the quiescent state if. It
follows eas ily by our previous cons iderations that f has an inverse (on SZ)
iff f has an inverse on pseudofinite configurat ions .
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