Complex Systems 1 (1987) 1045-1062

Scaling of Preimages In Cellular Automata

Erica Jen
Theoretical Division, MS-B258, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA

Abstract. A cellular automaton consists of a lattice of sites whose
values evolve deterministically according to a local interaction rule.
For a given rule and arbitrary spatial sequence, the preimage of the
sequence is defined to be the set of tuples that are mapped by the rule
onto the sequence. Recurrence relations are provided that express the
number of preimages for a general spatial sequence in terms of the
number of preimages for its subsequences. These relations are applied
to the analysis of a quantity a,, defined as the total number of preim-
ages for spatial sequences of length n whose probabilities of occurrence
are in a certain sense minimal after one iteration of the rule. In partic-
ular, the recurrence relations are used to characterize automata rules
by parameters representing the amount of information about an ar-
bitrary spatial sequence needed to determine the values that, when
appended to the sequence, minimize the number of preimages. On
the basis of this characterization, it is proved that, for all nearest-
neighbor automata rules on infinite lattices, the quantity o, scales
exactly with the length n of the spatial sequence; that is, a, = ¢+ 27
for n sufficiently large, where ¢ is a constant depending on the rule.
A symmetric result holds in the case of maximal preimages.

1. Introduction

This paper discusses preimages for one-dimensional cellular automaton rules
on infinite lattices. For a given rule and arbitrary spatial sequence, the
preimage of the sequence is defined to be the set of tuples that are mapped
by the rule onto the sequence.

Preimages provide information on the probability distribution of spatial
sequences associated with an automaton rule. For example, the number of
preimages for a sequence determines its probability of occurrence after one
iteration of the rule operating on an initial condition in which all sequences
appear with uniform probability. Preimages have been been the subject of
many studies focussing on questions including the relationship between num-
ber of preimages and statistical measures such as dimension and entropy [1],
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the relationship among preimages, surjectivity, and reversibility [2,3,4], the
existence of spatial sequences termed “gardens of Eden” with no preimages
[5,6], and the existence of sequences with infinite-order preimages (that is,
sequences that are the image of some other sequence after the rule has been
applied for any finite number of time steps) [7].

In this paper, a coupled system of recurrence relations is introduced for
finding the number of preimages of general spatial sequences. The recurrence
relations categorize and count preimages according to their endtuples. The
finite neighborhood size of cellular automata rules implies that if the endtu-
ples are long enough, then these counts for sequences of length k suffice to
determine the number of preimages for sequences of length & 4 1. The re-
currence relations can be reformulated in matrix form, and thus represent an
analytically useful (and computationally feasible) technique for enumeration
of preimages.

The recurrence relations for general spatial sequences are used here to
study the dependence of the number of preimages on sequence length. This
dependence will be analyzed in particular for a set of spatial sequences whose
preimages are in a certain sense minimal under the rule. The set is defined as
follows: Given any sequence S of length n, construct “extended” sequences
of length n+ 2 consisting of .S together with new values appended on the left
and right. Include in the set the extended sequence with the minimal number
of preimages. Then, define a quantity a,, to be the total number of preimages
for all the sequences in the set. In the case of nearest-neighbor, binary site-
valued automata rules, this quantity e, will be shown here to scale exactly
with the length of the spatial sequences; i.e., a, = ¢- 2" for sufliciently large
n, where ¢ is a constant depending on the rule. The crucial observation used
in establishing this scaling behavior is that it is not in general necessary to
know all the values of a sequence in order to determine the values that, when
appended to the sequence, minimize its number of preimages.

A symmetric result holds for maximal preimages; i.e., the total number
of preimages for the set of extended sequences with maximal number of
preimages also scales exactly with the length of the sequence. The difference
between the scaling coefficient for maximal versus minimal preimages can be
interpreted as indicating the degree to which the rule changes a [requency
distribution after one iteration. (See reference [8] for a discussion of this and
other implications of the scaling behavior.)

This paper is organized as follows. Section 2 provides the recurrence
relations that maintain counts of preimages for spatial sequences for gen-
eral automata of arbitrary neighborhood size. The last part of the section
reformulates these relations in matrix form. Section 3 then provides the
proof of the exact scaling behavior in the case of nearest-neighbor automata
rules. The questions discussed in this section include: the use of endtuples to
“guess” the values that, when appended to a sequence, minimize (maximize)
the number of preimages; the derivation of the parameters characterizing the
amount of information about a sequence needed to ensure the correctness of
this guess; and the features of the rules themselves that give rise to differing
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values for these parameters.

2. Recurrence relations

The general form of a one-dimensional cellular automaton on an infinite
lattice is given by

$:+1=f(zt "1$:9"'3I:+r)’ f:Ffr+l_’Fh

where z! denotes the value of site 7 at time {, f represents the “rule” defining
the automaton, and r is a non-negative integer specifying the radius of the
rule. The site values are restricted to a finite set of integers Fj. = {0,1,---,k—
1}, and are computed synchronously (in parallel) at each time step.

Let § = sg++- s, be an arbitrary sequence and R be an arbitrary cellular
automaton rule of radius r. Denote the number of preimages of S under the
rule R by N(S). The objective is to develop recurrence relations for N(S)
based on the number of preimages of its subsequences; i.e., g, $081, 805152, - -
(moving from left to right), or equivalently, s,,5,_15n,8n-25n_18n, - - (mMoOV-
ing from right to left). Clearly, at each step the number of preimages of
a sequence N(s;---s;) can be found exactly from either N(sq---s;_1) or
N(sy---s;) if the preimages of the shorter sequence are distinguished accord-
ing to their final 2r components. The recurrence relations to be described
here therefore maintain individual counts of preimages by final (either on the
left or right) components, and then rely on the definition of the automaton
rule to update these counts as new values are appended to the sequence.

First consider the recurrence relations for N(S) moving from left to right
in the sequence. For any integer 0 < m < k* —1, with m = 22750 m k¥ —1-%,
denote by i = [mo,: -+ ,mg,_1] the tuple corresponding to its k-ary repre-
sentation. The vectors 1 thus range over all possible endtuples of length 2r.
The preimages for sequence S will then be grouped and counted according
to their endtuples, with the total number of preimages being the sum over
all 7t of the number of preimages beginning with 77; that is,

k2r—1
N(S)= ¥ Ly,
m=0
where, for any j,
Lfﬁ = number of preimages beginning
with tuple i for sequence sq-- - s;.
Now define a characteristic function
Ii(z) = 1lifsj=r=,

= @i,
and for0<i<k-1,
Ty = f(‘mn,"',mar—l,i),
P = [ml"",m'zr-hi],

It then follows that
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Ly = 3 L (=), (2.1)

and the above coupled system of recurrence relations can be used to ex-
press N(S) in terms of starting values L° that are easily computed from the
definition of the automaton rule.

Similarly, to find N(S) moving from right to left in the sequence, set

k-1
N(S)= > Ry,
m=0
with
Riﬁ = number of preimages of sequence

Sp_j -8, ending with tuple 7.
For all 0 <i < k — 1, define

r = f(l, Mgy **+*y Tan—l)‘!
B =l mo,- - marl,

Then, as before, the recurrence relations
Ri = Y RI7I(x:) (2.2)

can be used to express N(S) in terms of known starting values R°.
For example, consider the binary site-valued nearest-neighbor (k = 2,
r = 1) rule defined by

{000,001,011,100,101,110,111} — 0, {010} — 1, (2.3)
(Rule 4 according to the labeling scheme of [1]). Then from (2.1),

Ly = (L' + LiTHL(0),

Ly = Lii'L(0) + Lig' (1),
Lo = (L' +L3i")10),
Iy = (L45" + LiT)I0).

and therefore the number of preimages of the sequence 0010, for instance, is
given by

N(0010) = LG+ Lo + Lio + Ly,
L% +2L% + L + 213,
3LY, + 3L, + 2L}, +4L},,
3Lio»

= 6,

Il
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since {100,101} — 0 and hence, for this rule, LY, = 2. Equivalently, the
number of preimages of 0010 moving right to left can be computed {rom
(2.2) as
N(0010) = R}, + Ry + Ri+ Ry,

= 2R}, + RY + 2R+ 2R},

= 23%)1:

= 2Ry, + 2R},

= 6

?

since the definition of the rule implies that R = 2 and RY) = 1.

It is also useful to re-express relations (2.1, 2.2) in matrix form. Matrix
multiplication provides a convenient representation of the elfects of append-
ing new values to a spatial sequence being operated upon by a cellular au-
tomaton rule. (See [9] for an example of the use of matrices in the analysis
of fixed points and limit cycles for automata rules with periodic boundary
conditions.) The reformulation of (2.1,2.2) will be given here for binary site-
valued, nearest-neighbor rules; the generalization is obvious. Define a matrix
M with algebraic entries m;;,0 < 4,7 < 3 such that, denoting the binary
representation of any integer 0 < k < 3 as koky,

mi;,- =0 if 'i] 7& jg,
=a iy = joand f{ioyir, i) =0,
= b ]f 't.[) = jl and f(i’:o,i‘:l,jl) =T,

Thus, the 4, j™ entry of M is zero if the second component of i does not
match the first component of j (implying that a three-tuple (7, j) cannot be
constructed using ¢ and j). Otherwise, m;; is set to a “marker” variable with
possible values @ and b (corresponding to the characteristic functions I;(0)
and I;(1) that appear in (2.1) and (2.2)) denoting the value of f(7,7). All
possible images of length n are then given by the entries of the matrix M™,
where the product of matrix entries is defined using conventional addition and
associative, but non-commutative, multiplication. (For instance, abb = ab?,
but @b? # b%a.) In particular, for any image sequence S = sq - - - 5, , consider
the term X =[] x;, where

Ty = a if 8 = 0,

=b if 5 =1,
and the multiplication is again taken to be associative but non-commutative.
Then the number of preimages of 5 beginning on the left with ¢ and ending
on the right with j is given by the coefficient of X in the ¢, 7™ entry of M™.

For example, consider again the rule defined by (2.3). The matrix M is
given by

M=

o e Oa
oR OR
2 O oo
a o8 o
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To find preimages for sequences of length 3, for example, consider

a®+ aba o+ aba @+ a®b 2a®

a® +ba? o+ ba® @@+ bab @@+ ba?

a®+ aba a® + aba a® + a®b 2a°
2q° 2a3 a® + d*b 2a®

M3 =

From the above, it is clear that the sequence S = 100, corresponding to the
term X = ba?, has exactly three preimages, all of which begin with 01 and
end with 00, 01, or 11, whereas the sequence S = 010, corresponding to
X = aba, has four preimages, beginning with either 00 or 10, and ending
with either 00 or 01.

Finally, recurrence relations (2.1,2.2) can be solved in general for the
number of preimages of arbitrary sequences. (See [10] for details.) The
relations are also easily modified to provide explicit expressions, rather than
counts, for the preimage strings.

3. Scaling of minimal (maximal) preimages

The recurrence relations provided in section 2 will be used in this section
to prove that, for all nearest-neighbor automata rules, the number of preim-
ages for a well-defined set of sequences scales exactly with the length of the
sequences. For any sequence S = s;+--8,, denote by S* any of the (four)
extended sequences of length n + 2 obtained by appending either a 0 or a 1
to the left and right ends of S. Further define

N~(8)= n§1.n N(S5%), N+ (8) = "_ISQ'XN(S.)' (3.1)
Next consider the quantities

a; =2 HISN-(S),  of =2-0H T NH(S) (3.2)
S S

where the sum is taken over all sequences S of length n. (The denominators
serve to convert the number of preimages to a probability; see [8] for discus-
sion of the significance of this quantity.) In reference [8], it is asserted that
for any nearest-neighbor automaton rule,

lim 2%a] = ¢, lim 2%} = ¢*,

=00 n=—oo
where 0 < ¢ < 16, 16 < ¢t < 64 are constants depending on the rule, and
the coefficient 2% will be seen to be a convenient normalizing factor. That
result will be established below.

The discussion will focus on the limiting behavior of &~ measuring the
minimal number of preimages; the arguments for a® are exactly symmetri-
cal. The essence of the proof is to show that for any automaton rule and
any sequence .S, knowledge of the end components of S suffices to determine
the values that should be appended to S in order to minimize the number of
preimages. Given that minimization depends only on the end components, it
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is therefore not necessary to find N=(S) for every sequence S; the quantity
a;, can be found by considering the number of preimages for the minimizing
left- and right-most end tuples, and then using all possible values for the
components in the middle. Lemma 1 assumes that knowledge of end compo-
nents is sufficient to achieve minimization and indicates how this information
is used to computing the limiting value of a. Lemmas 2 and 3 establish the
number of end components necessary for minimization for general nearest-
neighbor rules. Finally, theorem 1 combines these results to show that the
limiting value of & is constant for all nearest-neighbor rules.

Lemma 1 1. Let R be a cellular automaton rule. For every q,q, > 0, and
for every sequence S = sy+--s, withn > q, ¢, define

S(a)
S(q,-) = Sn—q, """ Sn,

Sy~ 8g,

representing, respectively, the leftmost ¢ and the rightmost ¢, values of the
sequence S. Suppose there exist q; and ¢, with 0 < ¢, ¢ < oo such that, for
every sequence S, the tuples S(q) and S(q;) suffice to determine the values
z,y € {0,1} such that

N(zsy---8,y) = I‘l’;l_l] N(S5%),

where S* is any of the four sequences that can be obtained from S by ap-
pending either a 0 or a 1 to its left and right ends. Then, for n sufficiently
large,

2ag = 27" 3 N(2(q@)d)N(Gy(d)s (3.3)

4idr

where aj; is defined in (3.2), and the sum is taken over all 2" tuples §; and
all 2% tuples q.

Remark. Note that the minimizing values may be non-unique, in which case
qi, g, are taken to be the smallest values that produce no inconsistencies. On
the left, for example, ¢ is the smallest value such that for every sequence S,
there exists an z depending only on the ¢ leftmost values of § such that

N(zS) < N(zS5),

where Z = 1 —z, with equality holding in the cases of non-unique minimizing
values.

Proof. Let C, be the set of sequences constructed by taking (i) the preim-
ages of o(q)qi as their leftmost values, (ii) the preimages of 2(q;)gr as their
rightmost values, with §, ¢ ranging over all possible tuples, and (iii) all
possible values in the remaining n — (q; + ¢ +2) positions. Let D, be the set
of sequences obtained as follows: Consider all possible sequences S of length
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n, find the extended sequence S* that minimizes the number of preimages.
If there is more than one such sequence, then set S* to match a sequence
in C,. Include in D, all preimages of S*. Then, if ¢, ¢, are such that ¢
and ¢, are suflicient to determine the values of @ and y that minimize the
number of preimages for the complete sequence (with = and y appended to
the left and right ends), then any sequence in C, belongs to D,, and vice
versa. Therefore, for n > ¢ + ¢, + 2,

g = gk [number of sequences in (],

n
e ZN 2(@)a) N (Gy(g))2r—m—r=2,

a7

w B qt—qr—6 Z N (].' ([1 AT qu(qr))

g
and
hm 2%a; = 279 3 N(a(@)@N(Gy(d),
qiydr

which clearly is a constant value. B

To illustrate the lemma, consider the rule defined by (2.3). It is easily
shown that given any S, the extended sequence with the minimal number of
preimages is that obtained by appending a 1 on hoth ends of §. In this case,
g = ¢, =0, and

N(zq)) = N(g;y) = N(1) =1,
implying that for n > 2,
Pol =1

As a second example, consider the rule defined by
{011,101,110,111} — 0, {000,001,010,100} — 1, (3.4)

(RRule 23 in the scheme of [1]). It will be shown later in this section that for
any sequence S, the minimum number of preimages is attained by appending
to each end the “toggled” value of the last component. Here, ¢; = ¢ = 1,
and

N@(@i) =N10)=2, for G=0,
=N(01)=2, forq =1,
N@y(@) =N(O)=2, for G =0,
=N(10)=2, forg =1,

and therefore for n > 4,

2oy =27 =4
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The next two lemmas present a sufficient condition for the existence of
finite g;,¢- with the minimization properties described above. The following
definition will be useful.

Definition. For any tuple g, define Ty(gi) to be the pseudo-set of the two
right components of all tuples mapping under the rule to 0¢, and 71(q;) to
be the pseudo-set of the two right components of all tuples mapping under
the rule to 1§. The pseudo-sets Uy and Uy are defined analogously for tuples
with 0 and 1 appended to the right. (Note that the term “pseudo-set” is
used since all elements are included even though possibly non-distinct.)
The intuition for the next lemmas is best obtained by referring again to
the rule defined by (2.3). Consider the question of computing two quantities,
N(0S) and N(1S), where S represents an arbitrary sequence. From (2.1),

N(0S) = 2L3 4+ 2La + L3 + 201,
N(1S) = L

implying that independent of the sequence 9,
N(18) < N(08).

Therefore, the value 1 is always the minimizing value on the left, and ¢ =
0. (Similarly, ¢, = 0.) Lemma 3 asserts that the value of ¢ can be de-
rived directly from the definition of the rule since the “pseudo-set”™ T con-
sisting of the two right components of the tuples mapping to 0—that is,
{00,00,01,01,10,11,11}—*contains” that of the tuples mapping to 1-—that
is, {10}.

Suppose now the rule is defined by (3.4), and again compare N(05)
and N(1S). The pseudo-set Ty is {01,10,11}, and the pseudo-set 7; is
{00,00,01,10}. Neither contains the other, suggesting that ¢ > 0. It is
thus necessary to do a pairwise comparison of {N(00S5), N(105)}, and of
{N(015),N(115)}. First consider the tuples mapping to 00 and 10. Since

{1101,0110,1110,1011,0111,1111} — 00, {0101,0011} — 10,

the pseudo-set Ty(0) is {01,10,10,11,11,11} and that for 71(0) is {01,11}.
It follows that for any sequence beginning with a 0, the number of preimages
is minimized by appending a 1 on the left. Formally, the same result can be
seen from (1.2) since

N(008) = Ly +2Li*+3LY7,
N(105) Ly ® + Lip?,

implying N(105) < N(00S). Similarly, N(015) < N(115), and therefore
q1 = 1

The sufficient condition suggested by the above two examples is strength-
ened slightly by the following lemma. The lemma states that in certain
cases, the “containment” condition may appear to be violated, and yet still
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be satisfied given a certain equivalence of certain tuples under the rule. This
equivalence is intuitively described as implying that, under the particular
rule being considered and in the context of finding minimum preimages on
the left, a tuple zy may be replaced by a tuple zy without affecting the enu-
meration of preimages. Conversely, on the right, under certain conditions a
tuple yx may be replaced by yz.

Lemma 2. Let L, R’ be defined as in (2.1) and (2.2), respectively. If
{2y0,zy0} and {J:Jl Fyl}, with = 1 — z, are mapped to pairwise equal
values, then L-’ = L_’W SJm:IarIy, if {Oyz, Oyz} and {lyz,1yZ} are mapped
to pairwise equaI values, then R R‘L;

Proof. The lemma follows directly from the definitions (2.1) and (2.2).
To illustrate the use of lemma 2, consider the rule defined by

{000,010,011,100,110,111} — 0, {001,101} — 1. (3.5)

Then, Ty = {00,00,10,10,11,11} and Ty = {01,01}, suggesting that ¢ > 0.
But, {010,110} — 0 and {011,111} — 0 imply that, according to lemma 2,
L}, = Lj, for all j. Hence, T} is contained in Tp, and ¢, = 0. B

The above arguments suffice to establish the following lemma.

Lemma 3. Consider an arbitrary nearest-neighbor automaton rule. Fix ¢ >
0, and let § be any vector of length ¢. If for all possible tuples §;, the pseudo-
set Ty either contains, or is contained in, Ty (the direction need not be the
same for all §;), subject to the definition of equivalence in lemma 2, then the
value q is sufficient to determine minimization on the left. A similar result
holds on the right.

Remark. The above represents a sufficient condition, and thus, the values
ol ¢; and g, obtained from the lemma are upper bounds. An example is given
later in this section of a rule with particular tuples §; for which the pseudo-
sets [y defined above never contain each other and yet additional arguments
establish that the number of preimages is always minimized by appending a
1 on the right.

Corollary 1. The values of q;,q, determined from the above lemma for the
88 distinct nearest-neighbor rules (distinct under symmetries) are given in
table 1.

Proof. The results with finite-valued ¢, ¢- are proved using Lemma 3. The
case of rule 44 for which ¢ = 0, ¢, = oo typifies the other cases, and is
treated in detail here. Rule 44 is defined by

{000,001,100,110,111} — 0,  {010,011,101} — 1. (3.6)

To show ¢, = oo, it suffices to show that for any finite g,, there exists a tuple
¢r of length ¢, such that
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@ ¢~ rule numbers

0 0 012345678910121518 2224252630
32 33 34 36 37 40 41 45 50 51 60 62 72 73 T4
76 90 94 104 105 106 110 122 126 128 130 132 134
136 138 140 146 150 152 154 160 164 170 204

0 1 283556

0 3 1314162

0 oo 1144

1 1 1923295457 77 108 156 178 184 200 232

1 3 78

1 oo 27

2 0 168

2 2 43142
3 0 42

3 1 38

oo 0 38

co 1 172

oo oo 46

Table 1: For each rule, the parameters q, ¢, represent the number
of site values on the left and right ends, respectively, of an arbitrary
sequence S required to determine exactly the values that, when ap-
pended to S, minimize (maximize) the preimages of the extended
sequence.



1056 Erica Jen

¥(S04;) # y(S1q;),

where S is an arbitrary sequence, and y(@) is the value that minimizes the
number of preimages when appended to the right of the sequence @. Let g
be the sequence of length ¢, consisting of all 1’s. Then it is straightforward
to show that for any even ¢,

N(S¢0) = 3R;™,

N(S¢:1)
where n is the length of the sequence S¢;. Further iterations of the recurrence
relations (2.2) for rule 44 yield

N(S0g0) = 3Ry, (3.7)

N(S0¢:1) = 2Ry et + R,

n—q.- n—gr
2 + 11 »

and
N(S0040) = 3Ry *7T, (3.8)
N(S00G1) = 2R "' +3Ry™,
N(S1040) = 3Ry,

N(S10¢;1) = Ry ™.

Comparison of the first two shows that preimages are minimized by append-
ing a 0 on the right, whereas comparison of the last two indicates minimiza-
tion with a 1 on the right. Since the relations hold for all values of ¢, even,
it follows that ¢q. = co. il

Theorem 1. Let o, ai be defined as in (3.2). Then, for any nearest-
neighbor automaton rule,

PR S— s 98 4 _ 4
rgl_l’];cuﬂn el nlg__n;lo2an er,
where 0 < ¢~ € 16, 16 < ¢~ < 64 are constants depending on the rule.

Remark. The values of ¢~ for all nearest-neighbor rules are given in table
) =

Proof. First, show that 0 < ¢~ < 16 for all rules. Clearly, a; is non-
negative, and the lower bound of 0 is in fact assumed, for instance, for rules
that map all tuples to the same value. a is maximized for rules such that
every spatial sequence has exactly the same number of preimages as any
other sequence of the same length (including linear, “toggle,” and surjective
rules); for these rules, ¢ = ¢, = 0, and 2%a] = 16.

Next, show that a; does in fact converge to a constant value. From
lemmas 1 through 3 and the corollary to lemma 3, the only cases for which
the result needs to be established are those for which either ¢ = 0o or ¢, = o0;
i.e., rules 11, 27, 38, 44, 46, and 172. Two representative cases—rules 11 and
44-will be treated in detail.
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Rule numbers

16

0
124832128

356901012181923243334 3640467277
126130132136 160 178200 232

3844
1314425878162
27172

7112225262829 35374143 50545657627374769%4
104 108110122134 138140142146 152156 164 168184

15304551 6090 105 106 150154 170204

Table 2: Parameters g, ¢ from table 1 are used to compute exact

values of

c

- H‘_‘P&, Qﬁan e 2—n+2 ZN-(S)’
s

where the sum is taken over all strings S of length n, and N~(S) is
equal to the minimum number of preimages for the string S with a
new value appended to both the left and right ends.
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1. Rule 11 is defined by
{010,100,101,110,111} — 0, {000,001,011} — 1.

Lemma 3 implies that ¢ = 0. On the right, the recurrence relations
are obtained from (1.3) as
Ry = Rig'L;(0) + RG'L(1),
W= Rig'L(0)+ B L),
Ry = (B +Rii)I(0),
i RiTI;(0) + Roy ' I(1).
It is easy to show that for a sequence of the form S1, N(510) > N(S511),
and hence for any sequence ending with a 1, the number of preimages

is minimized by adding another 1. If, instead, the sequence is of the
form S0 and is of length n, then

Il

N(S00) = 2R{, + Rig+4R%,
N(S01) = 3Ry,
Since the only equivalence (as per lemma 2) is between 00 and 01, it is

not obvious that one of the above two terms is less than the other. It
is, however, straightforward to show that

N(S§100) > N(5101),

and in fact, for any sequence of the form S1---, the number of preim-
ages is minimized by adding a 1 on the right. The only case that
remains is a sequence S* consisting of all 0’s. In this case, for 5* of
length n, the general form of the number of preimages is given by

N(5*0)= R +2R),+[2+2|R}, neven,
N(S'1) = 3RY, + [3(”—,;21 + 2|RY,, n even,
N(5*0) = 2R+ R%G + [P + 9IRS, n odd,
N(5*1)= 3R, + =R 4 9RY,  nodd,
and since RYy = R, = 1, R}y =2, R, =0, it follows that
N(S0) = N(S51)
for arhitrary sequences S, Hence, for n > 2,
2%~ = N(1)N(1) = 1.

2. Rule 44 is defined by (3.6). Lemma 3 implies that ¢; = 0, and specifi-
cally, preimages are minimized for any sequence by appending a 1 on
the left.
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It was shown earlier that ¢, = co, implying that minimization of preim-
ages in general requires complete knowledge of the sequence. Nonetheless, it
will be shown here that a can be computed exactly using only finite-length
end tuples and appropriate correction terms. Let o (¢),0 < ¢ < n, be an
approximation to the true value of a;; as defined in (3.2) such that

az(q) = 2NN,
7

2—(n+4)3 2 2n—q—2Nr(q-j1
7

where ¢ ranges over all tuples of length ¢, and N7(§) denotes the minimum
number of preimages for the sequence ¢ with a new value appended on the
right. Since ¢, = 0o, a; (¢) cannot represent the exact value of e}, and

az(g+1) = az(g) + 6(q)s

where 6(¢) < 0 for all ¢. It can be shown by iterating recurrence relations
(2.2) for rule 44 that, for ¢ > 2, 6(g) represents the ¢ level error in estimat-
ing exactly one term, namely N7(011---1). Formally, using 3=’ to denote
summation over all tuples ¢ not equal to 011---1,

ag(g+1) = 27™H3[3 N7(g)2""2 + (N7(001---1)
+ NT(101---1))2°973,
= o;(g)—3-27*2N"(01---1) — N7(001---1)
— NT(101.--1)]2772,
= a,(q) +6(q)-

To find §(g), note that equations (3.7) imply that for the sequence § consisting
of a 0 followed by an even number of 17,

N(g0) = N(011---10) = 3RS, =3,
N(ql) = N(011---11) = 2R + R} =3,
and equations (3.8) imply
N(040) = N(0011---10) = 3R, =3,
N(071) = N(0011---11) = 2R, + R}, =5,
N(1¢0) = N(1011---10) =3RY, =3,
N(1q1) = N(1011.--11) =2R}+ R}, = 1.
Hence,
2N"(01.--1) — N"(001---1) — N"(101---1) = 2,
and since the same result holds for sequences with an odd number of 1's,

8(q) = —3- 274902,
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Therefore, since
lim a7 (q) = o7 (2) + 6(2) +6(3) +- -+,
and

a;(2) =2783[N7(00) + N7(01) + N7(10) + NT(11)],
=0y,

it follows that

Jim Paz(q) =9-3(+3+1,
=1.5,

for n sufficiently large.
Finally, the limiting behavior of o} follows directly from the observation
that equation (3.3) can be modified to give

2%ay =277 3 [2N(di) — N(=(@)@)] - [2N(d) — N(gv(d));

qi,4r

where all terms are defined as before.

Examples illustrating the computation of o are given in [8]. For ad-
ditive and other surjective cellular automata rules, the values of ¢~ and ¢t
(respectively, the constants for the scaling laws governing the minimal and
maximal preimages) are clearly equal. The opposite extreme is represented
by rules that map all tuples to the same value (e.g., rules 0 and 255), for
which ¢t = 64 and ¢~ = 0. In general, the difference between ¢~ and ¢t
can be interpreted [8] as reflecting the extent to which the rule changes the
probability distribution associated with the automaton’s spatial sequences in
one iteration.

4. Summary

This paper is concerned with preimages for one-dimensional cellular automa-
ton rules on infinite lattices. For a given rule and arbitrary spatial sequence
of values, the preimage of the sequence is defined to be the set of tuples
that are mapped by the rule onto the sequence. The number of preimages
of a sequence can be interpreted as determining the a priori probability of
occurrence of the sequence after one iteration of the rule applied to an initial
condition with uniform measure.

Recurrence relations are presented here for finding the number of preim-
ages of general spatial sequences. These relations group and count preimages
according to their endtuples, and then, for any sequence, express the number
of its preimages beginning (either on the left or right) with a particular end-
tuple in terms of the number of preimages beginning with other endtuples
for its subsequences.
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These recurrence relations are then applied to the analysis of a quantity
defined as the number of preimages for spatial sequences whose probabilities
are in a certain sense minimal (maximal) under one iteration of the rule. In
particular, the recurrence relations are used to prove that, for all nearest-
neighbor automata rules, this quantity scales exactly with the length of the
spatial sequence.

The proof of the exact scaling behavior relies on the observation that for
general automaton rules and arbitrary spatial sequences, certain features of
the preimages for these sequences depend only on the sequences’ end values.
Specifically, each nearest-neighbor cellular automaton may be characterized
by parameters ¢, ¢, representing the length of the endtuples of an arbitrary
sequence needed to determine what values, when added to the ends of the
sequence, minimize {maximize) the number of preimages of the new sequence.
For a few rules, the parameters g, ¢, are shown to be infinite; surprisingly,
however, the bullk of nearest-neighbor rules are characterized by ¢, ¢, < 3.

The size of the parameters ¢, g, is determined by the detailed structure of
the automaton rule. In particular, the parameters are equal to the smallest
tuple length such that a “containment” condition is satisfied for the rule.
The left-hand condition, for example, requires that for all tuples ¢ of length
q, the set T containing the two right components of the tuples mapping to
07 must either contain, or be contained in, the set 7 containing the two right
components of the tuples mapping to 1¢, and similarly on the right.

The implications of the scaling behavior described in this paper are dis-
cussed in [8].
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