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Abstract . A ce llula r automa to n consists of a lattice of sites whose
values evolve deter ministically accord ing to a local interact ion ruJe.
For a given ru le and ar bit ra ry sp atia l sequence, t he preirnage of th e
seque nce is defined to be the se t of t uples tha t a re map ped by the rule
onto t he seque nce. Recu rrence rela tions a re provided that ex press t he
number of pre images for a gener al spatial seq ue nce in te rms of t he
number of pre images for its subsequences. T hese rela t ions ar e a pp lied
to t he analysis of a quantity O'n defined as the tota l number of pre im­
ages for spatial seq ue nces of length n whose probab ilit ies of occ urrence
a re in a certain sense minimal aft er one ite ration of t he rul e. In par tic­
ular , the recurrence relations a re used to cha racte rize automata rules
by parameters representin g the amou nt of informa t ion about an a r­
bitrary spa tia l seque nce needed to det erm ine th e values t ha t, when
ap pende d to t he seque nce , minimize t he number of preimages . O n
t he basis of t his cha racte riza t ion, it is proved th at , for all nea rest­
neighbo r automata rules on infinite latt ices, the quantity ern sca les
exactly wit h the length n of the spatial sequence; that is, ern = C . 2n

for n sufficiently large , where c is a constant depending on the ru le.
A symmetr ic result holds in the case of max imal preima ges.

1. Introduction

T his paper disc usses preimages for one-d imensional cellular automaton rules
0 11 infinite la t tices. For a given rule and ar bit ra ry spat ia l seq uence, the
preimage of the sequence is defined to be t he set of tuples that are mapped
by the rule onto the sequence.

Preimages provide information on t he probability d istribut ion of spatial
sequences associated with an au to ma to n rule. For example, the number of
preimages for a sequence determines its probability of occur rence af ter one
itera tion of the rule opera t ing on an initi al condit ion in which a ll sequences
appea r with uniform probabilit y. P reimages have been been the sub ject of
many studies focussing on quest ions includi ng th e relat ionship between num­
ber of preimages and stat ist ical measures such as dimension and ent ropy [1] ,
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the relat ionship among preimages, surject lvity, and reversibility [2,3,4]' the
existence of spatial sequences termed "gard ens of Eden" with no preimages
[5,6], and the existence of sequences with infinite-order preirnages (that is,
sequences t hat are the image of some oth er sequence afte r th e rule has been
applied for any finit e nu mb er of t ime steps) [7].

In this paper, a coupled sys tem of recurrence rela t ions is int roduced for
finding th e number of preimages of general spati al sequences . T he recurrence
rela tio ns categorize and coun t preimages according to t heir endt uples. The
finite neighborhood size of cellular automa ta rules impl ies that if the end tu­
ples are long enough , then t hese counts for seq uences of length k suffice to
determi ne the number of pr eim age s for seq uences of length lc + 1. The re­
currence relations can be reformulated in matrix form, and t hus represent an
analyt ically useful (and computation ally feasible) tec hnique for enumerat ion
of pr eimages.

The recurrence relations for general spatial sequences are used her e to
st udy t he dep enden ce of the number of preimages on sequence lengt h. T his
dep endence will be analyzed in particular for a set of spat ial sequences whose
preimages are in a cert ain sense minimal under the rule. T he set is defined as
follows: Given any sequence S of length n , const ruct "ex te nded" sequences
of length n+2 con sist ing of S together with new values appende d on t he left
and right. Includ e in the set t he extended sequ ence with the minimal number
of preimages. Then, define a quant ity Ctn to be t he to tal number of preimages
for all t he sequen ces in th e set. In the case of nearest -neighbor, binary site ­
valued au tomata rule s, thi s quantity O:n will be shown here to scale exact ly
with t he length of th e spat ial sequ ences; i.e., Ctn = c -2" for sufficiently large
11, wher e c is a constant depending on the ru le . The cruc ia l observation used
in establishing this scaling behavior is t hat it is not in gen eral necessa ry to
know a.ll th e values of a sequence in ord er to determine the val ues that , when
appended to the sequence, min imize it s number of preimages.

A symmet ric result holds for maximal preimages; i.e., the total number
of preimages for the set of extended sequences wit h maximal number of
preimages also sca les exactly with t he lengt h of the sequence. The difference
between t he sca ling coefficien t for maximal versus minimal preimages ca n be
interpreted as indica ting the degree to which t he rule cha nges a freq uency
distribut ion after one iterat ion. (See reference [8] for a discussion of th is and
other implica t ions of the sca ling behavior.)

Th is pap er is or gani zed as follow s. Section 2 provides t he recurrence
relat ions that maintain counts of preimages for spat ial sequences for gen­
eral automata of arbitrary neighborhood size. The last part of the sect ion
reformula tes these relations in matrix form . Sect ion 3 t hen provides the
proof of the exact sca ling behavior in the case of nearest-neighbor a utomata
rul es. The questions discussed in this sect ion include: t he use of end t uples to
"guess" the valu es t hat, when appended to a sequence, minimize (m aximize)
th e number of preimages; t he der ivat ion of the parameters charact er izing the
amount of information about a sequence needed to ensure the correctness of
this guess; and t he feat ures of t he rul es themselves that give rise to differing
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values for these parameters.

2. R ecurren ce relations

10'17

The general form of a one-dimensiona l cellular automaton on an infinit.e
lattice is given by

X~+ l = f(xLr ,"" xL """,x~+r) ' l : F't+ 1
-+ FA; ,

where x ~ denotes the value of site i at time t , f represents the "rule" defining
the automaton , and r is a non-negative integer specifying the radiu s of the
rule. The site values are restr icted to a finite set of integers Fk = {O, 1" "",k­
I}, and are computed synchronously (in parallel) at each t ime step.

Let S = So' .• s; be an arbitrary sequence and R be an arbit rary cellular
automaton rule of radius r. Denote the numbe r of preimages of Sunde!" the
rule R by N(S). The objective is to develop recurrence relat ions for N(S)
based on the number of preimages of its subsequences; i.e., 50 ,505 1,5005 152, ' . .

(moving from left to right), or equivalent ly, Snl Sn _ ISn , Sn_ 2Sn_ ISn , ' .. (mov­
ing from right to left). Clearly, at each step the number of preimages of
a sequence N(S l' " Sj) can be found exactly from either N(05o···Sj_l) or
N(s i .. . 5j) if the preimages of the shorter sequence are distinguished accord­
ing to their final 2r components . The recurrence relations to be described
here the refore maintain individual counts of preimages by fi na l (either on the
left or right) components, and then rely on the definit ion of the automaton
rule to update these counts as new values are ap pended to the sequence.

First consider the recurrence relat ions for N(S ) moving from left to right
in the sequence. For any integer 0 :S m :S k 2r - 1, with m = 2:~~o l m jk2r- t-i 1

denote by in = [ma," ' , m2r_d the tu ple corresponding to its k·ary repre­
sent at ion. The vectors 1n th us range over all possible endt uples of length 2r .
Th e preimages for sequence S will then be grouped and counted according
to their endtu ples, with the total number of preimages being the sum over
all 7n of the number of preimages beginning with 71ij that is,

k2r - 1

N(S) = L L;;',
m=O

where, for any i ,
L~ = number of preimages beginning

with tu ple mfor sequence 50' .. Sj.

Now define a characteristic function

Ij(x) = 1 if Sj = x ,

= 0 if Sj # x ,

and for 0 :5 i :5 k - 1,

Xi = f(mo,··· ,m2r~ 1 ,i ) ,

Pi = [m l ' " ' ,m 2r_l , i],

It then follows that
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(2.1)

and the above coupled system of recurrence relation s can be used to ex­
press N(S) in terms of starti ng values LO t ha t are eas ily computed from the
definit ion of the automaton rule.

Similarly, to find N(S) moving from right to len in the sequence, set

k7 r - I

N {S) = L: R;;"
m = O

wi th

Rt;;. = number of preimages of sequence
Sn_j . .. S 'l ending with tupl e 7'11 .

For all 0 ::; i :s k - 1, define

Xi = I (i ,mo,··· , fn2r_ l) ,

Pi = [i , ,no ,· .. I m2r_2],

T hen, as before, th e recurrence relations

(2.2)

can be used to express N(5) in terms of known start ing values ftJ.
For exam ple, consider the binary site-va lued nearest-neighbor (k = 2,

r = I) ru le defined by

{OOO ,OOI ,Oll , I OO,IOI ,llO, lll} -+ 0, {OIO} -+ 1,

(Ru le 4 according to the labeling scheme of [J]). T hen from (2.1),

(2.3)

(£I; ' + £!,, ')l ;{O),

til ' 1; (0) + £io ' l ; {I) ,

(£I; ' + L!,,' )I;{O ),

(L;- ' +L;- ' )l{O)10 I I J .

and therefore t he number of preimages of the seq uence 0010, for instance, is
given by

N{OOlO) L~ + L~, + L~o + L~"

2L~ + 2L~1 + L~o + 2L~I '

= 3Lbo + 3L~1 + 2L:o + 4L:1l

3L~o,

= 6,
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- ') Equivalent ly, t he
can be compu ted from

u,
left

R~ +R6t +Rio+Rfl '
2R&o +R~l +2R~o +2R~ 1 ,

2R6t,
2R"oo +2R?0,
6,

since the definit ion of t he ru le impli es th at R80 = 2 and R?o = l.
It is also usefu l to re-ex press relat ions (2.1, 2.2) in matrix for m. Matrix

multiplica t ion provides a convenient representa tion of the effects of ap pend­
ing new values to a spat ial sequence being oper at ed upon by a cellu lar au­
to ma ton rule . (See [9] for an example of the use of mat rices in t he ana lysis
of fixed points and limit cycles for auto mata rule s with period ic boundary
condi tions.) T he refor mulatio n of (2.1,2.2) will be given here for binary site­
valued , nea rest -neighbor rules; the generalizat ion is obvious. Define a matrix
M with algebraic entr ies mij ,O ::; i ,j S 3 such that , denoting the bina ry
representation of any integer 0 ::; k :s: 3 as kok t,

m ij = 0 if i t -I- jo,
= a if i l = jo and f (io, i l ,}] ) = 0,

= b if i o = i , and f(i o,i" j ,) = 1.

since {100, 101} --Jo 0 and hence, for t his rule ,
number of preimages of 0010 moving righ t to
(2.2) as

N(0010)

Thus, the i ,ph ent ry of ~M is zero if t he second component of i does not
match the first component of j (imp lying that a three-tuple (i , j ) cannot be
const ructed using i and j ). Otherwise, mij is set to a "marker" var iab le with
possible values a and b (corresponding to the characterist ic fun ctio ns Ij (O )
and 1; (1) that appea r in (2.1) and (2.2)) denot ing the value of f(i,j) . All
possible images of leng th 11. a re t hen given by the entries of the matrix AiJn,
where the product of matrix entries is defined using convent iona l addi tio n an d
associative, but non-commutat ive, multiplica tion . (For instance , abb = ab2 ,

bu t ab2 -I- b2a.) In part icular , for any image sequence S = So . • • Sn_ l , conside r
th e term X = TI Xi, where

Xi = a if s, = 0,

=b if s, = 1,

and t he mult iplicat ion is a.gain taken to be assoc iat ive bu t non-commu tative.
T hen the number of preimages of S beginning on the left with i and end ing
on the right with j is given by the coeffi cient of X in the i ,i '" ent ry of A1n

.

For exa m ple, consider a.ga in the rule defined by (2.3). T he matrix M .i s
given by

(

a a

M = 0 0
a a
o 0
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To finel preimages for sequences of leng th 3, for example, conside r

(

a3 + abo. a
3 + aba a 3 + a2b 2a3 )

Ai 3 _ a3 + 60' a3 + ba' a3 + 60b a3 + 60'
- a3 + aha a3 + aba a3 + a2 b 2a3 .

2a3 2a3 a3 + a2b 2a3

Erica Jen

From th e above, it is clear tha t the sequence S = 100, corresponding to the
term X = 002 , has exactly th ree preimages, all of which begin with 01 and
end with DO, Ill , or 11, whereas the sequence S = DID, corresponding to
X = aba, has fou r preimages, beginning with eit her 00 or 10, and ending
with either 00 or 01.

Fina lly, recurrence relat ions (2.1)2.2) can he solved in genera l for th e
num ber of preirnages of arb itr ary sequences. . (See [10] for details.) T he
relations are also easily mo dified to prov ide expl icit expressions, rath er th an
counts , for the preimage str ings.

3. Scaling of m in imal (maximal) pre ima ges

The recurrence rela t ions provided in sect ion 2 will be used in this sect ion
to prove that, for all nearest -ne ighbor automata ru les, the nu mber of preim­
a.ges for a well-defined set of sequences scales exactly with the length of t he
sequences. For any sequence S = 8 1 ... Sn, denote by S" any of t he (four)
extended sequences of length n +2 obtained by appending either a 0 or a 1
to th e left and righ t end s or S. Furt her define

N-(S) = "1ip N(S"),

Next consider the quantities

,,; = 2- (n+<)I: W (S),
S

N+ (S) = max N(S·) .
S '

,,~ =2-(n+<) I:N+(S)
s

(3.1)

(3.2)

where the sum is taken over a ll sequences S of length n. (The denomin ators
serve to convert th e number of preimages to a probab ilit y; see (S] for discus­
sion of the significance of this quantity.) In reference [8], it is asserted that
for any nearest-n eighbor auto maton rule,

where 0 ::; c- :S ]6, 16 ::; c" :5 64 are constants depending on the rule , and
the coefficient 26 will be seen to be a convenient normalizing factor . That
result will be established below.

T he discussion will focus on the limit ing behavior of a- measuring th e
minimal number of preimages; the arguments for a+ are exactly symmetri­
cal. T he essence of the proof is to show that for any automaton rule and
any sequence S, knowledge of the end components of S suffices to de termine
the values that should be appended to S in order to minimize the nu mber of
preimages. Given that mini mization depends only on the end com ponents, it
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is therefore not necessary to find N -(S) for every sequence S; the qua nt ity
0'; ca n be found by consider ing the number of preimages for the minimizi ng
left- and right-most end tuples, and th en using all possible values for the
component s in the middle. Lemma I assumes that knowledge of end com po­
nents is sufficient to achieve minimization an d indicates how this information
is used to comput ing the limiting value of 0';; _Lemmas 2 and 3 establish the
number of end compo nents necessary for minimization for genera l nearest­
neighbor rules. Finally, th eorem 1 combines these resul ts to show that the
limiti ng value of 0;; is constant for a ll nea rest-neighbor rules.

Lemma 1 1. Let R be a cellular eutomsion rule. For every q" qr 2: 0, and
for every sequence 5 = 5 • . . . 5 n Wi Ul 11. ;::: ql, qr define

S(~) = S I · · · s~ ,

5(qr) = 5 n - qr • · · 5 n ,

representing, respect ively, the leftmost qt and the righ tmost qr values o{ the
sequence 5. Supp ose there exist ql and qr with 0 ~ qi , qr < 00 such tha t, for
every sequence 5, the tup les 5(ql) and 5(ql) suffice to determine the values
x , y E {0,1} such that

N(xs 1... SnY) = min 11' (5°) ,
S '

where S" is any of the {our sequences that can be obtained {rom S by ap­
pending either a 0 or a 1 to it s left an d right ends. Then, (or 11. sufficient ly
large,

26a~ = T ,,-g· 2:: N(x(<Ii)<Ii)N(q~Y(b-)) ,
qj,q-;'

(3.3)

where Q';; is defined in (3.2), and the sum is taken over all 2'11 tuples qj and
all 2'· tuples <Ii.

R em a r k. Note that the minimizing values may be non-uni que, in which case
ql, qr are taken to be the smallest values that produ ce no inconsistencies. On
the left, for exam ple, ql is the smallest value such tha t for every sequence 5',
there exists an x depen ding only on th e Cfl leftmost values of 5' such th at

N (xS) S N( xS),

where x = I- x , with equality holding in the cases of non-u nique minimizing
values .

Proof. Let en be the set of sequences cons t ructed by taking (i) the prei rn­
ages of x(Qi)Qi as their leftmost values, (ii) t he preimages of x( q-;') (j; as their
rightmost values, with iii, (ir rang ing over all possible tu ples, and (iii) all
possible values in th e remaining 11. - (q/ +qr+2) posit ions. Let D n be the set
of sequences obt ained as follows: Consider all possible sequences S of lengt h
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11., find t he extended sequence S · that minimizes the number of preimages.
If t here is more than one such sequence , then set S... to match a sequence
in On. Include in o; all preimages of 5· . Then, if ql, qr are such that (Ii
and (j;. are sufficient to determine the values of x and y t hat minimize the
numb er of preimages for the complete sequence (with x and y appe nded to
the left and right ends) , then any sequence in en belong s to D n , and vice
versa . T herefore, for n 2: q/ + qr +2,

a:~ 2- (11.+-1 ) [num ber of seq uences in en],
2 -(nH ) I:: N(x( qj ) qj)N ( q~y ( q~ ) ) 2n- ,, -,"-2,

q"i ,q-;'

2- ,,- ,"- 6 I::N(x ( }i ) i}i)N ( J:. y ( q~ ) ) ,

!ji,q-;'

and

lim 26,,~ = T " -'" '" N (x (qi )qj )N(<j', y( J:. ))'
11. -+= U

qj ,qr

which clearly is a con st ant value.•
To illustrate the lemma, consider the rul e defined by (2.3) . It is easily

shown that given an y S, the ex tended sequence with t he minimal number of
preimages is that ob tained by appe nding a 1 on both ends of S . In this case,
'II = qr = 0, and

N (x qj ) = N(J:.y) = N (l ) = I,

impl yin g that for n 2: 2,

As a second example , cons ider the ru le defined by

{OJl,J01 , 110, Ill} --> 0, {OOO,OO I ,OJO,JOO} --> 1, (3.4)

(R ule 23 in t he scheme of [1]). It will be shown la ter in t his section t hat for
any sequence S , the minimum number of preimages is attained by appending
to each end the "toggled" value of the last component. Here, q/ = qr = 1,
and

N(x( }i )qi ) = N (JO) = 2,

= N (OI ) = 2,

N(J:.y ( q~)) = N( OJ) = 2,

= N (JO) = 2,

and therefore for n 2: 4,

for iii = 0,
for qj ::;: 1,

for '1--;' = 0,

for '1-;' = 1,
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Th e next two lemmas present a sufficient con dit ion for th e existence of
finite q/, qT with th e mi nimizati on properties descri bed ab ove. The following
defini tio n will be useful.

Definition. For any tu ple 0, define To(qi) to be the pseudo-set of the two
righ t components of all tu ples mapping un der the rule to Oeli, and T1 (<]i ) to
be th e pseudo-set of th e two righ t componen ts of all tu ples mapping under
th e rule to 1qi. T he pseudo-set s Uo and VI are defined a.nalogously for tuples
with °and 1 appended to the right. (Note that the term "pseudo-set" is
used since all elements are included even th ough poss ibly non-distinct.)

The intui tion for the next lemm as is bes t obtained by referri ng again to
the rule defined by (2.3). Cons ider the question of computing two quantit ies,
N(05) and N(15), where S represents an arbitra ry sequence. From (2.1) ,

N(OS ) 2L~1 +2L~i l + L~OI + 2L7i1
,

N( IS) = L70' ,

implying that indep endent of the sequence 5 ,

N( IS) :s N( OS).

Therefore, t he value 1 is always the mi nimizing value on the left , and q, =
0. (Similarly, o- = 0.) Lem ma 3 asse rts tha t th e value of qr ca n be de­
rived directl y from the definition of th e rule since the "pseudo-set" To con­
sist ing of the two right component s of the tup les mapping to Il-e-tha t is,
{DO , 00, 01,01 ,10 ,11,11 }-'lcontain s" that of the tu ples mapping to I- th a t
is, {10} .

Suppose now the ru le is defined by (3.4), and again com pare N(OS)
and N (IS) . T he pseud o-set To is {Ol, 10, ll} , and t he pseudo-set T1 is
{OO ,OO,01,10}. Neither contains the oth er, suggesti ng that fI/ > 0. It is
t hus necessary to do a pai rwise comparison of {N (OOS), N( IOS)), and of
{ N(OlS),N (ll S)). F irst consider th e tuple s mapping to 00 and 10. Since

{llOl ,OllO ,lllO,IOll ,Olll ,ll ll ) -> 00, {0l 01, 001l } -> 10,

the pseudo-set To (D) is {01,1 0,10, 1l , 1l, 1l } an d t hat for T1(0) is {Ol,ll) .
It follows that for any sequence beginn ing wit h a 0, th e nu mber of preirn ages
is mini mized by appending a 1 on the left. Formally, th e same resu lt can be
seen from (1.2) since

N( OOS)
N(I OS )

[ 01- 2 + 2L~02 + 3 L~i2 I

L~i 2 +L;li 2
,

impl ying N(I OS) :s N( OOS ). Similarly, N( OIS) :s N(ll S), ariel therefore
q, = I.

T he sufficient con dition suggeste d by t he above two examples is st rength­
ened slightly by the following lemma. Th e lemma states that in certain
cases, the "conta inment" cond ition may appear to be violated, and yet sti ll
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be sat isfi ed given a certain equ ivalence of certain tuples under the ru le. This
equivalence is int uit ively described as implying th at , under the part icular
rule being considered and in the context of finding minimum preimages on
the left , a t uple xy may be replaced by a tuple zy without affect ing the enu­
meration of preimages. Conversely, on the right , unde r certain cond ition s a
tuple yx may he rep laced by yz.

Lemma 2. Let u, R j be defined as in (2.1) and (2.2), respectively. II
{xyO, x yO} and {xyI 1xyl} , with x = 1 - z , are mapped to pairwise equa l
valu es, then 14y = L~y . Simil arly, if {Oy x , Dyx} and {lyx , l yx} are mapped

to pa ir wise equal values, then Rt;l; = ~~.

Proof. T he lemma follows directly from the definitions (2.1) and (2.2).
To illustra te the use of lemma. 2, consider th e rule defined by

{000, OlO,01l ,lOO,1l0,11l} -->0, {001,101} --> 1. (3.5)

Then, To = {OO , 00, 10, 10, 11, ll } and T, = {Ol, Ol} , suggest ing th at q, > O.
But , {OlO, no} --> 0 and [Ill l , Il l} --> 0 imply that , according to lemma 2,
u; = L{ , for all j. Hence, T1 is contained in To, and q, = O. •

The above arguments suffice to establish the following lemma.

Lemma 3. Consider an arbitrary nearest-neighbor automa.ton rule. Fix q, 2:
0, and Jet iii be any vector of length qt. If [or all possible tuples (ii , the pseudo­
set To either contains, or is contained in, T1 (the direction need not be the
same (or all iji) , subject to the definition of equ ivalence in lemm a 2, then the
value qf is sufficient to determine minimizat ion on the le ft. A similar result
holds a l l the right.

R emark. Th e above represen ts a sufficient condit ion, and thus, the values
of q. and q,. obtained from the lemma are upper boun ds. An example is given
later in th is sect ion of a rule with part icular tuples en for which th e pseudo­
sets Uo defined above never contain each oth er and yet addi t ional arg uments
establish that the number of preimages is always minimized by append ing a
1 on the right .

C orollar y 1. The values of tli , qr determined from the above lemma for the
88 distinct nearest-neighbor rules (distinct under symmetries) are given in
table 1.

Pro of. The results wit h finite-va lued ql, qr are proved using Lemma 3. The
case of rule 44 for which q/ = 0, qr = 00 typifies th e other cases, and is
treated in detail here . Rule 44 is defined by

{000,001 ,100,1l0,11l} -->0, {OlO,Qll ,IOl} --> 1. (3.G)

To show qr = 00, it suffices to show that for any finite qr, there exists a tuple
q~ of length q, such th at
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q/ q, rule numbers
0 0 oI 2 3 4 5 6 7 8 9 10 12 15 18 22 24 25 26 30

32 33 34 36 37 40 41 45 50 51 60 62 72 73 74
76 90 94 104 105 106 110 122 126 128 130 132 134
136 138 140 146 150 152 154 160 164 170 204

0 1 28 35 56

0 3 13 14 162

0 00 II 44

1 1 19 23 29 54 57 77 108 156 178 184 200 232

1 3 78

1 00 27

2 0 168

2 2 43 142

3 0 42

3 I 58

00 0 38

00 1 172

00 00 46

Table 1: For each rule, the parameters qf,qr represent the number
of site values on the left and right ends, respectively, of an arbitrary
sequence S required to determine exactly the values that, when ap­
pended to S, minimize (maximize] the preirnages of the extended
sequence.

1055
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y(SOq-;) f y(Sl q-;),

Erica Jen

where S is an arbi tr a ry sequence, and y(a) is t he value th at minimizes th e
nu mber of preimages when appended to the right of the sequence a. Let q-;
be the sequence of length qr consisting of all L's. T hen i t is straightforward
to show th at for any even q- ,

N(Sq-; O)
N(Sq-;!)

3R~lq~ I

= 2~lq.. + R~lq.. I

where 11 is the length of the sequence 3q--;. Further iterations of th e recurrence
rela tion s (2.2) for rule 44 yield

N (SOq-;O) = 3R7,-q·-\ (3.7)
N(SO(j;.l) = 2R~-q .. - l + R~l-q .. ,

and

N(SOOq-; O) = 3R;,,- q· - l ,

N(SOOq-; !) = 2R;;Qq·- l + 3R7;-q· ,

N(S IO<j;O) = 3R~I- q· -l,

N(S IO<j;l) = R~I-q, -l.

(3.8)

Comparison of the first two shows th at preim ages are minimized by append­
ing a 0 on the righ t, whereas comparison of th e last two indi ca tes minimiza­
t ion with a 1 on the right Since the relat ions hold for all values of {fr even,
it follows that qr = 00. •

T heorem 1. Let 0';, O'~ be defined as in (3.2) . Then, for any nearest­
neighbor aut oma.ton ru le,

where 0 ~ c- ~ 16, 16 ~ c- :s: 64 are constants depending on the rule.

Rema r- k . The va lues of c" for all nearest- neighbor rules ar e given in table
2.

Proof. First, show th at 0 ~ c- ~ 16 for all rules. Clearly, 0'; is n011­
negative, and th e lower bound of 0 is in fact ass umed, for instance, for rules
t hat map all tup les to th e same value. 0'; is maximized for rules such that
every spatial sequence has exactly the same number of preimages as any
other sequence of th e sa me lengt h (including linear, "toggle ," and surject ive
rules), for th ese rules, q/ = qr = 0, and 260';; = 16.

Next, show that 0';; does in fact converge to a const ant value. From
lemmas 1 through 3 and the coro llar y to lemma 3, t he only cases for which
the result needs to be established are those for which either q/ = 00 or qr = 00 ;

i.e., rules 11, 27, 38, 44, 46, and 172. Two representative cases-rules 11 and
44-wiJl be treated in det a il.
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c Rule numbers
0 0

1 12 4832 128

4 35 6 9 1012181 923 24 33343640 46 72 77
1261301 32 136 16017 8 200 232

7.5 38 44

8.25 1314425878162

8.5 27 172

9 711 22 25 26 28 29 35 37 41 43 50 54 56 57 62 73 74 76 94
1041 081101 22 1341 38 140 1<12 146152 156 164168184

16 1530 455 1609 0 105106 150154 170 204

Table 2: Paramete rs ql , qr from table 1 are used to compute exac t
values of

where the sum is taken over all st rings S of length n, and N-(S) is
equal to the minimum number of preimages for the string S with a
new value appended to both the left and right ends .
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1. Rule 11 is defi ned by

{0l0, 100, 101, 110, ll l} ---; 0, {OOO ,OOl ,Oll} ---; 1.

Erica Jen

Lemma 3 imp lies that q/ = O. On the right, the recurr ence relatio ns
are obtained from (1.3) as

Rix, Rio11j(0) +Rir011j (1),

R~I Rio' 1j (0) + Rir01 l, (1),

Rio = (R~~I +R{~ I )1j ( O),

R{I R{~ l lj(O) +R~~llj (l ) .

It is easy to show that for a sequence of the form SI, N (SI 0) 2: N (5'11),
and hence for an y sequence ending with a 1, t he number of preimages
is minimized by addi ng another 1. If, instead, th e sequence is of the
form SOand is of length n, then

N(SOO) =
N(SOl)

2R~ + R~o + 4R~1l

3R~ ,

Since the only equivalence (as per lemm a 2) is between 00 and 01, it is
not obvious that one of the above two terms is less th an the other. It
is , however, st raightfo rward to show th a t

N(SI 00) 2: N(SI 01),

and in fact, for any sequence of the for m 51 · . " the number of preim­
ages is minimized by add ing a 1 on the right . T he only case that
remains is a sequence S"' cons ist ing of a ll D's. In this case, for S* of
length n, t he gen eral form of the number of preimages is given by

N(S'O) =

N(S' I) =

N (S' O) =

N(S' I ) =

Jl'Ioo +2R?o+ ["f + 2]R1"
3Ro + [3(n -2) +21Ro

10 2 I II

"RO +RO + [3(n+1) + "IRO
~ 00 10 2 ~ 11 '

3RO + [3(n - 1) + 2]RO
00 2 11 '

n even,

n even ,

n odd ,

n od d ,

an d since Rlk = ml = I , R?o = 2, .R?l = 0, it follows that

N (SO) 2: N (S I )

for arbit rary sequences S . Hence, for n 2: 2,

26,,~ = N (I)N(I) = 1.

2. Rule 44 is defined by (3.6). Lemma 3 implies th at q, = 0, and specifi­
cally, preimages are mini mized for any sequence by appe nd ing a 1 on
th e left.
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It was shown earlier that qr = 00, implying that minimizat ion of preim­
ages in general requires complete knowledge of the sequence. Nonetheless, it
will be shown here that o:~ can be computed exact ly using only finite-length
end tuples and appropri ate correction terms. Let o:~(qL O ~ q ~ n , be an
approximation to th e true value of a;:;- as defined in (3.2) such that

",~ (q) = T (n+4)2:: 2n-'-2N(I )N'(q'),
if

= T(n+4)3 2:: 2n-, - 2N'(Q),
if

where q ranges over all tu ples of length q, and Nr(iiJ denotes t he min imum
number of preimages for t he sequence ij with a new value appende d on the
right . Since qr = 00, a;(q) cannot represent the exact value of a~ , and

",~(q + I) = ",~(q) + 8(q),

where o(q) < 0 for all q. It can he shown by iterati ng recurrence relations
(2.2) for rule 44 that , for q ~ 2, o(q) represents the q lh level error in est imat­
ing exact ly one term , namely N r(Oll .. ·1 ). Formall y, using L:' to denote
summat ion over all tuples ij not equal to 011 . . . 1,

",~(q + I)

+ N'( I OI .. ·1 ))2n- ,-3],

",~(q) - 3 · 2-4[2N' (01 .. ·1 ) - N'(001 · · .1 )
N '(IO I . . . 1)12-, - 3,

",~(q) +8(q).

To find 8(q), note that equations (3.7) imply that for the sequence qconsist ing
of a 0 followed by an even numb er of 1'5,

N( qIl) = N(OIl · · · 10) = 3R'1t = 3,
N(ijI) = N( OIl · · .11 ) = 2Rg, + R'I, = 3,

and equations (3.8) imply

N( Oqll) = N (OOIl ... 10) = 3R'1, = 3,

N(Oql) = N(OOIl .. ·11 ) = 2R~ + R?, = 5,

N(lqIl) = N (I OII 10) = 3R?, = 3,

N (lql) = N(IOII 11) =2R~ + R?, = I.

Hence ,

2N'(01 .. · 1) - N'(OO I· · . 1) - N'(I OI . .. 1) = 2,

and since the same resul t holds for sequences with an odd number of I's,
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Therefore , since

lim a~ (q) = a~(2) + 6(2) + 6(3) + . .,
q_m

and

a~ (2) = 2- 83[N ' (OO) + N' (OI) + N ' (10) + N'( ll )J,
= 2-69,

it follows that

lim 26a~(q) = 9 - 3[~ +t +...J,
a-tee

= 7.5,

Erica Jen

for n sufficient ly large.
F inally, the limitin g behavior of Q~ follows directl y from the observation

that equat ion (3.3) can be modified to give

qi,q;"

where all terms are defined as before . •
Examples illust ra t ing the com putation of a~ are given in [8}. For ad­

ditive and other surject ive cellula r automata ru les, the va lues of c" and c+
(respec t ively, the constants for the scaling laws govern ing the min ima l and
maximal preimages) are clearly equal. T he opposite extreme is represented
by rules that map all tu ples to the sa me value (e.g ., rules 0 an d 255), for
which c+ = 64 and c" = O. In genera l, t he difference betw een c" and c+
can be interpreted [8] as reflecting the extent to which the rule changes the
pro bability distribution associated with the automa ton's spatial sequences in
one iteration.

4 . Summary

This pape r is concer ned with preimages for one-d imensional cellula r automa­
ton rules on infini te latt ices. For a given ru le and arbit rary spatia l sequence
of values, the preimage of the sequence is defined to be the set of tuples
that are mapped by th e ru le onto the sequence. The number of preimages
of a sequence can be interpreted as determining the a prior i probabi lit y of
occurrence of the sequence after one iter ation of the ru le applied to an initial
condit ion with uni form measure.

Recurrence relations are presen ted here for find ing the number of preim­
ages of general spatia l seq uences. T hese relations group and count preimages
accor ding to their endtuples, and then , for any seq uence, express the number
of it s preimages beginning (eit her on the left or right ) with a particul ar end­
tuple in terms of the number of preimages beginning with other endtuples
for it s subsequences.
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These recurren ce relat ions a re then appl ied to the analysis of a quant ity
defined as t he numbe r of preimages for spatial sequences whose probabilit ies
are in a cert ain sense minimal (maximal) under one iteration of the rule. In
pa rti cular, the recurrence rela tion s are used to pro ve that, for all nearest­
neighbor automata rules, this quant ity scales exact ly wit h the length of the
spat ia l sequence.

T he pro of of the exact scal ing behavior relies on the observa t ion that for
genera l aut om ato n r ules and arbitrary spat ial sequen ces, certain feat ures of
the preimages for these sequences depend only on the sequences ' end values ,
Specifically, each nearest-neighbor cellular automaton may be cha racter ized
by parameters oi,'lr representing the length of the endtuples of an arbit ra.ry
sequence needed to det ermine what values, when added to the ends of the
sequence, minimize (maximize) th e number of preimages of the new sequence.
For a few rules, th e parameters q" qr are shown to be infinite; surp risingly,
however, the bulk of near est -neighb or ru les are characterized by qlJqr :::; 3.

T he size of the paramet ers q" qr is determ ined by th e detailed st ructure of
the automaton rule. In par ticular, t he par ameters ar e equal to t he smallest
tuple length such th a t a "containment" condit ion is sat isfied for t he ru le.
T he left-ha nd condit ion , for example , requires that for all t uples ij of lengt h
q/, t he set To containing the two righ t comp onents of the tuples map ping to
Oijmust eit her contain, or be cont ained in, the set T1 contain ing t he two right
comp onen ts of the tuples mapping to 1(/, and similarly on the right .

The implica t ions of the sca ling behavior described in this paper are dis­
cussed in [8] .
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