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Abstract. Through their natural dynamics, networks of Boolean
functions can recompute, or return to, equilibrial states and limit cy-
cles from which they have been displaced. How often such return
occurs measures one kind of behavioral stability. For a class of func-
tionally homogeneous, sparsely connected, disorderly structured net-
works, this paper examines how stability of equilibrial states and limit
cycles is affected by the size of the net, size of the displacement, and
the function used in the net. All functions in the class are examined,
and displacement is varied over its full range. On the whole, for any
given function, the effect of displacement size appears to be quite reg-
ular. However, from function to function, displacement effects vary
widely. Though there are exceptions, at a given relative displacement,
most functions show decreasing cyclic stability as nets become larger.
On the other hand, the data suggest that for many functions, larger
nets are more stable under small absolute displacements.

1. Introduction

Many-element models have long been used to understand complex real world
systems. More recently, increased attention has been given to the study
of many-element models in which element behavior can decisively influence
overall system behavior (as an early example, see [1]). The present paper
continues this very-complex-system theme using a class of dynamic Boolean
nets to provide the objects of interest.

An important characteristic of any dynamic system is the extent to which
its dynamics resist pertubations: its “behavioral stability.” While behavioral
stability is equally important in network systems, their high dimensionality
can make it difficult to predict how a system will respond to disturbance. A
number of workers have examined stability, under varying definitions, in nets
of neuron analogs (e.g., [2-8]). Behavioral stability in Boolean nets has seen
less work.
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Although it was known earlier that, in nets, some binary functions ex-
hibit behavioral neighborhoods around equilibrial states, in that they show
trajectories whose Hamming-distances (the number of elements which dif-
fer) between net states progressively decrease to zero as the final state is
approached [9,10], behavioral stability in nets of Boolean functions was ap-
parently not studied systematically until 1969, by Stuart Kauffman.

Kauffman [11] found that it is highly likely (P = 0.9) for structurally
random, functionally heterogeneous nets of two-input Boolean functions to
return to the limit cycles and equilibrial states from which they are displaced
by one-element displacements. (In what follows, both equilibrial states and
limit cycles are referred to simply as “cycles.”) A preliminary study [12]
examined the stability of cycles in functionally homogeneous nets for all
two-input Boolean functions. This study found that all two-input Boolean
functions, except for “exclusive or” and “equivalence,” are very stable for
small displacements, and show regular effects for increasing size of displace-
ment. It was also noted that the effect of net size on stability may depend on
whether relative or absolute displacements are considered. The latter study
was limited, however, in the range of displacement magnitudes examined,
the size of the trajectory searched, and the sample sizes used.

Kaneko [13] has recently studied the stability of cycles in one-dimensional
cellular automata. Such automata are simple-structure systems, strings or
simple loops of elements, otherwise similar to the nets considered in this pa-
per. In addition to their potential as models, simple-structure models are
valuable for the qualitative insight into system dynamics they make accessi-
ble through direct observation. Nets with disorderly structure, while useful
in their own modeling domains, are perhaps best studied by an indirect, sta-
tistical approach in the expectation that regularities in their behavior are
more likely be found by comparing aggregated dynamics rather than partic-
ular behavioral trajectories. Such a statistical approach is used in the work
reported here.

In the present paper, cycle stability is a straightforward measure of the
average extent to which (behavior) space at a given distance from a cycle is
behaviorally associated with that cycle. More exactly, it is the proportion
of net states at a given distance from cyclic states which are in those cyclic
states’ basins of attraction (terms defined below). Depending on the model-
ing context, cycle stability can also be thought of as: 1) the probability of a
net’s natural dynamics recalculating a correct set of terminal values following
an error of a given amount, 2) the likelihood of exact reproduction of a class
exemplar (or exemplars) for a given degree of corruption in a stimulus probe,
or 3) the average fraction of potential energy actually available at a given
distance from a cycle.

Recent advances in understanding the capabilities of networks of simple
elements have incresed interest in details of the behavior spaces of such sys-
tems. Additionally, accumulating knowledge in design and implementation
of complex man-made systems makes work in sparsely connected, disorderly
structured systems’ behavior pertinent. Suitably complex architecture is re-
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quired for systems of simple elements to be able to produce fully arbitrary
behavior. The problems faced in massively connecting elements in large dis-
tributed systems such as neural networks makes knowledge of the effects of
sparseness a significant issue in manufacturing technology. This paper pro-
vides information on behavior space and performance characteristics for a
benchmark class of sparsely connected, structurally complex systems.

2. The nets examined

Any one network examined in this paper is autonomous, clocked, structurally
rigid, and functionally homogeneous. That is, no inputs enter the network
from outside the net. Time in the net, indexed by t, is discrete, and all
update operations occur simultaneously throughout the net. For a particular
net, the pattern of connections among elements is fixed and all elements are
functionally identical.

Each element has exactly two binary inputs incident {from network ele-
ments, and one “internal” binary input. The internal input carries the value
of the element’s internal state, which is also the element’s output. The ele-
ment computes a binary function T of the three inputs. The general form of
T is given in figure 1.

Any one network is composed of exactly N elements. The binary N-
tuple which gives the state of each element in the net at a given net time
is the net state at that time. After being started at an arbitrary net state,
a net proceeds stepwise from one net state to another, finally producing
two sequences of net states. The first sequence, the transient or run-in, is
followed by a second sequence of states, the cycle, in which the net is then
permanently trapped, barring malfunction or disturbance to the net. The
run-in may contain zero or more net states. The cycle may contain one or
more distinct net states. The number of distinct net states in a sequence is
the length of that sequence. A disclosure length is the length of a run-in plus
the length of the cycle that follows it. A cycle’s basin of attraction is the
cycle and all run-ins to that cycle.

3. Procedure

Stability data were collected as follows. For displacement D, net size N,
and a function T', a net connection table was chosen at random. Each el-
ement’s “left” input connection was connected to an outputing element by
equiprobable, independent, with-replacement (EIWR) sampling from the N
net elements. The “right” connection table was similarly chosen. Note that,
technically, net connection tables were chosen at random, not net structures
as such. All sampling made use of computer generated psendo-random num-
bers.

Following the choice of a net structure, a net state was chosen by EIWR
sampling of element states. The net was then started at the chosen net
state and allowed to proceed to a cycle. One of the states in the cycle was
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Figure 1: The general form of T'. L and R are the element’s “left” and
“right” inputs at time ¢. Under the internal state heading, 0 or 1 is the
element’s internal state value, at time ¢. The entries a, b,...,h are the
element’s computed internal state (and output state) at net time t+1.
In a particular realization of T', a zero or a one replaces each entry.
In this paperparticular T's are referred to as T(A, B), where A is the
decimal equivalent of the binary integer abcd, the left column of T,
and B is similarly derived from the right column. Thus, 7°(0001, 0110)
is T'(1,6). T(1,6) is equivalent to Wolfram rule number 104 for binary,
one-dimensional, nearest-neighbor cellular automata [14].

chosen EI A state D percent Hamming distance units away from the cyclic
state (that is, differing from the state on the cycle in exactly D percent of
its element-states) was then chosen EI, and the net was allowed to resume
operation.

If the displaced trajectory re-encountered the cycle from which the dis-
placement was made, that trajectory, under that displacement, was a stable
trajectory. An unstable trajectory was observed on those occasions when the
displaced trajectory ran to a different cycle. The routine described above was
repeated m times for each N, D, and T' combination. In the data presented,
m is at least 1000. Stability is given in terms of the percent of trajectories
stable relative to m.

While there are 256 distinct T's, symmetries that exist among T's and
their behavior spaces have the effect of producing 88 identical populations
of behavior spaces insofar as the sampling conditions used in this study are
concerned [15]. The symmetries exist under 1) interchange in the functional
roles of zero and one, 2) left-right switching of element connections, and 3)
the join of the previous operations. Role interchange,“reflection,” preserves
the behavior space in that if, net structure remaining unchanged, T(A, B) is
replaced with rT(A, B) = T(rB,rA) = T(h'g' f'¢’,d'c't/a’), where the prime
indicates a complement (0-1 interchange) operation, the behavior spaces of
T and rT are themselves net-state-by-net-state complements. That is, re-
flected T's (T and rT) yield reflected (in the sense of complementary) behavior
spaces.

A left-right switching of inputs throughout the net produces a behav-
ior space identical to that produced by the operation s on T : sT(A, B)
= T(sA,sB) = T(acbd,egfh). Following the s operation with “reflection”
yields rsT.

The end result is that the 256T's are partitioned by a behavioral equiva-
lence relation yielding 88 T, rT, sT', rsT equivalence classes. In the context
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of cellular automata, the r, s, and rs operations have been called called con-
jugation, reflection, and conjugation-reflection, respectively [16, page 492].
Considering the “number” of T'(A, B) to be the number indicated by the
decimal-coded hexadecimal numeral AB, the one T used as a representative
of its equivalence class is the lowest numbered 7" in the class. The equivalence
classes are listed in [17], and, using a different coding of the functions, also
in [16].

Net size

All nets were examined using net size 10. So as to get some indication of how
net size affects cycle stability, all nets were examined with at least one other
net size N'. My aim was to separate two net size stability curves enough
so that some indication of the effect of net size would be elicited. That is,
I attempted to get the ten empirical data points for N and for N' to show
consistent differences, negative or positive.

Practical constraints on computation required that the smallest larger
net size sufficient to establish the size effect be used. This was particularly
true for T's with long disclosure lengths [16]. Unless disclosure lengths made
it impracticable, nets were also examined at N’ = 20. Even larger net sizes
were used in a few cases where disclosure lengths allowed and net size effect
was small between N = 10 and N’ = 20.

If I could find no N’ that separated the curves (within effective limitations
on computing), in some cases I increased m values on either the N or the N’
curve. The cases in which m values were increased were those in which there
appeared to be some possibility of separating the curves. This modification
of procedure in response to inherently variable outcomes likely increases the
error of claiming a size effect exists in the population, when it does not
(“Type I error™). While the problem does exist, and net size data for some
functions should probably be considered exploratory, on the other hand, 1)
new N’ curves were run in their entirety, not just for non-separating stability
values at specific displacements, and 2) where additional observations were
made, the new data were combined, when appropriate, with existing data.

A simple non-parametric test for population difference concludes that
the probability of identical NV and N’ populations yielding ten independent
observed differences of the same sign is 2(271%), or about 0.2%. For nine
consistent differences out of the ten, the probability in question is about
2%. Accordingly, those N and N’ curves not tied at any stability values
(except that for D = 0) which show nine or ten consistent differences, are
taken to be evidence of a clear net size effect. Similar calculations for nine,
and for eight consistent differences, that is, where there are one or two ties
respectively, indicate that one can operate with a decision rule of at most
one inconsistent difference, and not exceed a probability of approximately
6% that the observations, while favoring a conclusion that a net size effect
exists, do not in fact arise from a true net size effect. Similarly, with as many
as five tied observations, if there are no inconsistent differences, the (Type
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I) error rate does not exceed approximately 6%.

Displacement

Where H is Hamming distance in absolute units, namely the actual number
of clement state differences between two net states, D = 100H/N is the
percent Hamming distance. Early results suggested that displacement in
terms of D, rather than H, might give stability curves similar at different net
sizes. Displacement size, for all T's, was varied from D = 10,...(10)...100.
In the case of a few T's, additional displacement values were used. Some N'
values made 10 percentage point increments impossible. Note that D = 100
is a displacement that yields the complement of a cyclic net state.

4. Results

Stability results are displayed graphically in Appendix A. In all graphs, the
horizontal axis is percent displacement D, and the vertical axis is percent
stability. The results are plotted from D = 0. Obviously, stability at D =0
is 100% by definition. Net function is indicated using T'(A, B) notation and
by Wolfram rule number. For example, 7'(1,6) is also noted as W(104). T's
are ordered by their number AB. N values appearing in a given graph are
indicated thereon. If no m value appears with N, m is 1000 for each stability
value in that function line. K indicates 1000 in connection with m, that is,
m = H K means m = 5000.

5. Analysis and discussion

Effects of net function and displacement on stability. The strong dependence
of stability on net function can easily be seen in Appendix A. Stability curves
vary widely. The trivial T's, T'(0,0), T(0,15), and T(15,0) give some idea of
the variability: high stability throughout the range of displacement values,
low stability throughout the range of (non-zero) displacement values, and
high stability at extremes of displacement, respectively. As to non-trivial
functions exhibiting similar stability response, we have as examples

1. showing high stability throughout: 7'(1,0), 7(1,2), 7'(2,0), T(7,2),
T(8,0) and T'(8,8);

2. showing low stability throughout: 7'(0,9), 7(0,10), 7'(0,11), 7°(0,14),
7(1,9), T(1,14), T(2,9), T(2,11), T(6,9), and T'(11,4);

3. showing high stability at displacement extremes: 7'(1,8), 7'(2,4), 1 (3 0),
1(3,12), T(6,6), T(7,0), T(7, 14), T(10,2), T(10,8), T(11,0), T(11,2),
T(11,8), T(14,0) and T(14,8).

It is not surprising that at least some functions have high stability at
high displacements. Where 7" is of the form T'(abed, dcba), the complement
of a cyclic state is in the cycle’s basin of attraction [18], therefore 7' must
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show 100% stability at D = 100. All T's which are of the latter form, namely,
7(0,0), T(1,8), T(2,4), T(3,12), T(6,6), and T(7,14), do show the predicted
response.

Not all T's can be placed in the categories sketched above. A few T's show
generally high stability with a sharp drop-off at displacements approaching
100%, namely T(0,1) and T'(1,1). Other Ts show stability that gradually
declines over the displacement range: 7'(0,3), 7'(1,3), 7'(2,3), and 7(3,3).
Still others can perhaps best be described as moderately stable over most of
the displacement range: 7'(3,10), T'(6,1), and T'(6,14).

In any case, the categorization of functions as to the general effect of
displacement is made more difficult by not knowing for certain what the large-
net stability contour is. For example, while T'(8, 10) is possibly classifiable as
a moderately stable function at N = 10, its apparent change of stability with
net size suggests that this function might well show highly unstable cycles in
large nets.

Effect of net size on stability. At least for the net sizes used, the clear
generalization for net size effects on cyclic stability is that for most T's, if net
size is increased, cycles become less stable. Looking at percent displacement
over its range of possible values, 68 T's appear to have cycles that are less
stable in larger nets. Only a very few T's appear to have cycles that are more
stable in larger nets: T'(0,1), T'(1,0), 7(1,1), T(8,0), and T(8,8).

The three trivial T's, of course, show no effect of size at all. Twelve T's
have stability curves for N and N’ that can not be deemed to be separated by
the criteria used here. Of the latter group, 7'(1,3), T'(2,1), T'(3,1), T(6,2),
T(6,8), T(6,10), and T'(7,6), all show curves which strongly suggest a differ-
ential response of stability to displacement as net size is increased. 7'(0,3),
7(2,3), T(7,14), T(9,8), and T(9,10) have curves that appear difficult to
disentangle at the net size and displacement values used, especially given the
lack of useful theory.

Absolute displacement

The displacements considered in this paper are all given in percentage units.
One of the findings of the work reported here is that this relative scaling of
displacement is a useful procedure. Nevertheless, how stable cycles are under
small absolute displacements, say, of one or two units Hamming distance, is
an interesting question. Infrequent error in net computation would likely be
modeled best in terms of small absolute displacements. While the present
study was not designed to speak directly to that question (however, see
T(3,1),T(6,2), T(6,8), T(7,6), and T(7,14) for relevant data), the available
relative displacement data can be rescaled to provide indirect evidence. The
rescaled data suggest that often, even for T's that clearly decline in stabilty
as net size increases when stability is characterized by relative displacement,
when absolute one-unit displacements are considered these same T's may
show stability increases as nets become larger. Additional work to clarify
this point may be warranted.
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Appendix A. Stability graphs

In all graphs, the horizontal axis is displacement from the cycle in percent
Hamming distance. Percent Hamming distance is the percent of element-
states which differ, between the cyclic state from which the displacement is
measured, and the displaced net state which begins the displaced trajectory,
relative to the number of elements in the net. The vertical axis is percent
stability, that is, the percent of trajectories which returned to the cycle,
relative to the total number of trajectories initiated (m). Where not indicated
on the graph, m = 1000. N is the net size (the number of elements in the
net).

The function used by net elements is indicated both in T'(A, B) notation,
and by the use of Wolfram rule numbers, the latter indicated by W(C).
Further details on functions are given in section 2, and section 3 above.
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