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Abstract . Th rough the ir na tural dyn ami cs , networks of Boolean
fun ct ions can recompute , or ret urn to , equilibrial states and limit cy­
cles from which they have been disp laced. How often such return
occurs measures one kind of behavi oral stabi lity . For a class of func­
t ionally homogeneous , spa rsely connected, disorderly st ruct ured net ­
works , t his paper examines how stabi lity of equi libria l states and limi t
cycles is affected by th e size of th e net , size of the displ acement , an d
t he functi on used in th e net . All functions in the class are exam ined ,
and displ acement is vari ed over its full range. On t he whole, for an y
given fun cti on , the effect of displacement size ap pear s to be qui te reg­
ular . However , from function to function , displacemen t effects vary
widely. T hough there are exceptions , at a given rela tive disp lacement ,
mos t fun ctions show de creas ing cyclic stability as nets become la rger .
On t he other hand , the data suggest that for many funct ions , larger
nets are more stable under small absolute d isp lacements.

1. I ntroducti on

Many-element models have long been used to understand complex real world
systems. More recently, increased attention has been given to the st udy
of many-element models in which element behavior can decisively influence
overall system behavior (as an early example, see [1]). T he present paper
continues this very-complex-system theme using a class of dynamic Boolean
nets to provide the objects of inte rest .

An important characteristic of any dynamic system is the extent to which
its dynamics resist pertubations: its "behavioral stability." While behavioral
stability is equally important in network systems, their high dimensionality
can make it difficult to predict how a syste m will respond to disturbance. A
number of workers have examined stabil ity, under vary ing definit ions, in nets
of neuro n analogs (e.g., [2-8]). Behavioral st ability in Boolean nets has seen
less work.
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Alth ough it was known earlier th at ) in net s, some binary functions ex­
hibit behavioral neighborhoods around equilibr-ia] states, in th at they show
trajectories whose Hamming -dist ances (t he number of elements which dif­
fer) between net states progressively dec rease to zero as th e final state is
approached [9,10], behavioral stability in nets of Boolean functions was ap­
parent ly not st udied systematically until 1969, by St uart. Kauffman.

Kau ffman [11] found t hat it is highly likely (P '" 0.9) for st ruct urally
random, funct iona lly heterogeneous nets of two-input Boo lean functions to
ret.urn to th e limit cycles and equilibrial states from which they are displaced
by one-element displacements. (In what follows, both equilibriel states and
limit cycles arc referred to simp ly as "cycles.") A preliminary study [12]
examined the stability of cycles in funct ionally homogeneous nets for all
two-input Boolean function s. This study found that all two-input Boolean
function s, except for "exclusive or" and "equivalence," are very stable for
small disp lacements, and show regu lar effects for increasing size of displace­
ment. It was also noted that the effect of net size on stability may depend on
wheth er relati ve or absolute d isplacements are considered. T he latter st udy
was limited, however , in the range of displacement magni tu des examined,
the size of the t ra jectory searched, and the sample sizes used.

Kaneko [13) has recent ly st udied the stability of cycles in one-dimensiona l
cellula r automata. Such automata are simple-st ructure systems, st rings or
simple loops of element s, ot herwise similar to the nets considered in t his pa­
per . In add it ion to their potential as models, simple-st ructure models are
valuable for the qualitati ve insight into system dynamics they make accessi­
ble through direct observation. Nets with d isorderly st ruct ure, while useful
in t heir own modeling domains, are perhaps best st udied by an indirect , sta­
tisti cal approach in t he expectat ion that regularities in their behavior are
more likely be found by comparing aggregated dynami cs rather than partic­
ular behavioral tr aj ectories. Such a statistical approach is used in the work
reported here.

In the present paper, cycle stability is a st raightforward measure of th e
average extent to which (behavior) space at a given distance from a cycle is
behaviorally associated with that cycle. More exact ly, it is t he prop or tion
of net states at a given dist an ce from cyclic states which are ill tho se cyclic
states' basins of at traction (terms defined below). Depending on th e model­
ing context , cycle stability can also be thought of as: 1) the proba bility of a
net 's natural dynamics recalculat ing a correct set of terminal values following
an erro r of a given amou nt , 2) the likelihood of exact reproduction of a class
exemplar (or exemplars) for a given degree of corruptio n in a st imulus probe,
or 3) t he average fraction of potenti al ene rgy actually availab le at a given
distance from a cycle.

Recent ad vances in understanding t he capabilities of net works of simple
elements have incresed interest in details of the behavior spaces of such sys­
tem s. Addit ionally, accumulating knowledge in design and implementation
of complex man -made systems makes work in sparsely connected, disorderly
st ructured systems' behavior pert inent . Suitably complex architecture is re-
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quired for systems of simple elements to be able to produce fully arbit rary
behavior. The problems faced in massively connect ing clements in large dis­
tri bu ted systems such as neural networks makes knowledge of the effects of
sparseness a significant issue in manufacturing tec hnology. T his pap er pro­
vides infor mation on behavior space and performan ce cha racterist ics for a
benchmark class of sparsely connected, st ruct ura lly complex syste ms.

2. The nets examine d

Anyone net work examined in t his paper is autonomous, clocked, st ructura lly
rigid , an d functionally homogeneou s. Th at is, no inpu ts enter th e network
{rom outside the net. T ime in the net , indexed by t , is discrete, and all
update operat ions occur simultaneously throughout the net. For a par ticular
net , the pattern of connect ions among elements is fixed and all elements are
funct ionally identical.

Eac h element has exactly two binary inputs incident from network ele­
ments , and one "internal" binary inpu t. Th e internal input carr ies the value
of th e element's internal st a te, which is also the element 's output. Th e ele­
ment computes a binary function T of the three inputs. Th e general form of
T is given in figure 1.

Anyone netwo rk is composed of exact ly N clements . T he binary N­
tuple which gives th e state of each element in the net at a given net t ime
is the net state at th at t ime. Afte r being started at an arbitrary net stale,
a net proceeds stepwise from one net stale to another, fina lly prod ucing
two sequences of net states. T he first sequence, t he transien t or run-ill, is
followed by a second sequence of states, t he cycle, in which the net is t hen
permanently trapped, barrin g ma lfunct ion or dist urb an ce to the net . Th e
fun -in may contain zero or more net stales. Th e cycle may contain one or
more dist inct net states. T he numb er of distin ct net stales in a sequence is
the length of that seq uence. A disclosu re length is the length of a ru n-in plus
the lengt h of the cycle that follows it . A cycle's basin of att raction is the
cycle and all run- ins to that cycle.

3. Procedu re

Stability data were collected as follows. For displacement D, net size N,
and a function T , a net connec t ion table was chosen at random. Eac h el­
ement 's "left" inpu t connect ion was connec ted to an outputing element by
equiprobable, independent , with-replacemen t (EIW R) sampling from the N
net elements . The "right" connection table was similarly chosen. Note that,
tech nically, net connection tables were chosen at random , not net st ruct ures
as such. All sampling made use of computer genera.ted pseudo-random num­
bers .

Following the choice of a net st ruct ure, a net state was chosen by E f\oVR
sam pling of element states. T he net was then started at th e chosen net
state and allowed to proceed to a cycle. One of the states in the cycle was
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L R 0 1
0 0 a c
0 1 b J
1 0 c 9
1 1 d h

F igure 1: T he gene ra l for m of T . L and R a re the eleme nt's "left" and
"right" inputs at t ime t. Unde r t he internal state heading, 0 or 1 is t he
element 's internal state value , at t ime t . T he ent ries OJ b, ... , h a re t he
element 's comp uted intern al state (a nd output state) at net t ime t+ 1.
In a pa rticular reali zation of T , a zero or a one repl aces eac h ent ry.
In this paperparticular T s are referred to as T(A, B ), where A is the
decima l equ ivalent of the binar y integer abed, t he left column of T ,
a nd B is simi larly derived from the right column. T hus , T (OOOI,0110)
is T(l ,6). T( l ,6) is eq uivalent to Wolfram rul e number 104 for binary,
one-d imens ional, near est-neighbor cellu lar automata (14].

chosen EI. A slate D percent Hamming dist ance units away from the cyclic
state (t hat is, differing from the state on the cycle in exact ly D percent of
its element-states) was then chosen EI, and the net was allowed to resume
operation.

If the displaced trajectory re-encountered the cycle from which the dis­
placement was made, t hat trajectory, under that displacement, was a stable
t raj ectory. An unstable trajectory was observed on those occasions when the
displaced tra jectory ran to a different cycle. Th e rout ine described above was
repeated m times for each N, D, and T combina tion. In the data presented,
m is at least 1000. Stability is given in terms of the percent of t rajectories
stable relative to m.

While there are 256 distinct Ts , symmetries that exist among T s and
their behavior spaces have the effect of producing 88 identical pop ulat ions
of behavior spaces insofar as the sampling conditions used in this study are
concerned [15] . The symmetr ies exist under 1) interchange in the functiona l
roles of zero and one, 2) left-right switching of element connect ions, and 3)
the join of the previous operations. Role interchange.vreflect ion," preserves
the behavior space in that if, net structure remaining unchanged, T(A, B ) is
replaced with rT (A, B ) = T (r B,rA) = T (h'g'J'e',d'dYa'), where the pr ime
indicates a complement (0-1 interchange) opera tion , the behavior spaces of
T and rT are themselves net-state-by-net-state complements . T hat is, re­
flected Ts (T and rT) yield reflected (in the sense of complementary) behavior
spaces.

A left-right switching of inputs throughou t the net produ ces a behav­
ior space identical to that produced by the operat ion s on T : sT( A, B)
= T(sA, sB) = T (acbd, egJh) . Following the s operation with "reflect ion"
yields rs T .

T he end result is that the 256Ts are par ti tioned by a behavioral equiva­
lence relation yielding 88 T , rT, sT, rsT equivalence classes. In the context
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of cellular automata, the r, 9 , and rs operations have been called called con­
jugation, reflectio n, and conjugation-reflect ion, respect ively (16, page 492].
Cons ider ing the "number" of T (A, B ) to be the number indicated by t he
decimal -coded hexadecimal numeral AB, t he one T used as a representative
of its equ ivalence class is the lowest numb ered T in the class. The equivalence
classes are listed in [1 7], and, using a different coding of th e functions, also
in [161.

Net size

All nets were examined using net size 10. So as to get some indication of how
net size affects cycle stability, all nets were examined with at least one ot her
net size N1

• My aim was to sepa rate two net size stability curves enoug h
so th at some indication of th e effect of net size would be elicited. That is,
I attempted to get th e ten empirical da ta points for N and for N ' to show
consistent differences, negative or positive.

Practical const raints on computat ion requ ired that the smallest larger
net size sufficient to establish the size effect be used. This was particularly
t rue for T s with long disclosu re lengths [16J. Unless disclosure lengt hs made
it impracticab le, net s were also examined at N ' = 20. Even larger net sizes
were used in a few cases where disclosure lengt hs allowed and net size effect
was small between N = 10 and N ' = 20.

If I could find no N' that separated the curves (with in effect ive limitat ions
on computing), in some cases I increased m values on eit her the N or the N'
cur ve. The cases in which m values were increased were th ose in which t here
appeared to be some possibility of separat ing t he curves. T his modificat ion
of proced ure in respon se to inherent ly variable outcomes likely increases the
error of claiming a size effect exists in th e popul ation, when it does not
{v'I'ype I error") . While the problem does exist, and net size da ta for some
functions should probably be considered exploratory, on the oth er ha nd , 1)
new N' curves were run in their entirety , not just for non-separat ing stability
values at specific displacements, and 2) where addi tional observat ions were
made, the new data were combine d, when appropriate, with exist ing data.

A simple non-paramet ric test for popu lat ion difference concludes that
th e probability of ident ical N and N' populat ions yielding ten indep endent
observed differences of the same sign is 2(2- 1°), or ab out 0.2%. For nine
consistent differences out of the ten , the probability in quest ion is about
2%. Accordingly, tho se Nand N' curves not tied at any stability values
(except th at for D = 0) which show nine or ten consistent differences, are
taken to be evidence of a clear net size effect. Similar calculations for nine,
and for eight consistent differences, that is, where there are one or two ties
respecti vely, indicate th at one can operate with a decision rule of at most
one inconsistent difference, and not exceed a probabi lity of approximately
6% that th e observations, while favoring a conclusion that a net size elTect
exists, do not in fact arise from a true net size effect. Similarly, with as many
as five tied observat ions, if there are no inconsistent differences, t he (Type
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I) error rate does not exceed approximately 6%.
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D 'isp lacernen t

W here If is Hamm ing distance in absolute units , namely the act ual number
of element state differences bet ween two net states , D = lOOH/ N is the
percent Hamming dista nce. Early result s suggested that displacement in
terms of D , rather than H , might give stability curves similar at different net
sizes. Displacement size, for all Ts , was varied from D = 10, .. . (10) . . . 100 .
In the case of a few Ts , additi onal displacement values were used. Some N1

values made 10 percentage point increments impo ssible. Note that D = 100
is a displacement that yields the compl ement of a cyclic net state .

4. Results

Stability results are displayed graphically in Appendi x A. In all graphs, the
horizontal axis is percent displacement D , and the vertical axis is percent
stability. Th e results are plot ted from D = 0. Obviously, sta bility at D =°
is 100% by definition. Net funct ion is indicated using T (A , B ) notat ion and
by Wolfram rule numb er. For example, T (I , 6) is also noted as W(104). Ts
are ordered by their number AB. N values appearing in a given graph are
indicated thereon . If no m value appears with N, 1n is 1000 for each stability
value in that function line. I< indicates 1000 in connection with m , that is,
m = Sf{ means m = SOOO.

5. A na lys is and discussion

Effects of net function and displacemen t on stability. The st rong dependence
of stab ility on net function can easily be seen in Appendix A. Stabili ty curves
vary widely. The tr ivial Ts, T(O, 0), T( O, 15), and T (15, 0) give some idea of
the variability : high stability throughout the range of displacement values,
low stability throughout the range of (non-zero) displacement values, and
high stab ility at extremes of displacemen t , respectively. As to non-t rivial
functions exhibiting similar stability respo nse, we have as examples,

1. showing high stability throughout: T(I ,O), T (I ,2), T(2 , 0), T (7, 2),
T(8,0) and T(8, 8);

2. showing low stability throughout: T( O, 9), T( O, 10), T(O, 11), T( O, 14),
T(I ,9), T (I, 14), T(2 ,9 ), T(2,1l) , T (6,9 ), and T (Il ,4);

3. showing high stability at displacement ext remes: T( I, 8), T(2, 4), T(3 ,0),
T(3 , 12), T(6 ,6), T(7, 0), T(7 , 14), T (IO, 2), T(IO, 8), T (Il,O ), T(ll, 2),
T (1l ,8) , T(1 4,0 ) and T(14 , 8).

It is not surprising that at least some functio ns have high stability at
high displacement s. Where T is of the form T (abcd,dcba), the complement
of a cyclic state is in the cycle's basin of attract ion [18], therefore T must
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show 100% stability at D =100. All T s which are of the latter form , namely,
T (O ,O), T (I ,S), T (2,4), T (3,I2), T (6,6), and T (7, 14), do show the predicted
response.

Not all T s can be placed in the categories sketc hed above. A few Ts show
generall y high stability with a sharp drop-off at displacements approaching
100%, nam ely T(O,I) and T( I , I ). Other T s show stability that gradually
declines over t he displacement range: T(0 ,3) , T( I ,3), T(2,3) , and T(3 ,3) .
Still oth ers can perhap s best be describ ed as mode rately stable over most of
the displacement range: T (3,10), T(6, 1), and T(6, I4 ).

In any case, th e ca tegorizat ion of functions as to the genera l effect of
displacement is made more difficult by not knowing for certain what the large­
net stability contour is. For example, while T(8, 10) is possibly classifiable as
a moder ately stable (unct ion at N = 10, its apparent change of stability with
net size suggests that th is funct ion might well show highly unstable cycles in
large nets.

Effect of net size on stability. At leas t for the net sizes used , the clear
generalization for net size effects on cyclic stability is that for most Te, if net
size is increased, cycles become less stable. Looking at percent displacem ent
over its range of possible values, 68 Ts appear to have cycles that are less
stable in larger net s. Only a very few T s appear to have cycles that are more
stahle in larger nets: T (O,I ), T( I,O), T (I ,I ), T(S,O), and T(S,S).

T he three t rivial T e, of course, show no effect of size at all. Twelve T s
have stabi lity curves for N and N' that ca n not be deemed to be sepa ra ted by
the criteria used here. Of the lat ter group, T(I ,3), T(2, 1), T(3, 1), T(6,2),
T (6,S), T (6, 10), and T( 7, 6), all show curves which st rongly suggest a differ­
ent ial response of sta bility to displacem ent as net. size is increased. 1'(0,3) ,
T(2, 3), T(7,I4), T( 9,S), and T(9,I O) have curves that app ear diffi cult to
disentangle at the net size and displacement values used, especia lly given t he
lack of useful the ory.

Abso lute d ispl a cem en t

The d isplacement s considered in this pap er are all given in percentage units.
One of the findings of the work reported here is that th is relat.ive sca ling of
d isplacement is a useful pro cedure. Nevertheless, how stable cycles are under
small absolute displacements) say, of one or t.wo units Hamming distance, is
an interesting quest ion. Infrequent error in net. comp utation would likely be
modeled best in te rms of small absolute d isplacements. Wh ile the presen t
st udy was not designed to speak directly to that question (however, see
T(3, 1), T (6, 2), T (6,S), T( 7, 6), and T(7 ,14) for relevant data), the ava ilable
relati ve d isplacement data can be rescaled to provide ind irect evidence. T he
rescaled data suggest that often, even for Te tha t clearly decline in stabilty
as net size increases when st ability is characterized by relat ive displacement ,
when abso lut e one-un it displacements are considered th ese same Ts may
show stability increases as net s become larger. Addi tional work to clar ify
t his point may be warr anted.
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A p pend ix A . St abili ty graphs

In all graphs, the horizontal axis is displacement from the cycle in percent
Hamming distance. Percen t Hamming distance is the percent of element ­
states which differ , between the cycl ic state from which the disp lacement is
measured, and th e displaced net state which begins the displaced traj ectory,
relative to the number of element s in the net. The vert ical ax is is percent
stability, that is, th e percent of t raj ecto ries which returned to th e cycle,
relat ive to the to tal number of trajectories initia ted (m) . W here not indicated
on the graph, m = 1000. N is th e net size (the number of elements in t he
net).

T he fu nction used by net elements is indicated bot h in T( A, B) notat ion,
and by th e use of Wolfram rule numbers, the lat ter indicated by W( C).
Further details on funct ions are given in secti on 2, and section 3 a.bove .
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