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Complexity, D epth, and Sophistication

Moshe Kopp el
Queens College, Fluslling, NY 11367, USA

Abstract. T wo measures of the "meaningful" complexity of an infi­
ni te string are shown to be equivalent up to a constant (under app ro­
priate translati on) . "Sophis t ica tion", defined by Koppel and Atlan [3],
is the size of t he projectible par t of the st ring's minimal description
and forma lizes t he amount of pla nni ng which wen t into t he constru c­
t ion of the str ing. "Dept h". defi ned by Bennett til, is the amou nt of
t ime required for the str ing to be generated from its min ima l descr ip­
tio n and form alizes its "evolvedness. "

1. Introduction

The total complexity or an object is defined as the size of its most con­
cise description . The total complexity of an object can be large while its
"mean ingful" complexity is low; for exam ple, a. random object is by defini­
tion maximally complex but complete ly lacking in st ruct ure. In the analysis
of complex systems, we are more often interested in the growth of meani ngful
complexity than in the growth of total complexity. Thus, it is important that
the former be formally defined. Meaningful complexity can be form alized in
terms of stat ic resources as the amount of planning which likely went into
the const ruct ion of an ob ject or it can be measured in te rms of dyna mic
resources as the amou nt of computation needed to execute this plan. In this
paper, we will unify these two approaches .

T he "stat ic" approach to the formalizat ion of meaningful complexit y is
"sophist icat ion" defined and discussed by Koppel and Atlan [3]. Sophistica­
t ion is a genera lizat ion of t he "Hcfunct ion" or "minimal sufficient stat ist ic"
of Cover and Kolmogoroff [2J , using the motonic complexity of Levin [4J .
The sophist icat ion of an object is the size of that part of the most concise
descript ion of that object which describes its st ructure, i.e. th e aggregate of
its projectible propert ies. For example, the sophist icat ion of a st ring which
is ra ndom exce pt t hat each bit is doubled (e.g. 00110000110011 ... ) is the
size of the part of the description which represents the doubl ing of the bits.

The "dynamic" approach to the formalizat ion of meaningful complexity
is "depth" defined and discussed by Bennett [I]. T he depth of an object is
the runn ing-t ime of its most concise descripti on. Since it is reasonable to
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ass ume that an object has been generated by it s most concise description,
th e depth of an obj ect can be thought of as a measure of its evolvedness.

Although sophist icat ion is measured in integers and depth is measured in
functions, it is not difficul t to translate to a common range. It has already
been shown by Schnorr and Fuchs [5J that the sophist icat ion of an infinite
st ring is infinite if an d only if its dept h is infinit e. In this paper , we will prove
tha t for all infinite st rings sophist icat ion and depth are essentially equa l (t hat
is, they differ by at most some constant ). Thus, the more sophisticated an
object the more tim e needed for i ts evolution.

One way of demonst rating the naturalness of a concept is by proving the
equivalence of a variety of prime facie different formalizations (e.g. com­
putability) . It is hop ed that th e proof of the equ ivalence of two ap proaches
to meaningful complexity, one using static resources (progr am size) and the
other using dynamic resources (t ime), will demonstrate not only the nat u­
ralness of the concept hut also the correctn ess of the specificat ions used in
each formal ization to ensure robustness and genera lity.

2 . Complexity

Let U consist of four tapes: a program tape, a data tape, a work tap e, and
an output tape. Given t he contents of t he cells being scanned in some state,
U can switc h states, move one of t he scanners left or right or prin t a 0 or 1 in
one of the cells being scanned . Th ese instructions are restricted as follows:

1. The program , data, and output tapes are sca nned left to right only.

2. U writes on the output tape only if the cell scanned is bla nk and moves
right on the ou tput only if the cell scanned is not blank.

3. T he computation halts if and only if a blank is scanned on the data
tape .

If beginning in some fixed initial state, with the finite bina ry string P on
the progr am tape and the (pos sibly infinite) binary st ring D on the data tape,
and the program and data scanner on th e first bit s of P and D, respect ively,
the computat ion halts with the (possibly empty) binary st ring S on t he
ou tput tape, t hen we say th at U(P, D) = S. If the computation does not
halt but continues prin ting bit s of the infinite bina ry st ring ex on the output
tape th en we say th at U(P, D ) = cr. Let S" be the initi al segment of length"
of th e st ring S. A process is a function f from finite binary strings to (finite
or infinite) binary strings such that for all S , n we have f (s n) is an initial
segment of J(S"+' ) (if I (S" ) is an infinite st ring, then J( S" +') = I (S" )).

Clearly, a funct ion I for which there exists P such that U(P, D) = I (D) is
a process. If for every partially computable process F there exists a program
P such that U(P, D) = F(D) for all D, then we call U a Universal Turing
Machine .

The significance of processes as minima l descript ions is also discus sed in
[4] .
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A program P is total if U(P,D) is defined for all D . Not e that U(P,D)
can be finite or infinite.

A program is self-delimit ing if during the course of the computation of
U(P, O) the program scanner reads the last bit of P but does not go beyond
it.

D efinition 1. Th e complexity of S, H (S) = min{lP I+ ID I IP is a total and
self-deJjmi ting and U(P,D) ;2 S} .

3. Sop hist ication

Definit ion 2. A description of a, (P,D), is c-min imal if IPI+ IDI S H(a)
+c.

Defini t ion 3_ Th e c-sophist icat ion of a finite string S, SOPHo(S) = min{lPI
13D S.t. (P, D) is a c-minimal descrip tion of a }.

Definition 4. Th e weak sophistication of an infinite string 0 , SOPH~ =
min{IPl13 cVn 3 D, (P,D) is a c-minimal descrip tion of a} .

D efini tion 5 . Th e (strict ) sophist icat ion of an infinite string a , SOPH(a)
= min{lPI 13 cV u 3 D, (P,D,) is a c-minimal description of a and D, ~

D,_d·

Definit ion 6 . An infin ite string a is transcendent if Vc lim SOPJ-lc(all
)

= 00 . If a is transcenden t, we define SOPH'(a) = SOPH(a) = 00.

Observe that it is not immediate from the definition that SOPH' and
SOPI-! are defined for all a. We will prove, however, that SOPH' is defined
for all a .

4. D ep th

Every finite or infinite string P has at most one ini tial segment which is a
self-delimiting program in U. If such an initial segment of p exists, call it pP
and call the rest of fJ, fJo.

Let RUN be a program in U such that for all fJ for which fJP is defi ned,
U(RUN, fJ) = U(fJP ,fJD ).

For a strictly increasing function F : N ~ N , let tri»,D) = the result­
ing of aborting the computation of U(P,D) if F(n) steps have been executed
and less than n bits of output have been printed; after aborting, D's are
printed on the output tape forever.

For a strictly increasing function P , let "fF be the characte ristic string of
the range of F and let IFI = min{IP IIP is a self-delimit ing program and
U(P ,O) = 'Yd.
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Defin ition 7. The weak depth of an infinite string a, D'(a ) = min{lFl
13 clf n3 13n (13::, 13;?) is a c-minimai descrip tion of an and UF(RUN, 13n)
=U(RUN, 13n)}'

If no such F exists, then D'(a ) = 00.

Defin itio n 8 . The (st rict) depth of an infinit e string a, D(a ) = min(lFI
13 clf n 3 13n (13:: , 13;?) is a c-minimal description of an and 13n :2 13n- l and
UF(RUN, 13n) = U(R UN, 13n)} '

If no sud ) F exists then D(a) = 00.

Thus, the depth of an infinite string 0' is the size of the smallest program
which computes an upp er· bound on the running-time of minimal descriptions
of segments of a. (The reader should take note of t he hidden role played here
by a "busy beaver't-type function.)

5 . Equi vale nce of sophisticatio n and dep th

Theorem 1. SOP1f(a ) is defined for all Q. Moreover, there exists c such
tbat for all a, either SOPH'(a ) = D'(a ) = 00 or ISOPH'(a) - D'(a )1 < c.

Proof. We first show that if D'(a) = 00 then SOPH'(a) = 00 . If SOPH 'fi
00, then for some c and all n there exists e such that SOPHc(O'n) :'5 f. .
But then the programs whose lengths determine the c-sophistications of the
various an, come from among a finite set of total, self-delmit ing programs,
{P;}, 1 :s; i :s; k, k :s; 2'. For any total program P, let STp(m) he the
maximum number of steps which U(RUN, P . D ) run s before either halting
or producing m bits of output , with the maximum taken over all D. Then,
STp(m) is a total, recursive function. Let g(m) = max{STp;(m )}. Then,
choosing 13n such that 13:: E {P;}, 1 :s; i s k and 1 :s; i s k (13::,13;? ) is a
c-minimal description of an, we have UU(RUN,13n) = U(RUN,13n) and thus
D'(a) :s; Igi < 00 and the claim follows.

Now we will show that for some c if D'(a) is fi nite then ISOPH'(a) ­
D'(a)1 ~ c. If D'(a ) is finite, then there exists some recursive function F
aod some sequence of st rings {13n } and some c! such t hat for all n, (13:: ,13;?)
is a c!-minimal descript ion of an and UF(RUN,13n) = U(RUN, 13n). Now let
RUN ·F be a self-delimit ing program such that U(RUN·F,13) = UF(RUN, 13).
Then, for all n, U(RUN ·F, /3n) is a c-minimal description of an), so it follows
that SOPH'(a) :s; IRUN . FI :s; IF I+ c = D'(a ) + c.

Since D'(a ) is defined for all a and we have shown that if D'(a ) = a theo
SOPH'(a) = 00 and if D'(a) is finite then SOP H'(a) is fi nite, it is proved
tha t SOPH'(a) is defined for all a.

1\ remains only to show that for some c, D'(a ) :s; SOP H'(a) +c. Suppose
that SOPH'(a) is determined by the length of t he program P. Tb en, there
exists ~ l {Dn } and c' such that for all n, (P, Dn ) is a c'-minimal description
of an. Now let t ing F = STp we have UF(RUN,p. Dn) = U(RUN, p . Dn)
= U(P,Dn) ·= an. Thus, D'(a ) = IF I = ISTpl :s; JPI + c! = SOPH'(a ) + c,
and the theorem is proved. •
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Defin ition 9 . An infinite string Q is describable if SOPH(o:) is finite.
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T heorem 2. Th ere exis ts c such tllat [or all describable 0 , ISOPH(o ) ­
D(o)1S c.

The proof of this theorem is identical to the second part of the above
proof wit h the consisten t ap plica tion of the restr iction on {Dn} and {fin}'
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