Complex Systems 1 (1987) 1087-1091

Complexity, Depth, and Sophistication

Moshe Koppel
Queens College, Flushing, NY 11367, USA

Abstract. Two measures of the “meaningful” complexity of an infi-
nite string are shown to be equivalent up to a constant (under appro-
priate translation). “Sophistication”, defined by Koppel and Atlan [3],
is the size of the projectible part of the string’s minimal description
and formalizes the amount of planning which went into the construe-
tion of the string. “Depth”, defined by Bennett [1], is the amount of
time required for the string to be generated from its minimzl descrip-
tion and formalizes its “evolvedness.”

1. Introduction

The total complexity of an object is defined as the size of its most con-
cise description. The total complexity of an object can be large while its
“meaningful” complexity is low; for example, a random object is by defini-
tion maximally complex but completely lacking in structure. In the analysis
of complex systems, we are more often interested in the growth of meaningful
complexity than in the growth of total complexity. Thus, it is important that
the former be formally defined. Meaningful complexity can be formalized in
terms of static resources as the amount of planning which likely went into
the construction of an object or it can be measured in terms of dynamic
resources as the amount of computation needed to execute this plan. In this
paper, we will unify these two approaches.

The “static” approach to the formalization of meaningful complexity is
“sophistication” defined and discussed by Koppel and Atlan [3]. Sophistica-
tion is a generalization of the “H-function” or “minimal sufficient statistic”
of Cover and Kolmogoroff [2], using the motonic complexity of Levin [4].
The sophistication of an object is the size of that part of the most concise
description of that object which describes its structure, i.e. the aggregate of
its projectible properties. For example, the sophistication of a string which
is random except that each bit is doubled (e.g. 00110000110011...) is the
size of the part of the description which represents the doubling of the bits.

The “dynamic” approach to the formalization of meaningful complexity
is “depth” defined and discussed by Bennett [1]. The depth of an object is
the running-time of its most concise description. Since it is reasonable to

© 1987 Complex Systems Publications, Inc.

1088 Moshe Koppel

assume that an object has been generated by its most concise description,
the depth of an object can be thought of as a measure of its evolvedness.

Although sophistication is measured in integers and depth is measured in
functions, it is not difficult to translate to a common range. It has already
been shown by Schnorr and Fuchs [5] that the sophistication of an infinite
string is infinite if and only if its depth is infinite. In this paper, we will prove
that for all infinite strings sophistication and depth are essentially equal (that
is, they differ by at most some constant). Thus, the more sophisticated an
object the more time needed for its evolution.

One way of demonstrating the naturalness of a concept is by proving the
equivalence of a variety of prime facie different formalizations (e.g. com-
putability). It is hoped that the proof of the equivalence of two approaches
to meaningful complexity, one using static resources (program size) and the
other using dynamic resources (time), will demonstrate not only the natu-
ralness of the concept but also the correctness of the specifications used in
each formalization to ensure robustness and generality.

2. Complexity

Let U consist of four tapes: a program tape, a data tape, a work tape, and
an output tape. Given the contents of the cells being scanned in some state,
U can switch states, move one of the scanners left or right or print a 0 or 1 in
one of the cells being scanned. These instructions are restricted as follows:

1. The program, data, and output tapes are scanned left to right only.

2. U writes on the output tape only if the cell scanned is blank and moves
right on the output only if the cell scanned is not blank.

3. The computation halts if and only if a blank is scanned on the data
tape.

If beginning in some fixed initial state, with the finite binary string P on
the program tape and the (possibly infinite) binary string D on the data tape,
and the program and data scanner on the first bits of P and D, respectively,
the computation halts with the (possibly empty) binary string S on the
output tape, then we say that U(P,D) = S. If the computation does not
halt but continues printing bits of the infinite binary string a on the output
tape then we say that U(P, D) = a. Let 5™ be the initial segment of length n
of the string S. A process is a function f from finite binary strings to (finite
or infinite) binary strings such that for all S,n we have f(S") is an initial
segment of f(S™*!) (if f(S™) is an infinite string, then f(S™*!) = f(S™)).

Clearly, a function f for which there exists P such that U(P, D) = f(D)is
a process. If for every partially computable process F' there exists a program
P such that U(P,D) = F(D) for all D, then we call U a Universal Turing
Machine.

The significance of processes as minimal descriptions is also discussed in

[4].

Complexity, Depth, and Sophistication 1089

A program P is total if U(P, D) is defined for all D. Note that U(P, D)
can be finite or infinite.

A program is sell-delimiting if during the course of the computation of
U(P, Q) the program scanner reads the last bit of P but does not go beyond
it.

Definition 1. The complexity of S, H(S) = min{|P|+|D||P is a total and
self-delimiting and U(P, D) 2 S}.

3. Sophistication

Definition 2. A description of a, (P, D), is c-minimal if |P|+ |D| < H(a)
+c.

Definition 3. The c-sophistication of a finite string S, SOPH,(S) = min{|P|
|3D s.t. (P, D) is a c-minimal description of a}.

Definition 4. The weak sophistication of an infinite string o, SOPH., =
min{|P| |3 ¢Vn 3 D,(P, D) is a e-minimal description of a}.

Definition 5. The (strict) sophistication of an infinite string o, SOPH(e)
= min{|P||3 ¥ n3 D, (P,D,) is a c-minimal description of a and D, C

n-1J-

Definition 6. An infinite string « is transcendent if Ye Tim SOPH,(a")
= oo. If « is transcendent, we define SOPH'(«) = SOPH{&) = co.

Observe that it is not immediate from the definition that SOPH' and
SOPH are defined for all «. We will prove, however, that SOPH’ is defined
for all a.

4. Depth

Every finite or infinite string # has at most one initial segment which is a
self-delimiting program in U. If such an initial segment of exists, call it 5F
and call the rest of 3, 7.

Let RUN be a program in U/ such that for all 8 for which 8F is defined,
U(RUN, 8) = U(B", B7).

For a strictly increasing function F : N — N, let UF(P, D) = the result-
ing of aborting the computation of U(P, D) if F(n) steps have been executed
and less than n bits of output have been printed; after aborting, 0’s are
printed on the output tape forever.

For a strictly increasing function F, let v be the characteristic string of
the range of F' and let |F| = min{|P||P is a self-delimiting program and
U(P,0) =vr}-

1090 Moshe Koppel

Definition 7. The weak depth of an infinite string o, D'(a) = min{|F]
|3 eV n3 B, (BF, BP) is a c-minimal description of o™ and UF(RUN, B,)
— U(RUN, 3,)}.

If no such F exists, then D'(a) = oo.

Definition 8. The (strict) depth of an infinite string a, D(a) = min{|F|
|3 eV n3 B, (BF, BP) is a c-minimal description of a™ and B, 2 B, and
UF(RUNa Bn) = U(RUN, ﬁn)}

If no such F exists then D(a) = co.

Thus, the depth of an infinite string « is the size of the smallest program
which computes an upper-bound on the running-time of minimal descriptions
of segments of . (The reader should take note of the hidden role played here
by a “busy beaver”-type function.)

5. Equivalence of sophistication and depth

Theorem 1. SOPH'(«) is defined for all «. Moreover, there exists ¢ such
that for all o, either SOPH'(a) = D'(a) = 0o or |SOPH'(a) — D'(a)| < c.

Proof. We first show that if D'(a) = co then SOPH'(a) = co. If SOPH #
co, then for some ¢ and all n there exists £ such that SOPH.(a™) < £.
But then the programs whose lengths determine the ¢-sophistications of the
various o, come from among a finite set of total, self-delmiting programs,
{P},1 < i<k, k <2°% For any total program P, let STp(m) be the
maximum number of steps which U(RUN, P - D) runs before either halting
or producing m bits of output, with the maximum taken over all D. Then,
STp(m) is a total, recursive function. Let g(m) = max{STg(m)}. Then,
choosing B, such that B € {P}, 1 <i<kand1<i<k(BF,BP)isa
c-minimal description of ", we have U?(RUN, 3,) = U(RUN, 3,) and thus
D'(a) < |g| < oo and the claim follows.

Now we will show that for some ¢ if D'(a) is finite then |[SOPH'(a) —
D'(a)| < c. If D'(a) is finite, then there exists some recursive function F
and some sequence of strings {3,} and some ¢ such that for all n, (87, 2)
is a ¢-minimal description of a” and U¥(RUN, 3,) = U(RUN, 3,). Now let
RUN -F be a self-delimiting program such that U(RUN-F,) = UF(RUN,).
Then, for all n, U(RUN - F, 3,) is a c-minimal description of a®), so it follows
that SOPH(a) < |RUN- F| < |F|+c = D'(a) +c.

Since D'(«) is defined for all & and we have shown that if D'(a) = « then
SOPH'(a) = oo and if D'(e) is finite then SOPH'(e) is finite, it is proved
that SOPH'(«) is defined for all a.

It remains only to show that for some ¢, D'(a) < SOPH'(a) +c. Suppose
that SOPH'(a) is determined by the length of the program P. Then, there
exists $2,{D,} and ¢ such that for all n, (P, D,) is a ¢’-minimal description
of a™. Now letting F = STp we have UF(RUN, P - D,) = U(RUN, P - D,)
= U(P,D,) = a". Thus, D'(a) = |F| = |STp| < |P| + ¢ = SOPH'(a) + ¢,
and the theorem is proved. B

Complexity, Depth, and Sophistication 1091

Definition 9. An infinite string « is describable if SOPH(c) is finite.

Theorem 2. There exists ¢ such that for all describable o, |SOPH(a) —
D(o)| <e

The proof of this theorem is identical to the second part of the above
proof with the consistent application of the restriction on {D,} and {8,}.

References

[1] C. Bennett, “On the logical ‘depth’ of sequences and their reducibilities to
incompressible sequences,” to appear.

[2] T. Cover, “Kolmogorov complexity, data compression, and inference,” in The
Impact of Processing Techniques on Communications, J. K. Skwirzynski ed.
(Martinus Nijhoff Publishers, 1985).

[3] M. Koppel and H. Atlan, “Program-length complexity, sophistication, and
induction,” submitted.

[4] L. A. Levin, “On the notion of a random sequence,” Soviet Math. Dokl.,
14/5 (1973) 1413-1416.

[5] C. P. Schnorr and P. Fuchs, “General random sequences and learnable se-
quences,” J. Symb. Logic, 42 (1977) 329-340.

