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Abstract. We apply a method proposed recently for estimating en-
tropies of symbol sequences to two ensembles of binary sequences ob-
tained from dynamical systems. The first is the ensemble of (0,1)-
sequences in a generating partition of the Henon map; the second is
the ensemble of spatial strings in cellular automaton 22 in the sta-
tistically stationary state. In both cases, the entropy estimates agree
with previous estimates. In the latter case, we confirm a previous
claim that the entropy of spatial strings in rule 22 converges to zero,
although extremely slowly.

One of the most important characteristics of low dimensional chaotic dy-
namical systems is their entropy. In spatially extended systems, we have in
addition spatial strings whose non-vanishing entropy is an important observ-
able. In the first case, the entropy is most easily obtained indirectly as the
sum over the positive Lyapunov exponents [1,2] (for attractors; for repellers,
see reference [3]), provided the equations of motion are given analytically.
If not, measuring the entropy can be non-trivial if block-entropies (defined
below) converge slowly. The latter is, in particular, the case for some cellular
automata, where either spatial strings at fixed time or temporal strings at
fixed space points can have extremely slowly converging block entropies [4].

Given an ensemble of strings made up of symbols s; € {0,1}, with prob-
abilities p[sy, s2...s,] for finding blocks (s1s2...5,) € {0,1}" at arbitrarily
chosen positions, block entropies H, are defined as

Ho=— ) plsi...s.)log,pls; - .. sa)- (1.1)

5;=0,1
The entropy h is defined as

b= it hn, B = Hugs — Ha. (1.2)
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Since the number of terms in equation (1.1) increases exponentially with
n, it is practically unfeasable to compute the H,, for large n (n 2 20, in our
two examples and with our computational resources). If equation (1.2) does
not converge sufficiently fast, computing the entropy via block entropies is
thus not possible.

The purpose of the present letter is to apply a method which was recently
proposed by one of us [5]. It is related on the one side to the Lempel-Ziv
[6] entropy estimates, and on the other hand to dimension estimates via
next-neighbor distances introduced by Badii and Politi [7] and others [8].

Consider a one-sided infinite string S = (s;8;...), its one-sided infi-
nite substrings S; = (s8;8i41...), © = 1,2,... N, and the substrings S;; =
(8i...Si4k—1) consisting of the first & digits of S;. Effectively, the algorithm
finds, for each i, the largest k such that S = S for some other j € [1, V].
In other words, it finds the nearest neighbor of 5; within the set of all 5},
1 <7 < N, in a suitable metric.

Let us denote by (k{N)) the average maximal k,

]L(N) Z L‘ yrimx kl',mnx = mf'x{k]SJsk = S;,k}. (13)

r“l

Then, we have

log, N
h= lim gy, 8= —2 1.4)
N—oo ( k(N )) (
and the somewhat more complicated but faster convergent expression
1

h = lim h(N), h(N)=

N—co

e — By (4

Actually, the algorithm finds the nearest neighbors by constructing a
binary tree (see also [9]) in which each S; corresponds uniquely to one path
from the root to one of the leaves. The time required for searching for a
nearest neighbor is reduced in this way from O(N) (as in a naive search
[10]) to O(InN). The sequences analyzed in the present work had N up to
4 % 10%. The CPU time required for one sequence of 4 x 10° binary digits was
~ 2.4 minutes on a gVAX, and the storage demand was 12 MB of (virtual)
memory.

The Henon map is given by

Tnpr =1+ byn — az?, Yny1 = o (1.6)

We took the parameter values @ = 1.4 and b = 0.3, for which the Lyapunov
exponent is v = 0.4192 4 0.0001.

For computing the entropy directly, one needs a generating partition of
the plane. We use the binary partition proposed in [11]. Its division line is a
polygon which passes through points of homoclinic tangencies. Applying the
above algorithm to the (0,1)-sequence obtained in this way yields the results
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Figure 1: Entropy estimates (in natural units) for the Henon map with
a =14, b=0.3. The data are from 40 runs with 4 x 10® iterations, 80
runs with 2x 109 iterations, and 110 runs with 10° iterations each. The
circles represent h(N) (equation (1.5)); the triangles are ny (equation
(1.4)). The upper horizontal scale indicates (km}ix) Error estimates
are not given when the error is smaller than the symbol.

shown in figure 1. We see that the h(N) in equation (1.5) converge quickly
to h = 0.4194 4 0.0007, in good agreement with the expectation & = 7. The
values of ny have much smaller error bars but converge less fast so that they
are less useful.

This result may be contrasted with previous entropy estimates [11] using
the same partition but using equation (1.2). The block probabilities needed
there were simply obtained by counting the frequencies of all different sub-
strings. Even with much higher statistics than in the present paper (ca. 108
vs. less than 4 x 107), it was not possible to go beyond a block length of 20.
In our present approach, we have (kr(n";l) ~ 30. This is the maximal corre-
lation length to which our algorithm is sensitive with the present statistics.
The increase by ten units causes a more reliable estimate of the entropy.

The second system attacked is the one-dimensional cellular automaton
rule 22. The evolution of an initially random string is given by the local rule
that each digit s; has to take on the value ‘17 if and only if exactly one of
Si_1,8i, and s;y; in the previous generation was ‘1’; otherwise, s; becomes
‘0. All the s;, 1 = 1,2,..., N, are updated simultaneously and periodic
boundary conditions are used. The lattice sizes were (1 —4) x 10°. The first
500 iterations were discarded as not yet stationary; after that, every 500t
generation was analyzed. The results are shown in figure 2.

For our longest sequences of N = 4 x 10° spins, the average k) is about

24. This is to be compared to the maximal feasible block length of 17 units
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Figure 2: Entropy in bits for the one-dimensional cellular automaton
rule 22. Here, we used 40 runs with 4 x 105 iterations and 80 runs
with 10° iterations each. Error estimates are given as in figure 1.

in [4]. The entropy decreases very steadily with N, or rather, with (k{¥)), as
already observed in reference [4]. Qur best estimate is h < 0.778 bits/spin,
but there seems to be further decrease, indicating extremely long-ranging
correlations. The best fit is obtained with the scaling law

h(N) ~ (K52}~ (1.7)

max

This agrees perfectly with the estimate of reference [4], provided we treat
(kM) as an effective block length. It indicates that A(N) might tend toward
0 for N — oo and that the spatial strings in the stationary case actually are
not random. '

Recently, there has been much interest in generalized entropies and in
treating fractal measures as multifractals [12]. In our case, generalized en-
tropies A% are defined by

HN)

Jim Nioe(@lmmOy g, (1.8)

The crowding index (pointwise entropy, “singularity”) « is defined as
a(S;) = logy N/kimax (1.9)

and f(a) is defined as usual as the Hausdorff dimension of subsequences with
crowding index e. It can be obtained either by Legendre transforming the
function (¢ — 1), or by using directly the numbers mx s of subsequences
with ki max = k:

(1.10)
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Figure 3: Entropy f(a)-scaling functions for the Henon map (heavy
line) and for rule 22 (light line), both obtained from equation (1.10).
For the figure, we used strings of length 4 x 10%; curves obtained from
strings of length 10° are virtually identical. (The graph for the Henon
map obtained from 10° iterations is slightly broader than that from
4 x 10°, an effect of the smaller statisties.)

where const is fixed in practice by demanding f(a) = « for f'(a) = 1.
Using the latter method, our results for f(a) for both systems are shown in
figure 3. Their most striking feature is that f(a) is much wider for cellular
automaton 22 than for the Henon map. We should, of course, point out that
f(@) for the cellular automaton 22 is indeed ill defined if its entropy vanishes
asymptotically, but due to the slow convergence, this does not effect the
numerical estimate of f(a).

We conclude that the presented method yields entropy estimates in good
agreement with previous and independent results. Compared to the standard
method of counting frequencies of blocks of fixed length, its main advantage
is that it needs much shorter strings to get estimates which take into account
possible long-range correlations. In particular, we verified that long-range
correlations are much more important in cellular automaton 22 than in the
Henon map.
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