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Abstract . We apply a method proposed recently for estimat ing en­
tropie s of sy mbol sequences to two ensembles of binary seq uences ob­
tained from dynamical sys tems. T he first is th e ensemble of (0,1)­
sequences in a generating part it ion of the Henon map ; th e second is
th e ensemb le of spat ial st rings in cellular automaton 22 in t he sta­
t ist ica lly stat ionary state. In both cases , t he ent ropy est ima tes ag ree
with prev ious estimates. In the latter case , we confirm a previous
claim th at th e ent ropy of spatial strings in ru le 22 converges to zero,
alt hough extremely slowly.

One of the most important characterist ics of low dimensional chaot ic dy­
namical systems is t heir entropy. In spatially extended systems, we have in
addition spatial strings whose non-vanishing entropy is an imp ortan t observ­
able . In the first case , the ent ropy is most eas ily obtained indi rectly as the
sum over the positi ve Lyapunov exponents [1,2) [for attractors; for repellers ,
see reference [3]), provided the equations of moti on are given analytically.
If not, measuring the ent ropy can be non-tri vial if block-entrop ies (defined
below) converge slowly. The latter is, in particular, the case for some cellular
automata, where eit her spat ial st rings at fixed tim e or tempora l st rings at
fixed space point s can have extremely slowly converg ing block ent rop ies [4].

Given an ensemb le of st rings made up of symbols Sj E {O,l} , with prob­
abi lit ies p[51' 5 2 ... 5 n ] for finding blocks (S t5 2 ' " 5 n ) E {OJ l ] " at arbit rarily
chosen posit ions, block entropies Hn are defined as

Hn= - L pIs, ... snJ log, pis , ...snJ·
&, = 0, 1

The ent ropy h is defined as
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(1.1)

(1.2)
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Since the number of terms in equat ion (1.1) increases expone nt ially with
n , it is practically un feasable to compute the Hn for large n (n ;:, 20, in our
two examples and with our computational resources). If equation (1.2) does
not converge sufficiently fast , computing t he entropy via block ent ropies is
thus not possible.

The purpose of the present let ter is to apply a method which was recently
proposed by one of us [5J. It is related on tbe one side to tbe Lempel-Ziv
[6] ent ropy estimates, and on the other hand to dimension est imates via
next- neighbor dist an ces int roduced by Badii and Polit i [7) and ot hers [8J.

Consider a one-sided infinite st ring S = (Sl 82 . • . ) , its one-sided infi­
nite substrings Sj = (Sj8i+ 1 .. .), i = 1, 2, . .. N, and the subst rings Si,k =
(s, . .. Si+k- d consisti ng of the first k digits of Sj. Effect ively, the algorithm
finds, [or each i, the largest k such th at Si,k = Sj .k [or some oth er j E [1, N ].
In other words, it finds the nearest neighbor of Sj within the set of all Sj,
1 :5 j ~ N I in a suitable metric.

Let us denote by (k~O t he average maximal k,

1 N

(k~) = - L:k; m x> k;,roax = max{klSj,k = Si.d ·
N i= l ' )

Then , we have

(1.3)

h = lim 1JN ,N_ m
10g, N

n« = (k~~)
(1.4)

and the somewhat more complicated but fas ter convergent expression

h = lim h(N ),
N- oo

h(N) _ 1
- (k(N) k(N/'» )·

max - max

(1.5)

Actually, the algorithm find s the near est neighbors by construct ing a
binary t ree (see also [9]) in which each S, corresponds uniquely to one path
from t he root to one of the leaves. Th e t ime required for searching for a
near est neighbor is reduced in th is way from O(N ) (as in a naive search
[10]) to O(lnN }. Th e sequences ana lyzed in the present work had N up to
4 X 105 _ The CPU time required for one sequence of 4 x 105 binary digits was
~ 2.4 minutes on a p.VAX, and the storage demand was 12 MB of (virtual)
memory.

The Henon map is given by

Xn+l = 1 + bYn - a:z;~ , Yn+ l = xn· (1.6)

We took the parameter values a = 1.4 and b = 0.3, for which the Lyapu nov
expone nt is 'Y = 0.4192 ± 0.0001.

For computing t he entropy directly , one needs a generating part ition of
the plan e. We use the binary partition proposed in [11]. Its division line is a
polygon which passes through points of homoclinic tangencies. Applying the
above algorithm to the (O,l )-sequence obtained in this way yields the results
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Figure 1: Entropy est imates (in natural units) for th e Henan ma p with
a = 1.4, b = 0.3. T he data are from 40 runs with 4 x 105 iterat ions , 80
ru ns with 2x 105 iterations, and 110 run s with 105 itera tio ns each . The
circl es represent heN) (equation (1.5» ; th e triangles ar e I]N (equation

(1.4». T he upper horizontal sca le indicates (k~b. Error estimates
are not given when t he error is smaller than the symb ol.
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shown in figure 1. We see that the heN) in equat ion (1.5) converge quick ly
to h = 0.4194 ± 0.0007, in good agreement with the expectation h = f . The
valu es of TIN have much smaller error bars but converge less fast so tha t th ey
ar e less useful.

T his resu lt may be cont rasted with previous ent ropy est ima tes [11] using
the same partition but using equation (1.2). T he block probabilit ies needed
there were simply obtained by counting the frequ encies of all differe nt sub­
str ings . Even with mu ch higher statist ics than in the present paper (ca. 108

vs. less than 4 x 107
) , it was not possible to go beyond a block length of 20.

In our present ap proac h, we have (k~D ~ 30. This is the maximal corre­
la tion length to which our algorithm is sensitive with the present statistics.
T he inc rease by ten units causes a more reliable est imate of th e ent ropy.

T he second system attacked is the one-dimensional cellular aut omaton
rule 22. T he evolut ion of an initially random st ring is given by the local rule
that each digit 5i has to take on t he value '1' if and only if exactly one of
S i-l! sr, and 5iH in the previous generation was '1' ; otherwise , s, becomes
'0' . All the 5 i, i = 1,2, . . . , N, are updated sim ultaneously and periodic
boundary conditions are used . The lattice sizes were (1 - 4) x 10-5 . The first
500 itera tions were discarded as not yet stationa ry; after that, every 500th

generation was analyzed. T he results ar e shown in figure 2.

For our longest sequences of N = 4 X 105 spins, the average k~~~ is abou t
24. T his is to be compared to the maximal feasible block length of 17 units
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Figure 2: Ent ropy in bits for t he one-dimensiona l cellular automa to n
ru le 22. Here , we used 40 runs wit h 4 x lOs ite rations and 80 run s
wit h 105 iter a tions eac h. Error est imates a re given as in figure 1.

in [4J. The ent ropy decreases very steadily with N , or rather , with (k~~), as
already observed in reference [4] . Our best est imate is h .:s 0.778 bits / spin,
hut there seems to be further decrease, indicating ext remely long. ranging
correla t ions. T he best fit is obtained with the scaling law

h(N) ~ (k(N) )-0.084
m a l[ • (1.7)

This agrees perfectly with the est imate of reference [4], provided we treat
(k!:::~ ) as an effective block length. It indicates th at h(N ) might tend toward
ofor N ---+ 00 and that the spatial st rings in the stat ionary case act ually are
not random.

Recently, there has been much interest in generalized entropies and in
treat ing fract al measures as multifractals [12]. In our case, general ized en­
t ropies hi') are defined by

lim N 1- ' (2(' - 1)" ' )' !.::! ) = 1. (1.8)
N_oo

Th e crowding index (pointwise entropy, "singularity" ) a is defined as

a(B,) = !og,N/k" n= (1.9)

(1.10)

and f(a) is defined as usua l as the Hausdorff dimension of subsequences with
crowding index a. It can be obtained eit her by Legendre transforming the
function (q - l lhl,l, or by using directly the numb ers m N,' of subsequences
with ki,max = k:

const kJ (c:r )
mN,' = ..,fk e
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Figure 3: Entropy f (a )-scal ing functi ons for the Henon map (heavy
line) and for rule 22 (light line), both obtained from equation ( 1.10).
For t he figure , we used st rings of length 4 x 105 ; curves obtained from
strings of length 105 are virtua lly identi ca l. (The graph for the Henon
map obtained from 105 iterati ons is sligh t ly broade r than t hat from
4 x 105

, an effect of the smaller statisti cs.]

where const is fixed in practi ce by demanding J{er) = a for J'(er) = l.
Using th e lat ter met hod , our resu lts for f( er ) for bot h systems are shown in
figure 3. T heir most st riking feature is that 1(0:) is much wider for cellular
auto maton 22 th an for th e Henon map. Vve shou ld, of course, point out that
J(er ) for the cellular automaton 22 is indeed ill defined if its entropy vani shes
asymptot ically, but due to the slow convergence, this does not effect the
numerical esti mate of J (er).

Vic conclude thai the present ed method yields ent ropy est ima tes in good
agreement with previous and inde pend ent results. Compared to the standard
method of count ing frequ encies of blocks of fixed length , its main advantage
is that it need s much shorter st rings to get estimates which take into account
possible long-range corre lat ions. In par ti cular , we verified that long. range
correlations are much more impor tan t in cellula r automaton 22 than in the
Henon map.
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