
Complex Systems 1 (1987) 1099-1123

Efficient Parallel Sim ulat ions of Asynchronous
Cellu lar Arrays

Boris D . Lubach evsky
Be ll Laboratories, Mu rr ay Hill, NJ 07974, USA

A b str act. A defin itio n for a class of asy nch ronous ce llular arrays is
proposed. An exa mp le of such asy nchrony woul d be indep endent Pois­
son arr ivals of cell iterat ions . The Ising model in the continuous time
formulation of G lauber falls into t his class. Also proposed are efficient
pa ra llel algorithms for simula ting these asynchronous cellular arrays.
In t he algorithms , one or several ce lls are ass igned to a processing
elemen t (PE), local times for differen t PEs can be different. Alt hough
t he standard serial algorit hm by Metropolis , Rosenbluth, Rosenbl uth ,
Teller, and Teller can simulate suc h a rr ays , it is usually be lieved to be
wit hout an efficient para llel counterpart . However, the proposed par­
allel algo rithms contradi ct th is belief prov ing to be both efficient and
able to perform t he same task as the standard algorithm. The results
of expe riments with the new a.lgor it hms a re enco uraging: the spe ed­
up is greater than 16 using 25 P Es on a sha red memory MI MD bus
comp uter, an d grea te r t ha n 1900 using 214 PEs on a SIMD computer .
T he algorit hm by Bortz, Kalas, and Lebowitz can be incorporated in
t he pro posed par allel algorithms, fur ther contrib uting to speed-up.

1. I ntroduction

Simulation is inevit able in studying t he evolution of complex cellular sys­
tems. Large cell ular array simulations might requ ire long ru ns on a se rial
computer . Parallel pro cessing, wherein each cell or a group of cells is host ed
by a separate pro cessing elemen t (PE), is a feasible met hod to speed up
the run s. The strategy of parallel simulati on should depend ou whether the
sim ulated sys tem is sy nc h rono us or asynch ro no us .

A synchrono us system evolves in discrete ti me t = 0, 1,2, T he state
of a cell at t + 1 is det ermined by t he state of the cell and its neighbors at t
and may ex plicit ly dep end on t and the resu lt of a random experiment.

An obvious and correct way to sim ulate t he system synchrony using a
paralle l p roc essor is sim ply to mimic it by executional synchrony. The simu­
la tion is a rranged in ro un ds with one round corresponding to one ti me step

@ 1987 Complex Systems Publicat ions, Inc.

1100 Boris D. Lubachevsky

and with no P E process ing state chan ges of it s cells for time t + 1 before all
P Es have processed state changes of th eir cells for t ime t ,

An asynchronous system evolves in cont inuous t ime. State changes at dif­
ferent cells occ ur asynchronously at unp redi ctab le random t imes. Here, two
questions should be ans wered: (1) how to specify the asy nchrony precisely
an d (2) how to carry out the parallel simulations for the spec ified asy nchrony.

Unlike t he synchronous case, simple mimicry does not work well in t he
asy nchronous case . Wh en Geman and Geman [1], for example, employ exe­
cutiona l physical asynchrony (int roduced by differen t speeds of different P Es)
to mimic th e mod el asynchrony, the simulation becomes irreproducible with
it s results dep ending on exec ut ional t iming. Such dependence may be to l­
er able in task s other than simulation ([IJ describes one such task, another
example is given in [2J). In the task of simulation, however) it is a serious
shortcoming as seen in the following example.

Suppose a simula t ionist , after observ ing the resul ts of a program run,
wishes to look closer at a certain ph enomenon and inser ts an ad ditional
'print' statement into the code. As a result of the insert ion) the executional
t iming changes and the phenomenon un der investiga tion van ishes .

Ingerson and Buvel [3J and Hofmann [4] propose var ious rep roducible
comp utationa l procedures to simula te asynchronies in cellula r a rrays. How­
ever, no uniform p rinciple has been proposed , and no specia l attent ion to
developing para llel a lgorithms has been paid. It has been observed that the
result ing cellular patterns may depend on the computat iona l procedure [3J.

Tw o main results of this pap er are: (1) a definition of a natu ra l class
of asy nchronies that can be associate d with cellular a rrays and (2) efficient
pa rallel algorithms to simula te systems in this class. T he following propert ies
spec ify the Poisson asynchrony, a most comm on member in the int roduced
class:

At tempt ed state change arrivals for a particular cell form a Poi sson
process.

Arr ivals for a par t icula r cell form a Poisson point process.

Arr ivals processes for different cells are independ ent .

T he arrival rate is t he sa me, say .\, for each cell.

W hen there is an arrival, t he state of the cell instantaneously changes;
the new state is computed based on the states of the cell and its neigh­
bors ju st before t he change (in the same manner as in th e synchronous
model). T he new state may be equal to the old one .

The time of arrival an d a random experime nt may he involved in the
computation.

A famil iar example of a cellular system with the Poisson asy nch rony is
th e Ising model [5] in the cont inuous t ime formula t ion of Glauber [6] . In
thi s model, a cell configuration is defined by the spin variab les s(c) = ± l

Efficient PaTa11e} Simulations of Asynchronous Cellulal' Arrays 1101

specified at the cells c of a two- or three-dimensional array. 'When there is
an arr ival at a cell c, the spin s(c) is changed to -s(c) with probabili ty p.
With probabi lity 1 - p, the spi n s(c) remains unchanged. Th e prob a bility
p is determined using the values of s(c) and neighbors s(c/) ju st before the
update time.

It is instructive to rev iew the computat ional procedures for Ising simu­
la tions . F irst, the Ising simulat ionists realized that the standard procedure
by Metropolis, Rosenbluth, Rosenbluth, Teller , and Teller [71 could be ap·
plied . In this procedure, t he evolution of the configurat ion is sim ula ted as a
sequence of one spin updates : given a configuration, define th e next configu­
ration by choo sing a cell c uni formly at random and changing or not changing
the sp in s(c) to -s(c) as required . In the or iginal standard procedure, time
is discrete. Time conti nuity is simply introduced by let ting the consecutive
arr ivals form the Poi sson process with rate >.. N , where N is the total number
of spins (cells) in the system.

The problem of long simu lation runs became immediately ap parent. Bortz,
Kalos, and Lebowitz [81 developed a serial algor ithm (the BKL algorithm]
which avoids processing uns uccessful state change attempts, and rep orted up
to a 10-fold speed-up over the straightforward implementation of the st an­
dard model. Ogielski [9] built sp ecial-purpose hardware for speeding up th e
processmg.

The BI<L algor ithm is ser ial . Attempts were made to speed up the Ising
sim ulat ion by parallel computations (Friedberg and Cameron [10], Creutz
[11]). However, in these com putat ions, the orig inal Markov chain of the
continuous t ime Ising model was mod ified to satisfy the computational pro­
cedure. T he mod ifications do no t affect the equ ilibrium behavior of the chain,
and as such, are acceptable if one studies only the eq uilibrium . In the cellu­
la r models , however, t he t ransient behavior is a lso of interest, and no model
revision shou ld be done.

This pape r presents efficient met hods for parallel simulat ion of the con­
tinuous t ime asynchronous cellular arrays wit hout changing t he model or
ty pe of asynchrony in favor of the computational procedure. The methods
promise unlimited speed-up when the array and the parallel computer are
sufficient ly la rge. For the Poisson asynchrony ease, it is also shown how th e
BK L algorithm can be incorporated, further contribut ing to speed- up .

For the Ising model , present ed algorithms can be viewed as exact parallel
counterpar ts to the standard a lgori thm by Met ro pol is et al . T he latter has
been known and believed to be inherently seria l since 1953. Yet , t he pre­
sented algori thms are parallel , efficient , and fai rly sim ple. The "conceptual
level" codes are rather short (see figure 3.1, 3.2, 3.4 1 3.6, and 3.7) . An imple­
mentat ion in a real programming language given in the ap pendix is longer,
of course, bu t st ill rather simp le.

T his paper is organized as follows: sect ion 2 presents a class of asyn­
chronies and a comparison wit h other published p roposa ls. T hen sect ion 3
descri bes the new algor ithms on the conce ptual level. While t he presented
algo rithms are simple, there is no simp le theo ry which predicts speed-up of

11 02 Boris D. Lubachevsky

these algorithms [or cellula r arrays and parallel processo rs of la rge sizes . Sec­
tion 4 contains a simp lified comp utational procedure which predi cts spee d­
ups faster t ha n it t akes to run an actual parallel progra m. T he predi ctions
ma de by this procedure ar e compared with actua l ru ns and appea r to be
rather accurate. T he proced ure predicts speed-up of more than 8000 for th e
simulation of 105 X 105 Po isson asynchronous cellular array in parallel by 104

PEs . Actual speed-ups obtained thus far were: more than 16 on 25 PEs of
the ''Balance" ™ computer and more than 1900 on 214 PEs of the Connection
Machine.'

2. Model

Time t is continuous . Each cell c has a state s = s(c). At random times,
a cell is granted a chance to change the st ate. The changes, if they occur,
are instantaneous events. Random attempts to change the state of a cell are
independent of sim ilar attempts for other cells.

The general model consists of two funct ions : time_oLnexLarl'ival and
next...state. They are defined as follows: given the old state of the cell and
the states of the neighb ors just before time t , st_o(neighbors (c)), t he next
state s(c) = s,(c) is

s,(c) = next..state(c,st_o(neighboIS(C)), w, t) , (2.1)

where the possibility s,(c) = s,_o(c) is not excluded, and the time nexU of
t he next arrival is

nexU = time.of Jlext ..arrival(c, st_o(neighbors(c)),w, t), (2.2)

where always nex L t > t ,
In (2.1) and (2.2), w denotes the resul t of a rando m experiment , e.g. coin

toss ing, and s(neighbors(c)) denot es the indexed set of states of all the neigh­
bors of c including c itself. Thus, if neighbors(c) = {C,Q , c2, C3, C4}, t hen
s(neighbors(c)) = (s(c),s(Cj) ,S(C2),S(C3),S(C4)). Subscript t - 0 expresses
the idea of "just before t" ,e.g. at_o('T) = limr-> t,r<t a('T) . According to (2.1),
the value of s(c) instantaneously changes at time t from s'_o(c) to s,(c). At
time i, the value of s(c) is alr ead y new. The "just before" fea ture resolves
a possible am biguity if two neighb ors attempt to change th eir states at the
same simulated t ime.

Compare now the class of asy nchronies defined by (2.2) with the ones
proposed in the literature:

1. Modell in [3] reads: "... t he cells it erate randomly, one at a t ime." Let
Pc be the probability of choosing cell c. Then the following choice of
law (2.2) yields this model

"Connection Machine is a registered tr ademark of Thi nking Machines Corporation.
Balance is a trademark of Sequent Computer Systems, Inc.

Efficient Para1Jel Simulations of Asyn chronous Cellular Arrays Il 03

time.oi ..nexLarrival(C,w, t) = t - ~lnr(c, t , w), (2.3)
Pc

where r (c, t ,w) is a random number uniformly distri buted on (0,1), and
In is the natural logari thm. For PCl = PC1 = .. . = A, the asynchrony
was called the Poisson asynchrony in sect ion 1; it coincides with the
one defined by the standard model [7], an d by Glauber's model [61 for
the Ising spin simulat ions.

2. Model 2 in [3] assigns "each cell a period according to a Gau ssian
dist ribution... T he cells iterate one at a time each having its own
definite period." While it is not quite clear from [31what is meant by
a "definite period" (is it fixed for a cell over a simulation run?), the
following choice of law (2.2) yields this model in a liberal interpretation:

time_of..nexLarrival(c,w,t) = t + p ;;- l (r (w)), (2.4)

where P-l (y) = x if P(x) = y, and P, (x) is t he cumulat ive func­
t ion for th e Gaussian probabili ty dist ribu t ion with mea n m e > 0
and variance a~ . Th e probabili ty of nexLt < t is small when
a <t:: m and is ignored in [3] if this interpretation is meant . In a
less liberal interpretati on, s igmac ::::; 0 for all c, and m e is itself ran­
dom and distr ibuted according to the Gaussian law. This case is even
easier to represent in terms of model (2.2) th an the previous one:
time_of..nexLarrival(c,w,t) = t+mc(w)

3. Model (2.2) t rivially extends to a synchronous simula tion, where th e
init ial state changes arrive at time 0 and then always nexLt - t is
identical to 1. Th e first model in [4] is "to choose a number of cells
at random and change only their values before cont inuing ." T his is a
variant of synchronous simulat ion; it is substant ially different from both
model s (I) and (2) above. In (I) and (2), the probability is I that no two
neighbo rs attempt to change their states at the sam e t ime. In contr ast ,
in this model ma ny neighborin g cells are simultaneously changing their
values. How the cells are chosen for update is not precisely spec ified in
[4J. One way to choose th e cells is to assign a probab ility weight Pc for
cell c, c = 1, 2, ... , N , and to attempt to update cell c at each iterat ion,
with probability Pc, independent of any ot her decision . Such a metho d
conforms with th e law (2.2) because the method is local: a cell does
not need to know what is happening at distant cells. The second mod el
in [4] changes states of a fixed number A of randomly chosen cells at
each iterat ion . If A > 1, this met hod is not local and does not conform
with the law (2.2) .

1104 Boris D. Lubachevsky

3. A lgorithms

Elimination of w

Det erministic computers rep resent randomness by using pseudo-random
number generators. Thus, equat ions (2.1) and (2.2) are substi tuted in
the computa tion by equat ions

and

s, (c) = next..state(c, st_ o(neighbors(c)), t), (3.1)

nexU = time_oL nex Larrival(c,st_o(neighbors(c)), t) , (3.2)

resp ectively, which do not contain the parameter of randomness w.

T his elim ina t ion of w symbo lizes an obvious bu t important difference
between th e simulated system and the simulator: in th e simulated sys­
tem, the observer, being a part of th e system, docs not know in advance
the time of the next arri val. In contr ast , the simulat ionist who is, of
course, not a part of t he simulated syste m, can know the time of t he
next arrival before th e next ar rival is processed .

For example , it is not known in advance when t he next event from a
Poisson st ream ar rives. However , in the simulation , the t ime nexLt of
the next arr ival is obtained in a deterministi c manner, given t he time
t of the pr evious arrival:

1
nexU = t - ;: log r(n(t)) , (3.3)

where Ais the rate, r(n) is then pseudo-random number in the sequence
uniforml y distrib uted on (0 ,1), and n(t) is the invocat ion counter .
Thus , after t he previous arri val is pro cessed, t he time of the next ar ­
r ival is already kno wn . If needed , t he entire sequence of arrivals ca n be
precomputed and stored in a table for later use in t he simulation, so
t hat all future arrival t imes would be known in advance.

Asynchronous o ne-cell-per-one-PE a lgorithm

The algorit hm in figures 3.1 is the shor test of t hose pr esented in t his
paper.

To understand this code, imag ine a par allel computer which consist s of
a number of P Es running concurrent ly. On e P E is assign ed to simula te
one cell. The P E which is assigned to simula te cell co, PEco , executes
t he cod e in Fig.AL.1 with c = co. The PEs are int erconnect ed by the
net work which matc hes t he topology of t he cellular array. A PE can
receive information fro m it s neighbors. PEe maintains st ate s(e) and
local simulated time t(c). Variables tic) and sic) are visible (accessible

Efficient Parallel Sim ulations of Asynchronous Cellular Arrays 1105

for readi ng only) by the neighbors of c. Time t(c) has no connect ion
with the physical t ime in which th e parallel compute r funs the program
except th at t(c) may not decrease when the physical time increases.
At a given physical instan ce of simulat ion, different cells c may have
different values of t(c). Value end.tune is a const ant which is known to
all PEs.
Th e algorithm in figure 3.1 is very asynchronous: d ifferent PEs can
execute different steps concurrently and can fun at different speeds . A
statement "waitcuntil condition" 1 like the one at ste p 2 in figure 3.1,
does not imply that the condi tion must be detected immediately after
it occur s. To detect th e condition at step 2 involving local times of
neighbors a P E can poll its neighbor s one at a time, in any order , with
arbitrary delays, and without any respect to what these P Es are doing
meanwhile.

1. while t (c) < endLime
{

2. waiLuntil t(c) <; mindEne;ghbors(c) t(c');
3. s(c) <- nexLstate(c, s(neighbors(c)) , t(c);
4. t(c) <- time.oiJl ex L arrival(c, s(neighbors(c)), t(c))

}

Figure 1: Asy nchrono us one-cell-per-o ne-PE algorithm .

Despite being seemingly almost chaotic , th e algor ithm in figure 3.1 IS

free from deadlock. Moreover, it produces a unique simulated trajec­
tor y which is independent of executional timing, provided that: (i) for
the same cell, the pseudo-random sequence is always th e same, (ii) no
two neighboring arr ival times are equal.

Freedom from dea dlock follows from the fact that the cell, whose local
t ime is minimal over t he ent ire array, is always able to make progress .
(T his guaranteed worst case perfor mance, is substan t ially exceeded in
an average case. See sect ion 4.)
Th e uniqueness of the t rajectory can be seen as follows. By (ii), a cell
c passes t he test at step 2 only if its local t ime tee) is smaller than
th e local t ime t (c') of any its neighbor c'. If th is is the case, th en no
neighbor c is ab le to pass the test at step 2 before e changes its t ime
at ste p 4. This means that processing of th e update by c is safe: no
neighbor changes its state or t ime before e completes th e processing. By
(i), functions nexLstateO and time_ofJl exLarrivalO are independ ent of
the run. Th erefore, in each program run , no matter what th e neighbors
of c are doing or trying to do, the next ar rival t ime and st ate for e are
always th e same.
It is now clear why assumption (ii) is needed. If (ii) is violated by
two cells c and d which are neighbors, th en the algorithm in figure 3.1
does not exclude concurrent updating by c and d . Such concurrent

HOG Boris D. Lu bachevsky

updat ing int roduces an indeterminism and inconsist ency. A scenario
of the inconsist ency can be as follows: at step 3, the old value of s(d)
is used to update state s(c), but immediately following, step 4 uses the
new value of 8(0') to upd ate t ime t(c).

In practice, the algorithm in figure 3.1 is safe, when nexLt(c) - t(c)
for different c are independen t ran dom samples from a dis tribution
wit h a continuou s density, like an exponential dist ribution . In this
case, (ii) holds with probability 1. Unless the pseudo-random number
genera tors are faulty, one may imagine only one rea son for violat ing
{ii]: fin ite precision of computer representation of real numbers.

Synchronous one-c ell -per-one-PE a lgorit hm

If (ii) can be violated with a positive proba bility (if t takes on only
integer values, for example), then the errors might not be to lera ble. In
this case, the synchronous algori thm in Fig ure 3.2 should be used.

Observe that while the algori thm in figure 3.2 is synchronous, it is
abl e to simulate correctly both synchronous and asynch ronous syste ms.
Two main addit ions in the algorit hm in figure 3.2 are private variables
new-s and new..t for temporal sto rage of upd ated s and t , and syn­
chronizat ion barriers "synchronize". When a PE hits a "synchronize"
statement it must wait until all t he other PEs hit a synchronize st at e­
ment, then it may resume. Two dummy synchroniza t ions at Steps 9
and 10 are executed by idling PEs in order to match synchronizat ions
at steps 5 and 8 executed by non- idling PEs .

When (ii) is violated, the synchronous algorithm avoids the am bigui ty
and indeterminism (which in this case are possible in the asynchronous
algori thm) as follows: in processing concurrent updates of two neigh­
bors c and c' for the same simulated tim e t = t(c) = t(c'), first ,
c and d read states St _ O and tim es t of each other and compute th eir
pri vate ne w.s's and new. s (st eps 3 and 4 in figure 3.2); then, afte r th e
synchronization barrier at step 5, c and d write their states and t imes
at steps 6 and 7, thus mak ing sure that no write interferes with a read.

Aggregation

In the two algori thms prese nted above, one PE hosts only one cell.
Such an arrangement may be wast eful if the communication between
PEs domin ates the computation int ernal to a PE. A more efficient
arrangement is to assign several cells to one PE. For concreteness, con­
sider a two-dimensional n x n array with periodic boundary condit ions.
Let a be a multiple of m and (aim)' PEs be available . PEe carries
m x m subar ray e, where e = 1,2, .. . , (aim)'. (Capital e will be
used without confusion to represent both the subarray index and the

Efficient Parallel Simu lations of Asynchronous Cellular Arrays 1107

1. while r(c) < end_rime

2. if t(c) :S min t (e ') then
c' E neighborJ(c l

{
3. new_s - nexts tare (s(neighbors(e» , t (e» ;

4. new_t - rimc of_next_arrival (c, t(e » ;

5. synchronize; /* barrier I */

6. s(c) - newJ ;

7. t (c) - newj;

8. synchronize /* barrier 2 "'/

}
else {

9.
10.

synchronize;

synchronize

/* barrier 1 */

/* barrier 2 */

Figure 2: Synchronous one-cell-per-one-PE a lgor it hm.

set of cells c the subarray comprises, c.g. as in c (rna C). A frag­
ment of a square cellular array in an exam ple of such an aggregation is
represented in figure 3.3a , wherein rn = 4.

The neighbors of a cell carried by PEl are cells carried by P E2, PE3,
PE4, or PE5. PEl has direct connections with these four P Es (figure
3.3b). Given cell c in the subarray hosted by PEl, one can determine
with which neighbor ing PEs commun icat ion is req uired in order to learn
the states of the neighboring cells. Let W(c) be the set of these PEs.
Examples: W(u) is empty, W(v) = {PE5}, W(w) = {PE3, PE4} .

Figure 3.4 presents an aggregated variant of the algorithm in figure 3.1.
PEC, which hosts subarray C, mai ntains the local time register T(C) .
PECo simulates the evolution of it s subarray using th e algorithm in
figure 3.4 with C = Co. Each cell c E C is represented in the memory
of PEG by its current state s(c) and its next arrival t ime t(c) . Note that
unli ke the one-cell-per-one-P ff algo rit hms, the t(c) does not rep resen t
the current local time for cell c. Instead , local times of all cells within
subarray G are the same, T(G).
T (C) moves from one t(c) to another in the order of increasing value.
Three success ive iteratio ns of th is algorithm are shown in figure 3.5,
where the subarray C consis ts of four cells: C = {l,2,3,4} . Circles
in figure 3.5 represe nt ar rival points in the simulated t ime . A crossed­
out circle represents an arrival which has just been processed, i.e. steps

1108 Boris D. Lubachevsky

a) b)

PE2

10 0 0 01

PE3

o 0 ®I
PE4

0 ' °pEIO 0 0 ()
r-- ------ ,

@ ®
,

0 @
,

0 0, ,, ,, ,, ,
0 0

,
0 0

,
0 0, ,, ,

L ___ __ _ _ _ J

Q 0 0 0 ® ~

PES

Figure 3: Aggregation

1. while T(C) < end_time do {

2. select a cell c in the subarray C such that
t (e) = min t (e') and assign T (C) - t (e);

e' E C

3. wait_until T (C) s min T (C') ;
C' E W (c)

4. s(e) - nex,-state (e, s (neighbors(e)) , t(e)) ;

5 . t (e) - timeo!Jlex,-arrival (c, s (neighbors(e)) , t(e))

}

Figure 4: Asynchronous m any-cells-p er-on e-PE algorithm. General
asynchrony.

Efficien t ParaJlel Simulations of Asyn chronous Cellular Arrays 1109

iteration 1 ;;g- 0
r tci t el)

a
t (4)

b
, e) ~

o
t(l)

~o
T (e) 1(2) r(4)

o
r(3}

o
t(l }

"b
/(2)

o
t (l)

a
1(3)

)fa
T(e) (4)

iteration 3-------:;~:::::;e:==E;:::==:e:==b_---- time

Figure 5: Successive iterations of the aggregated algorithm.

3, 4, and 5 of figure 3.4 have just been executed, so that T(C) has just
taken on t he value of the processed old arrival t ime t (c), while t he t(c)
has taken on a new larger value. This new value is po inted to by an
arrow from T(C) in figure 3.5. It is obvious t hat always t(c) ~ T (C) if
c E C.

Local t imes T(C) maintained by different PEC might he different . A
wait at step 3 cannot deadlock the executi on since the PEG whose
T(C) is minimal over the entire parallel computer is always able to
make a progress.

Assuming property (ii) as above, the algorithm correctly simulates the
history of updates. The followin g example may serve as an informal
proof of this statement. Suppose PEl is currently updat ing the state
of cell v (figure 3.3a) and its local t ime is T,. Since W(v) = PE5, this
update is possible because the local time of PES, TS I is currently larger
than Tt • At present , PEl receives the state of x from PE5 in order to
perform the update. Th is slate is in time TS 1 i.e. in the future with
respect to local time Tt . However, the update is correct , since the stale
of x was the same at time T I l as it is at time Ts.
Indeed , suppose the state of x were to be changed at simulated local
tim e T , T1 < T < Ts. At the moment when this change would be
processed by PE5, the local t ime of PEl would be larger than T , and T
would be the local t ime of PE5 . After th is processing has supposedly
tak en place, the local time of PEl should not decrease. Vet at the
present it is Tt l which is smaller that T . Th is contradiction proves that

1110

1. while
2.
3.
4.
5.

Boris D. Lubachevsky

T (C) < endLime do {
select a cell c in the subarray C uniformly at random;
wail-until T(C) S minC'EWe,) T(C');
s(e) <-- next.suae (e,s(neig1lbors(e)) , t(e));
T(C) <--T(C) b ' 1 n . C 1nr(C,n(T(C)))xxnum eLO . ce s.m.,
}

F igu re 6: Asynchronous many-cells-per- one-Pf algor ithm. Poisson
asynchrony.

the state of x cannot in fact change in the interval (TlJ Ts).

In figure 3.5, only one t (c) supp lies min c'Ec t(c') . However, the algo­
rithm in figure 3.4 at step 2 corrunands to select a cell not the cell.
Th is covers the unlikely sit uat ion of several cells having the same min­
imum time. If nexLt(c) - t(c) for different c are independent ran dom
sam ples from a distribution with a cont inuous density, th is case occurs
with probability zero. On the other hand , if several cells can , with
positive probability, update simultaneously, a synchronous aggregated
algorithm can be writ ten. To eliminate indeterminism and inconsis­
tency, the lat ter would use synchronization and intermediate storage
techn iques.

These techniques were demonst ra ted in the algor ithm in figure 3.2 and
their discus sion is not repeated here.

The imp ortant case of Poisson asynchrony in the aggregated algorithm
(figure 3.4) is presented in figure 3.6. This specia lizat ion capitalizes
on the fact tha t sum of k independent Po isson st reams with rate .\
each is a Poisson st ream with ra te .\k. In the algorithm, k = num­
ber. oi.ceile.itx.C; t his k is equal to m 2 in the spec ial case of parti t ioning
into m X m subarrays. Neither individual streams for different cells are
ma intained, nor fut ure arr ivals t(c) for cells are individually com puted.
Instead , a single cumulative stream is simula ted and cells are delegated
randomly to meet these arrivals.

At ste p 5 in figure 3.6, r(C,n(T (C))) is an n(T(C))th pseudo-random
number in the sequen ce uniformly dist ributed in (0,1). It follows from
the nota tion t hat each PE has its own sequence. If th is sequence is inde­
pendent of the ru n (condition (i) above) and if updates for ne ighboring
cells never coincide in time (condition (ii) ab ove) , then this algorithm
produces a unique rep roduc ible trajectory. T he same statement is also
t rue for the algorithm in figure 3.4. However, uniqueness provided by
the algorith m in figure 3.6 is weaker than the one provided by the algo­
rithm in figure 3.4: if the same array is part it ioned differently and/or
executed with different number of PEs, a trajectory pro duce d by the
algorithm in figure 3.6 may change ; however, a trajecto ry produ ced by
the algo rit hm in figure 3.4 is invarian t for such changes if each cell c
uses its own invariant pseudo-random sequence.

Efficient ParalJeJ Sim ulations of Asynchronous Celluier Arrays 1111

Efficiency of aggregated algori thms

Bo th many-cells-per-one-PE algorithm s in figure 3.4 and figure 3.6 are
more efficient than the one-cell-p er-one-P E counterparts in figure 3.1
and figure 3.2. This additional efficiency can be explained in the ex­
ample of the square array, as follows: In the algorithms in figure 3.1
and figure 3.2 , a PE may wait for its four neighbors. However, in the
algo rithms in figure 3.4 and figure 3.6, a PE waits for at most two
neighbors. For example, when the state of w in figure 3.3 is updated,
PEl might wait for PE3 and PE4. Moreover, for at least (m - 2)' cells
c out of m', PEl does not wait at all, because W(c) = 0. The cells c
such t hat W(c) = 0 form the dashed square in fi gure 3.3a.

This additional efficiency becomes especially great if, instead of set
neighbors(c) in the original formulation of the model, one uses sets

neighbors2(c) = dej next-to-nearest.neighbors(c) (3.4)

or, more generally, q th degree neighborhood , neighborsq(c). The lat ter
is defined for q > I induct ively

nejghbors'(c) = d'/ neighbors (nejghhors' -l (c)) (3.5)

where nejg1J bors(S) for a set S of cells is defined as neighbors(S) = U'ES

neighhors(c).

It is easy to rewrite the algorithms in figure 3.1 and figure 3.2 for
the case q > 1. The obtained codes have low efficiency however.
For example, in the square array case, one has]neighborsq(c)1- 1 =
2q(q+ I) . Thus, if q = 2, a cell might have to wait for 12 cells in order
to update. In the same example, if one PE carries an m x m suba rray,
and m > q, the n the P E waits for at most three ot her P Es no matter
how large the q is. Moreover, if m > 2q then in (m - 2q)2 cases out
of m' the PE does not wait at all.

Th e BRL [8] algorithm was originally proposed for Ising spin simula­
t ions. It was not iced that the probability p to flip s(c) takes on only
a finite (and small) number d of values Ph'" ,Pd, eac h corresponding
to one or several comb inat ions of old values of s(c) and neighborin g
spins sed). Thu s, the algorithm splits the cells into d pairwise disjoint
classes r llr2 , .. . ,rd. Th e rates >'Pk of changes (not just the attempts
to change) for all c E f. are the same. At each iteration, the BKL
algorithm does the following;

a . Selects rko at random according to the weights lrklpk, k ;; 1, 2 , . . . d,
and selects a cell c E rko uniformly at random.

b . Flips the state of t he selected cell, s(c) ~ -s(c) .

c. Increases the t ime by -log' /().('[;,<.<d If. lp.)), where r is a pseudo­
random numb er uniformly distribut ed in (0,1).

1112 Boris D. Lubaehevsky

d . Updates the membership in the classes.

If the asynchrony law is Poisson, the idea of the BKL algorithm can
be applied also to a deterministic update . Here the probability p of
change tak es on just two values: PI = 0 if nex t-s(c) = s(c), and P2 = 1 if
next..s(c) l' s(e) . Accordingly, there are two classes: f o, the cells which
are not going to change and I'r , the cells which are going to change. As
with the original BKL algorithm, a substant ial overhead is required for
maintaining an account of the membership in the classes (step d). T he
BKL algorithm is justified only if a large number of cells are not going
to change their states . The latter is often the case. For example, in
the Conways's synchronous Game of Life (Gardner [12]) large regions
of white cells (s(c) = 0) remain unchanged for many iterations with
very few black cells (5(C) = 1). One would expect similar behavior for
an asynch ronous version of the Game of Life.
The basic BKL algorithm is serial. To use it on a. parallel compute r,
an obvious idea is to run a copy of the serial BKL algorithm in each
subarray carried by a PE. Such a procedure, however, causes roll-backs,
as seen in the following example:
Suppose PEl is cur rently updating the state of cell v (figure 3.3a) and
its local time is TI, while the local time of PE5, Ts , is larger than
T1• Since x is a nearest neighbor to B, e's membership might change
because of v's changed state . Suppose e's mem bership were to indeed
change. Although this change would have been in effect since time T},
PE5, which is responsible for x, would learn about the change only at
time Ts > T1 . As the past of PE5 is not , therefore, what PE5 has
believed it to be, interval [TIl Tsl must have been simulated by PE5
incorrectly, and must be played again. Thi s original roll-hack might
cause a cascade of secondary roll-backs, third generation roll-backs,
etc.
A modi fied BKL algorithm applies the original BKL procedure only to
a subset of the cells, whereas the procedure of the standard model is
applied to the remaining cells. More specifically, an addit ional separate
class f o is defined . Class f OI unlike other f kl k > 0, always contains
the same cells. Steps a through d are performed as above with the
following modificat ions:

(a) The weight of f oat step a is taken to be ITol .
(b) If t he selected c belongs to r 0 , then at step b the state of c may

or may not change. The probability p of change is determined as
in the standard model.

(c) The time at step c should be increased by - log r f(A(ifo l+ L:I<.<d
if.1P.)), where r = r (c,n(t)) is a pseudo-random numb er Unl·
formly distributed in (0, 1).

Now consider again the subar rey carried by PE l in figure 3.3a. The sub­
array can be subdivided into t he (m - 2) X (m - 2) "kernel" square and

Efficient Parallel Simulations of Asynchronou s Cellular Arrays 1113

t he remaini ng bou ndary layer. If first degree neighborho od, neighbors(c) ,
is replaced with the q th degree neighborhood, neighborsq(c), then the
kernel is t he central (m - 2q) x (m - 2q) square, and the boundary
layer has width q. In figure 3.3a, the cells in the dashed square consti­
tute the kernel with q = 1. To apply the modified BKL procedure to
the subarray carr ied by PEl , the boundary layer is decla red to be the
specia l fixed class fa . Similar identifi ca tion is done in the other subar­
rays. As a result , t he fast concurrent BK L procedures on the kernels
are shielded from each other by slower procedures on the layers.

The roll-back is avoided , since state change of a cell in a subarray does
not constitute state or membership change of a cell in another subarray.
Unless th e performance of PEl is taken into accoun t, the neighbors of
PEl can not even tell whether PEl uses t he standa rd or the BKL
algori thm to update it s kernel. As the size of the subarray increases,
so does bo th the relat ive weight of the kernel and the fract ion of th e
fast BKL processing.

Gen era t in g the output

Consider the task of genera ting cellular patterns for specified simulated
t imes. A method for performing this task in a serial simu la t ion or a
parall el simulat ion of a synchronous cellular array is obvious : as the
globa l t ime reaches a spec ified value, the computer output s th e states
of all cells. In an asynchronous simulation, the task becomes more
compli cated because there is no globa l t ime: different P Es may have
different local times at each physical instance of simula t ion .

Suppose for example, one wants to see the cellular patterns at regu­
lar time intervals I<06t, (I<o + 1)6t , (I<o + 2)6t , . .. on a screen of a
monitor at tached to the compute r. Without getting too involved in
the details of performing 110 operat ions and the ar chit ecture of the
parallel computer, it would be enough to assume that a separate pro­
cess or processes ar e associated with the output; th ese processes scan
an output buffer memory space allocated in one or severa l P Es or in
the shared memory; the buffer space consist s of B frames, numbered
0, I, . . . ,B - 1, each capable of storing a complete image of the cellular
array for one time instance. The ou tput processes draw th e image for
t ime I<6 t on the screen as soon es the frame numb er rem (I</B) (the
reminder of the integer division J(by B) is full and the previous images
have been shown. Then the frame is flash ed for the nex t round when
it will be filled with the image for time (I<+ B)6t and so on .

The algorithm must fill t he appropriate frame with the appropriate
data as soon as both da ta and the frame become ava ilable. Modification
that enable the asynchronous algorithm in figure 3.4 to perform this
task are presented in figure 3.7. In thi s algorithm, vari ables n ew.T
and]{ ar e pr ivat e, and tlt and](0 are constants whose values are

1114 Boris D. Lu bachevsky

,*Initially K = Ko, T(C) < Ko!!.r *,
1. while T (C) < end_rime do (
2. select a cell c in the subarray C such that

tCc) = min r(c') and assign new_T 0- t(c);
c ' E C

3. while new] > K!!.r (

4 . wait_until frame rem (KIB) is avai lable;

5 . store image s(C) into frame rem (KIB) ;

6. K - K + I
};

7. T(C) - new];

8. waitjmtil T (C) s min T(C');
c' E W(c)

9. s(c) - nextstate (c, s tn eighborstcvy , r(c»;

10. tCc) 0- time_of_next_arr ival (c . s (netghborst cw , t (c»

}

Figure 7: Generating the output in the aggregated asynchronous al­
gorithm.

t he same for all the P Es. Note that different PEs may fill different
frames concurrently. If the slowest PE is filling an image for time
J(C::.t, then the fastest PE is allowed to fill the image for time no later
than (J(+ B - 1)1'.1. An at tempt by the fastest P E to fill the image
for time (k + B)f:" t will be blocked at step 4, unt il the frame numbe r
rem(f(/ B) = rem((f(+ B)/ B) is avai lable.
Thus, the finiteness of the output buffer introduces a restriction which
is not present in the original algorithm in figure 3.4. According to this
restrict ion, the lag between concurrently processed local times cannot
exceed a certain constant . The exact value of the constant in each par­
ticular instance depends on the relative positions of the update times
within the ~t-slots. In any case, the constant is not smaller than
(B - I)f:"t an d not larger th an Btst.
However, even with a single output buffer segment, B = I, the sim­
ulat ion does not become time-driven. In this case, the concurrently
processed local times might be within a distance of up to ~t of each
other, whereas ~t might be relatively large. No precision of update t ime
representation -is lost , although efficiency might degrade when both ~t

and B become too small, see section 4.

4 . Performance A ssessment: Experiments and Simulations

Model ing and analysis of asynchronous algorithms is a difficult theo ret­
ical problem. Strictly speaking, the following discussion is applicable

Efficient Parallel Simulations of Asynch ronous Cellular Arrays 1115

only to synchronous algorithms. However, one may argue informally
that the performance of an asynchrono us a lgorithm is not worse th an
that of its synchronous counterpart, since expensive synchronizat ions
are elimina ted .

First , consider the synchronous algorithm in figure 3.2. Let N be the
size of th e array and No be the number of cells which passed the test
at step 2, figure 3.2. The ratio of useful work performed , to the total
work expended at the iteration is No/ N . Th is ratio yields the effi­
ciency (or utilization) at the given iteration. Assuming that in the
serial algorithm all the work is useful, and that t he algor ithm performs
the same computation as its para llel counterpart, t he speed-up of the
parallel computation is the average efficiency times the number of PEs
involved. Here the averaging is done with equal weight s over all the
iterations.

In the general algorithms, nexLt(c) is determined using t he states of the
neighbors of c. However, in the importan t applicat ions, such as an Ising
model, nexLt(c) is independent of states . The following assessment is
valid only for th is special case of independence. Here, t he configurat ion
is irrelevan t and wheth er the tes t succeeds or not can be determined
knowing only the times at each iteration. This leads to a simplified
model in which only local times are taken into account : at an iterat ion,
the local t ime of a cell is incremented if t he t ime does not exceed the
minimum of the local t imes of its neighbors.

A simple (serial) algorithm which up dates only local t imes of cells i (c)
according to the rules formulated above was exercised for different array
sizes n and three different dimensions: an n-element circular array, an
n X n toro idal array, and an n x n x n array with periodic boundary con­
ditions. Two types of asynchronies are t ried: the Poisson asynchrony
for which nexLt - t is distribu ted exponent ially, and the asynchrony
for which nexLt - t is uniformly distributed in (0,1). In both cases,
random time increments for different cells are independent .

The result s of these six experiments are given in figure 4.1. Each solid
line in figure 4.1 is enclosed between two dashed lines. The latter rep­
resent 99.99% St udent 's confidence intervals constructed using several
simulat ion run s, that are parametrically the same but fed with different
pseudo-r andom sequences. In figure 4.1, for each array topology there
are two solids lines. Th e Poisson asynchrony always correspond s to t he
lower line. The corresponding limiting values of performances (when n
is large) are also shown near the right end of each cur ve. For example,
the efficiency in the simulation of a large n x n array with the Poisson
asynch rony is abou t .121, with the other asynchrony, it is about .132.

No ana lyti cal t heory is available for predict ing these values or even
proving their separat ion from zero when n -+ +00. It follows from
figure 4.1 that replacing exponential distri but ion of nexLt - t with the
uniform dist ribution result s in efficiency increase from .247 to .271 for

1116 Boris D. Lubachevsky

0 .3

~::__:::~_-~:::'__s-e-e-:; ,:.;:::= .271
.247

.132

.121

.082

.076
n Xn Xn -Iatt ice

~=--
'-==0.1

0.2

efficiency

3 6 12 24 48 96 192 384 768

n, size of the array

Figure 8: Perfor man ce of t he Ising model simulation. One-cell-per­
one-PE case .

a large a -circ le (71 ~ +00 . The efficiency can be rai sed even more. If
nexLt - t = r 1

/ 8 , where r is distributed uniforml y in (0)), then in the
n ---+ +00 case, with the Student 's confidence 99.99%, the efficiency is
.3388± .0012. It is not known how high th e efficiency can be rai sed thi s
way (degenera ted cases , like a synchronous one, in which the efficiency
is 1, are not counted).

With an efficiency of 0.12, th e speed-up is about 0.12 x N; for N = 2'4
the speed-up is more th an 1900. Th is assessment number is coo­
finned in an act ual full-scale simulat ion experiment performed on 214 =
128 x 128 PEs of a Connect ion Machine (a quarter of the full computer
was availa ble for a limited t ime) . Thi s SIMD compu te r appears well­
suited for t he synchronous execution of th e one-cell-per-one -RE algo­
rith m in figure 3.2 on a to roidal array, Poisson asynchrony law. Since
an individual PE is rather slow, i t executes only severa l thousa nd in­
st ructions per second, and its absolute speed is not very impressive: it
takes rough ly 1 second of real tim e to update all 128 x 128 spins when
the t raffic gener ated by ot her tasks running on the compute r was sma ll
(more prec ise meas urement was Dot available) . T his includes about
8.3 = (.12)- ' rounds of the algorithm, severa l hundred instructions of
one PE.

The 12% efficiency in the one-cell-per-one-PE experiments cou ld be
greatly increased by aggregation. The many -cells-per-one-Pfi; algo­
rithm in figure 3.6 is implemented as a C language pa ra llel program for
a Balance computer, which is a shared memo ry MIMD bus mach ine .

Efficient Parallel Simulations of Asynchronous Cellular Arrays 1117

The n x n array was split into m x m subarrays, as shown in figure
3.3, where n is a multiple of m. Because the computer has 30 PEs, the
experiments could be performed only with (nj m? = 1,4 ,9 , 16, and 25
PEs for different n and m.
Along with these experiments, a simplified model , similar to the one­
cell-per-one-PE ease, was run on a serial com puter. In this model,
quantity h(C) = def>.T(C) is maintain ed for each PE, C = 1, ... ,
(n/m)' . The update of h(C) is arra nged in rounds, wherein each h(C)
is updated as follows:

(a) with probability 1'<> = (m - 2)' / m' , PEC updates h(C);

h(C) <-- h(C) -lnr (C , n(h(C))) ,

where r and In are the same as in ste p 5 in figure 3.6. Here Po is
the probability that the PE chooses a cell c so Lhat [W(c)1 = 0;

(b) with probability PI = 4(m - 2)/m', the PE must check t he h(C')
of one of its four neighbors C1 before making the update. The
C1 is chosen uniformly at random among the four possibili ties. If
h(C') ~ h(C) , then h(C) gets an increment according to (4.1);
ot herwise, h(C) is not updated. Here PI is t he probabiliLy that
PE will choose a cell c in an edge but not in a corner, so that
IW(c)1= 1

(c) with the remaining probability P2 = 4/m2
, t he PE checks h(C')

and h(Gil) of two of its adjacent neighbors (Cor example in figure
3.3a, neighbors PE2 and PE4 can be involved in the computation
for PEl). The two neighbors are chosen uniformly at random
from the four possibilities. Again, if both h(C') ~ h(C) and
h(C") ~ h(C), then h(C) gets an increment according to (4.1);
ot herwise, h(C) is not updated . Here P2 is the probability to
choose a cell c in a corner, so that IW(c)1 = 2.

As in the previous case, this simplified model simulates a possible but
not obligatory synchronous timing arrangement for exec uting the real
asynchronous algorithm. figure 4.2 shows exce llent agreement between
actual and predicted performances for the aggregated Ising model. The
efficiency presented in figure 4.2 is computed as

ffi
. serial execution time

e crency =
number of PEs x parallel exec ution time

(4.1)

The parallel speed-up can be found as efficiency x number of PEs. For
25 PEs simulat ing a 120 x 120 Ising model, efficiency is .66; hence, the
speed-up is greater than 16. For the currently unavailable sizes, when
104 PEs simulate a 104 x 104 array, the simplified model predicts an
efficiency of about .8 and a speed-up of about 8000.

IllS

O.S

0.6

efficiency
0.4

0.2 --

4 PEs

25 PE~/ --

Boris D. Lubachevsky

~~-----~~~ 16 PEs
-- ­~~-~

- - experiment

-- -- prediction

5 15 30 60 120

n, size of the n X n network

Figure 9: Perfor man ce of t he Ising model s imulation . Many-cells-per­
one-Pfil case .

In the exp eriments reported above, the lag between the local t imes of
any two PEs was not rest rict ed . As discussed in section 3, an upper
bound on the lag might result from the necessity to produce the output.
To see how the bound affect s th e efficien cy, one exp eriment reported
in figure 4.2, is repeated with various finite values of th e lag bound.
In this exp eriment , an n x n arr ay is simulated and one P E carr ies an
m X m subarrey, where n = 384 and m = 12. The results are presented
in figure 4.3.

In figu re 4.3, the unit of measure for a lag is the exp ectatio n of time
intervals between consecuit ive arrivals for a cell. For lag bounds greater
than 16, degrad ation of efficiency is almost unnot iceabl e, when com­
pared wit h the base exp eriment where lag = +00. Sub st antial degra­
dat ion st arts at about 8; for the uni ty lag bound , the efficiency is abo ut
half that of the base expe riment. However , even for lag bound .3, the
sim ulat ion remains practica l, with an efficiency of abou t .1; since 1024
PEs exec ute t he task, this efficiency means a speed- up of more th an
100

5. Conclusion

T his paper demo nstrates an efficient pa ra llel metho d for simula t ing
asy nchronous cellula r arrays. The algorith ms are quite sim ple an d eas­
ily implemen table on appropriate ha rd ware. In particular, each algo­
rithm pr esented in the pap er can be implemented on a genera l purpose
asy nchronous par allel computer , such as the cur rently availa ble bus
machines with shared memory. The speed of such implementation de-

Efficient Parallel Simula tions of Asynchronous Cellular Arrays 1119

0.5

0.4

0.3
efficiency

0.2

0.1

2 4 8 16 32

lag bound

.5o-'-- t--+-!;-+-+ -f..-----rr-- -

Figure 10: Efficiency degradation caused by bounde d lag.

pends on th e speed of PEs and the efficiency of th e commun icat ion
system. A crucial condit ion for success in such implementation is the
availability of a good parallel generator of pseudo-ra ndom numbers.
To assure reprodu cibility, each PE should have its own reprod ucible
pseudo-random sequence.

The proposed algorithms present a numb er of challenging math emat ical
probl ems, for example, the problem of proving that efficiency tends to
a positive limit when the number of PEs increases to infinity.

Acknowledgments

I acknowledge the personn el of the T hinking Machin e Cor poration for
th eir kind invitation, and help in debugging and run ning the parallel
*LISP program on one of their computers. Part icularly, the help of Mr.
Gary Ra ncourt and Mr. Bernie Murray was invaluable. Also, I thank
And rew T. Ogielski and Malvin H. Kales for st imulat ing discussions,
Debasis Mitra for a helpful explanat ion of a topic in Markov chains,
and Brigid Moynah an for carefully read ing the text .

A ppend ix A. A working code of Is ing simulation

C language program [or the BALANCE parallel comput er ; the code is
used for timin g only and contains no i/o; the code of th e pseudo-random
number generator is not included.

1120 Boris D. Luba chevsky

include <pp .h>
include <math.h>
inc1ude <sys/tmp_ctl.h>

#define SHARED_MEM_SIZE (sizeof(dou ble) "'l OOOO)
#define END_TIME 1000.
#define A 20 /'" side of small square. a PE takes care of"'/
deflne M 5 /* number of PEs along a side of the big square-r

sha red int oPEs = M""M, spin[M*A][M*A] ;
shared float time[M][M]; '''' local times on subarr aysw
shared float prob[lO]; '''' probabilities of state change */
shared floa t J = 1., H = 0. ; /* Energy= -J sum spin spin' - H sum spin */
shared float T = 1.; ,. Temperature */
shared int aI02 = A"A ;
shared Int am = A*M;

mainC)
{

int i,j,child_id, my_spin, sumjiel, index , bit ;
float d_E, X;
do uble frandf) :

1* compute flip probabilities *1
for (i = 0; i < 5 ; i+ +)

for U = O;j < 2;j + +)
{index = i + 5*j; , '" index == 0,1,. .. ,9 "/
my_spin = 2*j - 1;
sumjnei = 2*i . 4;
d_E = 2.*(1 * my_spin * sum_oei + H * my_spin);
x - exp(-d_Err) ;
prob [index] ~ x/(1. +x);

/* priotf("prob[%d] =%f\n" ,inde x,prob [index]); */
};

/* initialize local times */
for (i = 0; i < M; i + +)

for U = O;j < M; j++)
time[i]UJ~O.;

/* initialize spins at random, in seedram seed.b), b is dummy'"
seedran(3 1234,1);
for (i = 0; i < M*A; iTT)

for Ij ~ O; j < M*A;j++) {
bit = 2*frand(l); /* bit becomes 0 or 1 «t

,*flxlng a PE for process child_id ,,'
' * starting a child PE process " I

Efficient Parallel Sim ulat ions of Asynchronous Cellular Arrays

spin[i][j) = 2*bit - 1; ' * spin become s - t or 1 *,
' * prin tW spio [%d][%d}= %d\n",i ,j ,sp in[iJ[j]) ; *,
};

' ''' in the following loop single PE spawns oPE s other PEs for concurr ent
execution . Each child PE would execute subrout ine work(my_id) with its
own argument my_id . ""

for (child_id" 0; child_id < nPEs; child_id + +)
if (fork() ~ ~ 0) (

tmp_affin ity(child_id);
work(child_id);
exiteD);

,*in the following loop tbe parent PE awaits termi nation of each child PE
tben termin ates itself ,,'

for (cbild_id = 0; cbild_id < nPEs; cbild_id+ +) wait(O);
exit(O);

work(my_id)
int my_id;
{

int i,j;
int coord , var;
int x,y,my_i,myj ,sum_oei, nei_i,neij;
int up_i. down.j, leftj, rightj ;
int Lbase. j.base:
int index;
double frandf);
double r;
doub le end.jime:

end_time = END _TlME*A*A;
' *normalizing time scale for mult iprocessor execution'v

my_i = my_id%M; ,*PE my_id carri es small square (my_i,myj)*'
i_base = my_i"'A;
up_i = (my_i + l)%M;
dOWD_i = (my_i + M - I)%M;

myj = (my_id-my_i)IM;
j_base = myj*A;
leftj = (myj + M - l)%M;
rightj = (myj + l)%M;

seedran(my_id*my_id· my_id,my_id) ;
' · PE my_id bas its own copy of pseudo-ran dom numbe r gene rator and

initializes it using seeclran(seed ,my_id) with uniqu e seed= my_id" my_id·'

while(time[my_i][myj] -c end_time)
{

r = fraod (my_id);

1121

1122 Boris D. LubaclJevsky

/'"PE my_id obta ins next pseud o-rand om numb er from its own seq uenc e-r
x = r"'A ;
y = (r"'A·x)"A;

j*pick a random cell with intern al add ress (x,y) within the A"A squa res

{"'compute sum of neighbor ing spins"'l
sum_oei :s 0;
for (coord = 0; coord < 2; coord + = 1)

for (var = .1 ; var < 2; var += 2)

ne i_i = x;
neij = y;
if(coord = = 0) neLi + = var;
if(coord = = 1) neij + = var:

ifeD <= ne Li && neLi < A && 0 <= nc:i..,j && neiJ < A)
{

nc i_i + = i_base;
nei..j + = j_base;

}
else
{

/. 4 possible reasons to wait for a neighboring PE ../
ifC-! == DeU) while (time[dowo _i][my.j] < time(my_iJ[my.j)) ;
ifC- l == nei.j) while (t ime[my_i][lef t..,j] < time[my_i][my..j]) ;
if(neU == A) while (time[u p_i][myJ) < time[my_i][myj]) ;
if(nei..j = = A) while (time[my_i][rightj] < time[myj][myJ]) ;

ne U = (ne U+ Lbase +am)%am ;
neij = (ne i.J+j_base+am)%am;

};
sum _ne i += spinln eU][ne i.,j] ;

};

I*recover index*1
index = (sum_Dei .;- 4)12 + 5*(spin[x+ i_ba se][y+j_base] + 1)/2 ;

r = frand(my-id);

if(r < prob[ind ex])
spin[x+ i_base][y+j_base] *= -1;

else 1* prin tf'(": NO flip\n ") *1 ;

t = frand(m y_id);
time[my_i][my.J l + = -log(r);

};
}

Efficien t Parallel Simulations of Asynchrono us Cellular Arrays

References

[1] S. Geman and D. Geman , "Stochas t ic re laxat ion , G ibbs distribut ions,
and th e Bayesian restoration of images," IE EE Transactions on p a t·
tem analysis and machine in telligence, PAMI-6 6 (Nov. 1984) 72 1~

741.

[2] B. D. Lubachevsky and D. Mit ra , "A chaotic asy nchronous algori thm
for computing t he fixed point of a nonnega tive matrix of unit sp ectral
radius ," Journ al of the A CM, 33 I (1986) 130- 150.

[3] T. E. Ingerson and R. L. Buvel, "St ructure in asyn chronous ce llular
aut omata," Physica, 10D (1984) , 59~68.

[4] M. I. Hoffman, "A cellular Automation Model Based on Cortical Phys­
iology," Complex Syst ems, 1 (1987) 187-202.

[5] F. Ising, "Beitag zur th eorie des ferromagnetis mus," Z. Physik, 31
(1925) 253-258.

[6] R. J. Glauber , "Time- depend ent statist ics of the Ising model," Journ.
Math. Pl,ysics, 4 2 (1963) 294-307.

[7] N. Metr opolis , A. W . Rosenbluth , M. N. Rosenbluth , A. H. Teller , and
E . Teller, "Equat ion of state calcu lations by fas t comput ing machines,"
Journ . Chern. Physics, 21 6 (1953) 1087-1 092.

[8] A. B. Bor tz, M. H. Kalas, and J . T . Lebowitz , '(A new algorithm for
Monte Ca rlo simulat ion of Ising sp in systems," J. Compo Phy sics, 17

(1975) 10- 18.

[9] A. T. Ogielski , "Dynamics of three- dimensio nal Ising spin glasses in
t herma l equ ilibrium," Physical Review B, 32 11 (1985) 7384-7398.

[10] R. Fried berg and J. E. Cameron , "Tes t of t he Monte Ca rlo met hod :
fast simulat ion of a sma ll Ising lattice ," J ourn . Chern. Physics, 52 12
(1970) 6049-6058

[11] M. Cr eutz , "Dete rminist ic Ising dynamics," Ann . Phys. , 167 62 (1986)
62-72.

[12] M. Gardner, "Mathemat ica l games. Th e fantas tic combinations of
John Conway's new solitaire game "life", " Scientific A me rican (Oc­
tober 1970) 120-1 24.

1123

